Model Checking Multithreaded Programs with

Asynchronous Atomic Methods

Koushik Sen and Mahesh Viswanathan
Department of Computer Science,
University of lllinois at Urbana-Champaign.

{ksen, vmahesh}@s. ui uc. edu
Abstract. In order to make multithreaded programming manageable, program-
mers often follow a design principle where they break the problem into tasks
which are then solved asynchronously and concurrently on diffateetds.
This paper investigates the problem of model checking programs thetvfo
this idiom. We present a programming language. $hat encapsulates this de-
sign pattern. 8L extends simplified form of sequential Java to which we add the
capability of making asynchronous method invocations in addition to the stan-
dard synchronous method calls and the ability to execute asynchroreshedsa
in threads atomically and concurrently. Our main result shows that thieoton
state reachability problem for finiter® programs is decidable. Therefore, such
multithreaded programs can be model checked using the counterexgoiged
abstraction-refinement framework.

1 Introduction

Multithreaded programming is often used in software asati$eto reduced latency,
improved response times of interactive applications, ancermptimal use of process-
ing power. Multithreaded programming also allows an agian to progress even if
one thread is blocked for an 1/O operation. However, writtogrect programs that use
multiple threads is notoriously difficult, especially inetipresence of a shared muta-
ble memory. Since threads can interleave, there can beamaied interference through
concurrent access of shared data and result in softwanes elue to data race and atom-
icity violations.

Therefore, programmers writing multithreaded code, oftdimere to a design idiom
where the computational problem is broken up itaekswhich are then assumed to
be finished asynchronously, concurrently, and atomic&ipecifically, threads during
their execution may send tasks or events or asynchronousages to other threads. If
a thread is busy completing a task, the messages sent toatidet! to a pool of tasks
associated with the thread. When the thread has completeditrent task, it takes out
a task from its pending pool and starts processing it coeatigr with other threads.
If the pool is empty the thread waits for a new task or event essage. Even though
these asynchronous tasks are executed concurrently enetiiffthreads, an underlying
assumption is that these tasks will be executed atomiddiig.is often ensured through
various synchronization primitives, such as locks, mugesemaphores, etc.

For example, in the Swing/AWT subsystem of Java, a non-GUathris not
allowed to make any direct changes to the user interfaceesepted by a Swing
object. Instead such a thread submits the request tdEtent Queue by calling
SwingUtilities.invokeLater(runnable). The thread associated with the
Swing event queue handles these requests one by one atgniitéd ensures that the
user interface operations are performed in a non-inteiesiay and the user interface
has a consistent state and look. Another context where #siigd paradigm is widely

prevalent is multithreaded web servers. When a page recgiesht to a web server,
the web server posts the request to a request queue. If thatfiede thread in the finite
thread pool of the web server, the free thread removes asefjoe the request queue
and starts processing the request. The use of threads srtkatenultiple requests to
the web-server can be served concurrently. Moreover, sgnctation primitives are
used to ensure that the threads do not interfere with eacr.diimother application
area where this paradigm is used is embedded software whicturally event-driven.
Finally, multithreaded transaction servers for databatasview transactions as asyn-
chronous requests that are served by the different threfatlie cerver concurrently.
Since requests in this context are transactions, the senserres that the service of a
transaction satisfies the ACID (atomicity, consistenaylaigon, durability) property.

The prevalence of this design idiom has also been observédidsy Holub [17] in
his book “Taming Java Threads". In this book, Holub pointstbat programmers clas-
sify method invocations or messages into two categoriagclspnous messages and
asynchronous messages. The handler for synchronous rassksgsn't return until the
processing of the message is complete. On the other hant;tasyous messages are
processed possibly by a different thread in the backgroanmedime after the message
is received. However, the handler for asynchronous messagens immediately, long
before the message is processed.

In this paper, we investigate the verification of programgtem adhering to this
design principle. We introduce a simple programming laggua&alled $L, that en-
capsulates this design goal. It is a simplified form of setjgkdava to which we add
the capability of making asynchronous method invocatiansddition to the standard
synchronous method calls and the ability to dynamicallatrehreads. We define its
semantics in terms of concurrently executing threads. \&e tibserve that the require-
ment that asynchronous methods execute atomically, allevis reason about the pro-
gram using a new semantics wherein the threads service fisgsehronous method
invocations serially.

The analysis of 8L programs with respect to the serialized semantics can then
proceed by following the popular methodology of softwaredelachecking [29, 2, 15],
where the program is first automatically abstracted usirajdam predicates into one
that has finitely many global states, and the abstractedq@mog then model checked.
The results of the model checking are then used to either dstnade a bug/correctness
of the program, or used to refine the abstraction.

The success of the software model checking framework depepdn the model
checking problem for 8L programs with finitely many global states being decidable.
We first observe that the serial semantics ensures that tlaé dtack of at most one
thread is non-empty at any time during the execution; theasgios of such programs
can thus be defined using only one stack. We introduadti-set pushdown systems
(MPDS) to model such finite & programs. MPDSs have finitely many control states,
one unbounded stack to execute recursive, synchronousdsethnd one unbounded
bag to store the asynchronous method invocations. The resination that is imposed
on such systems is that messages from the bag be servicedfmamthe stack is empty,

a consequence of our atomicity requirements. Our maintresthat the problem of

control state reachability of MPDSs is decidable, thus destrating that 8L programs
can be analyzed in the counterexample guided abstraaforement framework.

The rest of the paper is organized as follows. Next, we dsclasely related work
and place our results in context. Section 2 introduces iootadefinitions and classical
results used in proving our results. The simple parallejlege ($L) for multithreaded
programming is presented along with its semantics in Se@ioWe investigate the
verification problem in Section 4 and conclude by giving adowound. Due to lack of
space, we defer some of the proofs to [31].

Related Work. Model-checking algorithms and tools [29, 2, 15] for sintieeaded
programs with procedures based on predicate abstractienbdeen developed. These
model checkers use the fact that the reachable configusatibpushdown systems
are regular [1,13]. Ramalingam [28] showed that verifigatdd concurrent boolean
programs is undecidable. As a consequence, approximdisetachniques that over-
approximate [4] and under-approximate [26, 3] the rea@hatates have been consid-
ered, as have semi-decision procedures [25]. Note thatl¢fogithm in [25] can be
shown to terminate if the whole execution of a thread is agsuta be a transaction.
Other techniques [7, 16, 8] try verifying each thread contmoglly, by automatically
abstracting the environment. Finally, the KISS checkel [a¥ concurrent programs
simulates the executions of a concurrent program by theuioas of a sequential pro-
gram, where the various threads of the concurrent prograracreduled by the single
stack of the sequential program. It is worth mentioning [&8} proposed the use of a
single stack to model executions of multithreaded softwBneugh complete, the KISS
checker is not sound.

There has also been considerable effort in characteriznguzrent systems with
finitely many global states for which the reachability as#éyis unknown to be decid-
able. Starting from the work of Caucal [6] and Moller [22], evk purely sequential
and purely parallel processes were considered, hierardfisystems have been de-
fined. Mayr [21] gave many decidability and undecidabiliégults based on a unified
framework. Among the models that allow both recursion andbdyic thread creation,
most disallow any form of synchronization between the ttsgd 1, 30, 20, 23]. More
recently, the model ofonstrained dynamic pushdown netwof€OPN) [5] was intro-
duced which allowed for thread creation and limited formsyfchronization. CDPNs
have a more sophisticated means to synchronize, but th@siinchronization only be-
tween a parent thread and its descendants. Our model of M&ld®s dynamic thread
creation and limits context switches to happen only whemelssonous methods have
finished execution. Thus, MPDSs and CDPNs are incomparablejpply to different
multi-threaded programs.

2 Preliminaries

Multi-Sets and StringsGiven a finite set”, the collection of all finite multi-sets with
elements in~ will be denoted byl/,,[X]. We saya € M if a is an element of multi-set
M. For multi-setsM andM’, M UM’ is the multi-set union ol andM’, andM \ M’
the multi-set difference betweel and M’. We usef) to denote the empty multi-set.
Recall thatX* is the collection of all finite strings over the alphatiet with ¢ being
the empty string. Given two finite strings andw’, we will denote their concatenation
by ww’. For a stringw, M(w) will denote the multi-set formed from the symbolswef

For example, ifw = aaba, thenM(w) = {a, a,a,b}. Finally, for L C X* M(L) =
{M(w) |w € L}

Well-quasi-orderings.Recall that aquasi-ordering< over a setX, is a binary relation
that is reflexive and transitive. Given a quasi-orderhganupward closed st/ C X
isasetsuchthatif € U andx < ytheny € U. ForasetS C X, the smallest upward
closed set containing will be denoted bycL(S), i.e.,cL(S) ={z|Ty € S.y < x}.
For a setS, the minimal elements i§ isMIN(S) = {z |Vy € S.y £ z}.

A quasi-ordering< over X is said to be avell-quasi-orderingwqo) if for any infi-
nite sequence, zo, x3, . . . of elements inX, there exist indices j such that < j and
z; < x;. We now recall some well-known observations about wellsijaaderings [18,
12].

Proposition 1. For awgo< and any sef5 C X, MIN(S) is finite.

Proposition 2. For a wqo <, any infinite increasing sequenég C U; C Uy C ---
of upward closed sets eventually stabilizes, i.e., thesekis N such that for alk > &
U; = Ug.

Pushdown systemsA pushdown systerfPDS) isP = (Q, I, 4, g0, v0), whereq is
a finite set of stated” is a finite set of stack alphabetg, € Q is the initial state,
~o € I'is the initial stack configuration, ardC (Q x I') x (Q x I'*) is the transition
relation. The execution of a PDS can be described in termdrafaition system over
configurations, which argy, w) € Q x I'*. We say(q1, w1y) — (g2, wiwy) if there
is a transition((¢1,7), (g2, w2)) € 6. We say a configuratiofy, w) is reachable iff
(go,v0) —* (¢, w), where—* is the reflexive, transitive closure ef—, and that a
control state; is reachable iff(¢, w) is reachable for some € I'*. It is well-known
that the problem of control state reachability is decidé&bée [13, 1]); this is the content
of the next theorem.

Theorem 1. Given a PDSP, checking if a control state is reachable is decidable in
O(n?) time, wheren is the size of the PDB.

3 Programming Language

We describe a simple parallel languageLSwhich captures the essential concepts of
multithreaded programs with asynchronous atomic meth®ls. L language is a
simplified form of the sequential Java language. Similaat@m,Jthe L language sup-
ports objects. In addition to definition of classes, we altbe definition of a special
type calledthread. Instances of alassis called an object and instances dhaead is
called a thread object. A thread of control is associatetl ewvery thread object. The
objects in $L behave similarly as in Java. A method invocation of an ohigsiyn-
chronousand its execution is carried out using a stack. HoweverHiaad objects we
introduce a new semantics for method invocation. Spedificait assume that an invo-
cation of a method of a thread objeciisynchronousindatomic If a thread of control
invokes a method of a thread object, then the method calingimnmediately and the
call is added as a message to a global message bag. If thd tifreantrol associated
with the callee object is not busy processing a message,ithakes out a message
(i.e., a call to one of its methods) targeted to it from thebgldoag and starts executing
it atomically and concurrently with other threads. Notet timsan execution of a &L

program, several threads can execute concurrently. Thmeitg condition requires
that for every possible interleaved execution ofr. $rogram, there exists an equiva-
lent execution with the same overall behavior where the oustiof the thread objects
are executed serially, that is, the execution of a threadabipethod is not interleaved
with actions of other threads. This particular restrict@sures that the execution of a
method of a thread object is not interfered by other threlasigh shared objects.

P ::= defri” (newT").md(c")
defn::= classC {field* methI'} | thread T" {field" methZ}
field ::= type fd
methl::= (type| void) md(arg*){local* stmt}
meth2::= void md(arg*){local* stmt'}
stmt::=1: S;
Su=z=e|xfd=y|z.mdy*)|if zgotol' | return =
e = newtype| null | this | ¢| z | z.fd | z.md(y*) | f(z*)
arg ::= typex
local ::= typey
type::= C' | T | primitive types such as int, float, boolean, etc.
[::= label
x,y ::= variable name
C ::= class name
T ::= thread name
fd ::= afield name
md ::= a method name
f ::= pre-defined functions such as +, -, *, /, etc.

¢ = constants Eéh fsslp’ Est{ll#]eta?(tc.
3.1 Syntax of L

The formal syntax of 8L is given in Figure 1. A program inf&. consists of a sequence
of definitions ofclassesandthreads followed by an asynchronous method invocation
of a newly created thread object. Observe that the execafiarstatement can access at
most one shared memory location. This allows us to treattbeution of a statement as
an atomic operation. Branching and looping constructsraitaied using the statement
if z gotol, wherel is the label of a statement in the method that containg #tatement.
We assume that a program imiSis properly typed.

3.2 Semantics of 8L

In the semantics of &, we assume that actions of multiple threads can interleeaey
way; however, we impose the restriction that the executfanasynchronous method
must beatomic We call this semantics the concurrent semanticsraf S

The concurrent semantics oPSis given by augmenting more rules to the standard
semantics of Java. Instantaneous snapshot of the exeadtiBrL program is called
aconfiguration Formally, a configuratiod’ is a 3-tuple(q, S, M), where

— ¢ is the global state containing the value of every object aneld object currently
in use in the program and the program counter of each threadiated with every
thread object.

— S is a map from a thread object to an execution stack. The stackefch thread
is used in the usual way to execute an asynchronous methoergély. Note
that the invocation of an object method is always synchrerand the method is
executed by the caller thread by creating a new stack frarig @tack.

— M is a multi-set or bag of messages. Whenever, a thread invokestlzod of
a thread object, the target thread object, the method namdethe values of the
arguments passed to the method are encoded into a messggaeedlin the bag.
We useM U e to represent the multi-set obtained by adding the elera¢otthe
multi-set .

LetC be set of all configurations. We define a transition relafion-; C’ (see Figure 2)
for the concurrent semantics. Such a relation represeatisahsition from the config-
urationC' to C’ due to the execution of the statemerity the thread. Henceforth, if

t is a thread object, then we will also us¢o denote the thread of control associated
with the thread:.. The transition relations are described abstractly usingraber of
functions described, informally, below:
[JavA SEMANTICS]

3t € THREADS(q).(s = GETNEXTSTATEMENT(q, t)
AN s# LA=(s=zmdy") A [z]se¢) € THREADS(q)))
A (q',S") = EXECUTENEXTSTATEMENT(q, S(t), t)

(q,S, M) ~{ (¢',S', M)

[CONSUMEMESSAGH

3t € THREADS(q).(GETNEXTSTATEMENT(g,t) = L
A (¢, S") = SETNEXTSTATEMENT(q, S(¢), t, t.md(v*)))

(qv S7M) {tmd(’l)*)}) WtL (q/>S/7M)

[SEND MESSAGH

3t € THREADS(q).(s = GETNEXTSTATEMENT(q, t)
A (s =z.mdy") A [x]s) € THREADS(q)))

(¢, 8, M) ~{ (SKIPNEXTSTATEMENT(q, t), S, M U {[z]s(t)-md([y]5(:))})

Fig. 2. Concurrent Semantics

— THREADS(q) returns the set of thread objects that are created in theitaac

— GETNEXTSTATEMENT(q, t) returns the next statement to be executed by the thread
t. The function uses the value of the program counter foungfuor the thread
to determine the next statement. If the threasl not executing any asynchronous

method, then the function returds
— EXECUTENEXTSTATEMENT(q, S(t), t) executes the next statement of the thread

following the standard sequential Java semantics andngtupair containing the
updated global statg and the updated ma§J in which the stacks’(¢) has possibly
been modified. The program counter of the threéslalso updated appropriately
in the global state’.

— SETNEXTSTATEMENT(q, S(t), t,t.md(v*)), wherev denotes a value, creates a
stack frame in the stacK(t) to prepare for the invocation of the methotl and
sets the program counter bin ¢ to the first statement of the methot of t. The
updated global staig and the mags” is returned by the function.

— SKIPNEXTSTATEMENT(g, t) updates the program countergiof the thread, such
that the thread skips the execution of the next statement.

— [#] 5@ returns the value of the local variabtewhich is obtained from the topmost
stack frame of the stacK(¢).

The initial configuration of a 8L programdefri® (new T").md(c*), given byCy =
(g0, So, Mp), whereg, contains the thread object, saycreated by theew T' expres-
sion, Sp mapst to an empty stack, andl/, contains the only messagend(c*). The
program counter of in gq is undefined. Thus the@NSUME MESSAGEIs the only rule
applicable to the initial configuration.

Atomicity Requirement. The concurrent semantics oPSallows arbitrary interleav-
ing of multiple threads. However, we want to impose the ettn on possible inter-
leavings so that the execution of each asynchronous medtaddric. We next describe
this atomicity requirement.

We abstractly represent a finite execution of the fofilg ~-;' C; ~}2
Cy---Cpry ~ir C, of a SPL program following the concurrent semantics
by the sequence =~-j!~~j2 ... ~/" (C,. We use M&T(r) to represent
the multi-set{(t1, s1), (t2, 82), ..., (tn,sn)}. We restrict the set of executions that
can be exhibited by a & program following the concurrent semantics by im-
posing the atomicity requirement on asynchronous methatgions as follows.
If a finite executionT =~{l~i2 ... ~/" (¢, S,M) be such thatvt <
THREADS(q).(GETNEXTSTATEMENT(q,t) = L), thenr is said to be avalid exe-
cution of the program following the concurrent semantitthi following holds. There

exists a finite execution’ =~-,'~>2 ... ~7r (¢',S’, M') of the program following

th t!
the concurrent semantics such that
1. (¢S, M) =(¢,5", M),
2. MSET(7) = MSET(7'),
3. if for any two elementst, s) and(t, s') in the MSET(7), ~§ appears before-$’
in the sequence, then~~; also appears before»f' in the sequence’, and
4. in the sequence/, all transitions after a~;- and before any~, are of the form
~+y, such that = ¢’ ands # L.
The above requirement ensures that the execution of an fasyraus method by a
thread is atomic. In general, it has been shown that suchicitgmequirements for
multithreaded programs can be guaranteed statically mgustype system for atom-
icity [14] or dynamically through rollback [32]. We assuntet the language /& is
augmented with an atomicity type system or implemented im@such that an execu-
tion of a program in the language following the concurremiastics is always valid.
Serialized Semantics.To effectively reason about the behavior ofLSwe introduce
the serialized semantics oS and show that for the reasoning purpose we can only
consider the serialized semantics @fLS
Similar to the concurrent semantics, in the serialized sgice we assume that
there is global state, a global message bag or a multi-set of messageand a mad

from thread objects to stacks. Then the following happeadaop. If there is a message
(i.e., an asynchronous method call along with values foaiigmiments) for a thread in
the bag, then the thread removes the message from the bagendes the method in

the message. No other thread is allowed to interleave tkeautions till the execution

of the method terminates. During the execution of the mettieexecuting thread can
call asynchronous methods of any thread object. Those aaltgy with the values for

their arguments are placed in the bag as messages. Notenthiatdeterministic choice

is associated with the picking of a message from the bag.

We define a transition relatio —; C’ for the serialized semantics. The rules
for transition in the serialized semantics is same as th#ténconcurrent semantics
except for the rule [ONSUME MESSAGH (see Figure 3). In the serialized semantics,
the rule is applicable if none of the threads is executingsgmehronous method and
there is a message in the bag. In the concurrent semantesuln is applicable if
there exists a thread, which is not executing an asynchsonwthod, and there is a
message for the thread in the bag. Note that the atomicityin@gent trivially holds in
the case of serialized semantics. We represent a finite #seaf the formCy — ;!

Cy —i2 Cy---Cpy —i C), following the serialized semantics by the sequence

S i O
[CONSUME MESSAGH

—

Vt € THREADS(q).(GETNEXTSTATEMENT(g,t) = L)
A (¢, S") = SETNEXTSTATEMENT(q, S(t'), ', t'.md(v*))

(a8, M U{t'.md(v")}) — (¢, 8", M)

Fig. 3. Serialized Semantics
Given that a program in 8. always exhibits valid executions following the con-
current semantics, the next result shows that any execafitime program following
the concurrent semantics égjuivalentto an execution of the program following the
serialized semantics.

Proposition 3. For any program execution~;!~3> ... ~i" (q,S, M) where
V¢t € THREADS(q).GETNEXTSTATEMENT(q,t) = L, there is a serialized execution
—b—72 .. —7r (¢, 8", M) such that(g, S, M) = (¢, S", M").

th Tty

The above result allows us to treat any valid execution obgiam in $L follow-
ing the concurrent semantics in terms of an equivalent ei@tiollowing the serialized
semantics. Reasoning about a serialized execution isrdsstause in such an execu-
tion we have to consider a sequence of method invocationéfieyet threads, where
the execution of each method can be reasoned sequentialfctl in the next section
we show that reachability of finite programs imiSis decidable. It is worth mention-
ing that the reachability of a program irrGfollowing the concurrent semantics is not
decidable if we do not impose the atomicity restriction.

4 \erifying SPL Programs

In this section we consider the problem of verifyingLSprograms. Recall that for
SPL programs restricted to valid concurrent executions, wedesl (in Section 3.2)
that reasoning about serialized executions is sufficienadnswering questions about

global state reachability. Further, during a serializedogetion of a $L program, at
any point only one thread executes an asynchronous methtaagmpletion without
interleaving with any other thread. This implies that thec&tof at most one thread is
non-empty at any point in a serialized execution. As a reaudtcan define the (serial-
ized) semantics using only one stack which is re-used byeative thread.

The verification of serialized 8. programs can proceed by following the famil-
iar methodology of abstractingp® programs, model checking, checking the validity
of a counterexample, and then refining the abstraction ittheiterexample if found
to be invalid. Using standard predicate abstraction tephes, an 8L program over
arbitrary data types can be abstracted into an @ogram all of whose variables are
boolean. The steps of checking counterexamples and refiagain can be performed
using well-known algorithms. In this section, we thereffireus our attention on model
checking finite L programs. We first define the formal modelrotilti-set pushdown
systemgMPDS) that have finitely many global states, one stack t@@eerecursive,
synchronous method calls, and one message bag to storemgeasginchronous method
calls. Such MPDSs define the (serialized) semantics of fBitie programs. We then
show that the control state reachability problem for MPDs&decidable. Finally, we
conclude this section by showing that the control statelraaitity problem has a lower
bound of EXPSPACE.

4.1 Multi-set Pushdown Systems

We present the formal definition and semantics of multi-sshgdown systems.
Definition 1. A multi-set pushdown system (MPDS) is a tudle= (Q, I, A, g0, %),
where(is a finite set of global stateg; is a finite set of stack and multi-set symbols,
AC(QxTI)x(QxI'x1TI)isthe transition relationg, € @ is the initial state, and
o € I'is the initial method call.

We let ¢ to range overQ, v to range overl’, w to range overl™, M to range
over M, [I']. The semantics of an MPDSl is defined in terms of a transition
system as follows. A configuratiof of A is a tuple (q,w,M) € @Q x I'* x
M,[I']. The initial configuration ofA is (qo, €, {v0}). The transition relation—
on configurations is—; U —5, where —; and —, are defined as follows:
(g, wy, M) —1 (¢',ww', M U {+'}) if and only if ((¢,7), (¢/,w’,v")) € A; and
(g, ¢, M U {~}) —2 (¢,7, M). Observe that— corresponds to the transition rules
[JavA SEMANTICS] and [SEND MESSAGH and—4 corresponds to the transition rule
[CoNsUME MESSAGH in Figure 3. Also note that there is no transition fréme, ()
for anyq € Q; therefore,A halts when it reaches a configuration of the fafgme, 0).
Finally, —*, —7 denote the reflexive, transitive closure et~ and —1, respec-

tively.
Defi¥1ition 2. A configuration(q, w, M) is said to bereachableff (qo, €, {70}) —*

(¢, w, M). A control stateq is said to be reachable if for some € ' and M €
M, (I, (¢, w, M) is reachable.

4.2 Control State Reachability in MPDSs

We are interested in verifying if a certain global state @raf global states) of a finite
SPL program is reachable. This is the same as checking if a naxtaitrol state (or set
of control states) is reachable in the MPDS associated Wilt8tL program. Let us fix

an MPDSA = (Q, I', A, qo,70)- Recall that a control statgis reachable if for some

andM, (qo, €, {v0}) —* (¢, w, M). That means for som@, gz, . .. ¢n, ¥1,72 - - - Vn
andM,, M, ... M,, we have

(g0, €, {70}) —2 (q0,70,0) —1 (q1,€, M1 U{m1}) —2 (q1,71, M1) —7 (g2, €, M2 U {72})
—2 (QZ,’YQa MQ) e _)I (q’ﬂ7 € M, U {'Yn}) -2 (Q'ru')/ny Mn) _ﬁl< (qvwv M)

Thus, the problem of checking whether a control statés reachable, con-
veniently breaks up into two parts: for somé&w,~v, M and M’, check whether
(qo, €, {70}) —* (¢',e, M’ U {~}) and whether¢’,v, M) —73 (¢, w, M). Fur-
ther observe thatq’,~,0) —7% (¢, w, M) for somew and M iff (¢',~, M') —3
(¢, w, M'" U M) for everyM’. Hence, we can further simplify our tasks as follows. For
someq’ and-, check whethefqo, ¢, {v0}) —* (¢', ¢, M' U {~}) for M’ and whether
(¢',7v,0) —7% (¢,w, M) for someM andw. We will call the firstcoverability prob-
lem and the seconzbntrol state reachability without context switch@sblem. We will
treat these problems one by one and show each to be decidable.

Reachability without context switches.We will first consider the problem of checking

if for somew, M, (¢',v,0) —7 (¢, w, M). Observe that since the messages in the bag
do not play a role in the transition—;, we can ignore the asynchronous method calls
that are generated during a transition in order to decidggtfublem. Thus, this problem
can be reduced to checking reachability in pushdown systeloie formally, consider
the pushdown syste® = (Q', I, ¢, ¢}, 7,) whereQ' = @ the states of the MPDS
AT =T,q,=4q, v, =, andd’ is defined as follows{(q1,71), (g2, w2)) € 0 iff
((g1,71), (g2, w2,72)) € A (transition relation of4) for some~,. The MPDSA and

the PDSP are related as follows.

Proposition 4. A configuration (¢q;,w;) is reachable inP iff (¢/,v,0) —%
(q1, wy, M) for someM.

The proof is straightforward and skipped in the interestsmdce. Hence based on
Proposition 4 and Theorem 1, we can conclude that the costtt® reachability prob-
lem, without context switches is decidable in polynomiaigifor MPDSs.

Coverability. We now study the problem of coverability. Recall that, gieestateg’
and a stack symbe}, we need to decide if for som®’ € M, [, (g0, €, {70}) —*
(¢',e, M' U {~}). We will introduce a new model akgular multi-set system{&MS),
which are slight generalization @hulti-set automataand show that the coverability
problem can be reduced to a reachability problem on RMS. Wehein show that the
reachability problem for RMSs is decidable.

Definition 3. Aregular multi-set systefRMS) is a tupleR = (Q, I, 4, g0, o), Where

Q is the set of the states &, I" is the multi-set alphabet, € @ is the initial state, and

0 C ((Q x I') x (Q x L)) is the transition relation with, C I'* being a regular lan-
guage. A configuration is the paig, M), whereq € Q andM € M, [I'] and the initial
configuration is(qo, {70 }). The semantics of a RMS is given by the transition relation
— over configurations. We sdy, MU{~}) — (¢, M") iffthereis((¢,v), (¢, L)) € 6
andw € L such thatM’ = (M UM(w)).

Regular multi-set systems are a generalization of muttagsmata, where instead
of a transition adding the same multi-set to a bag every tm&MS transition chooses
a multi-set from among a collection described by a regulaglage and adds to the bag.

10

We will consider reachability problems for RMSs. A pé&jt) is said to be reach-
able iff there is somé/ such thatqo, {70}) —* (¢, M U {~}). We will show that the
coverability problem of MPDS can be reduced to such a realitygtroblem. But for
that we need to make an important observation about MPDSs.

Proposition 5. For MPDS A4, and any states;;,q2 and stack symbohl; define
M(qi,q2,m1) = {M [(q1,71,0) —7 (g2,€,M)}. There is a regular language
L(Qla q2, '71) such thaM(L(q17 qu/yl)) = M(q17 q2, 71)

Proof. Consider the following pushdown automatéh = (Q', X, 17,4, q},74, F)
where@Q’ = (@ the states of4, input alphabet” = I', stack alphabet” = I, ini-
tial stateq), = ¢, initial stack configuration), = v1, F' = {¢2}, and the transition
relationd C Q@ x I' x X' x Q x I'* is defined as follows{(p1,7}), V4, (p2, w)) € §
iff ((p1,71), (P2, w,74)) € A. In other wordsP has a transition on inpu), exactly
if the corresponding transition in MPD3 asynchronously calls}. Let L(P) be the
language accepted 5y simultaneously by empty stack and final state. It is easydo se
thatM(L(P)) = M(q1, g2, 71)-

We now recall an important observation due to Parikh [24].
Theorem 2 (Parikh). For an context-free languagk; there is a regular languagé
such thatM(L,) = M(L-). Moreover, given a PDA recognizing, we can effectively
construct an automaton fat,.

Hence, there is a regular languad@éq;, g2,~v1) such thatM(L(q1,g2,71)) =
M(L(P)) = M(q1,q2,71) U

Lemma 1. Given an MPDS4, there is an RM3R with the same states and multi-set
alphabet such thag, €, {vo}) —* (¢,¢, M U {~}) for any M in the MPDS iff(q,)
is reachable irnR.

From Lemma 1 we observe that the coverability problem of MR®8ecidable
provided checking ifg,) is reached in an RMS is decidable. We, therefore, focus on
the reachability problem of RMSs. We will show that this gesh is decidable by using
properties about well-quasi-orderings (wqo) and perfagrbackward reachability as
in[12].

For the rest of this section let us fix an RMS&= (Q, I, 4, q0,70). Let us define an
ordering< over the configurations of a RMS as followg; M) < (¢, M") iff ¢ = ¢’
andM C M’. An immediate consequence of Dickson’s Lemma [9] is thettaat this
ordering is a wqgo. For a set of configuratiosisdefinePrRe(S) = {(q, M)|3(¢', M) €
S.(¢, M) — (¢, M’)} to be the set of configurations that can reach some configuarati
in S'in one step. Finally, lebRE*(S) = [J;o PRE(S) be the set of all configurations
that can reach some configurationdnn finitely many steps.

Recall that to check ifg,) is reachable, we need to see if some configuration in
V =cL({(q,{~})}) is reachable from the initial configuration of the RMS. Henge
will compute PRE*(V') and check if(go, {10}) € PRE*(V). Observe that in an RMS,
if (g1, M1) — (qo, M>) then for everyM, (q1, M1 U M) — (g2, My U M). Thus,
for an upward closed séf, PRE(U) is also upward closed. This suggests the following
algorithm. Compute progressively the sEiswherely = V andU, 1 = PREU;)UU;.

The sequencé, Uy, ... is an increasing sequence of upward closed sets, and so by
Proposition 2 we know that this sequence stabilizes in finiteany iterations.

11

To prove decidability of the reachability problem, all weedeto show is that we
can compute a representation{df, ., given a representation éf;. We can represent
an upward closed sét by its minimal elementstin (U) which will be finite (by Propo-
sition 1). Thus, we need to describe how to compute (U, 1) from MiN (U;).

Consider any upward closed détand (¢, M) € MIN(U). For a transitiort, =
((¢,7), (¢, L)) € & (whose destination is statg andw € L definemin (PRE! (U/))
to be(q’, (M \ M(w)) U {~}). In other wordsmIN (PRE” (1)) is the least configura-
tion that can make a transition using by pushingM(wq) elements into the bag and
reach a configuration i/. Let S = {MIN(PRE" (U)) | foreveryw € L, (¢, M) €
MIN (U') and transitiort, } Our first observation is thaf can be represented using reg-
ular languages.

Lemma 2. There are regular languages, such thatS = {J .o {q} x M(Ly).

Finally, we show that given an automaton representatioy,ofve can compute
MIN (PREU)). From the definition ofS it follows that cL(S) = PREU). Thus
MIN (PRE(U)) = MIN(S). Our next observation is that given an automaton representa
tion of S, MIN(.S) is computable.

Lemma 3. Given finite automatal, for each, such thatS = (J, .o {q} x M(L,),
MIN (S) is computable.

4.3 EXPSPACE lower bound

We now show that the control state reachability problemmifact, computationally very
difficult; we prove the problem is EXPSPACE-hard. The pradies on ideas for show-
ing the hardness of the reachability problem of Petri NetstdiLipton [19]. Therefore,
we first recall definitions needed to state Lipton’s obséovatind then sketch how they
can be used to prove the lower bound.

Lipton’s result can be seen as showing a lower bound forrafiroblem of spe-
cial programs calledhet programg10]. A net program is a finite sequence of labeled
commands that manipulate finitely many counter variableghEstatement of a net
program is labeled. The basic commands that constitute progtam are as follows:
incrementinga counter: (¢ : x = x + 1); decrementing counterz (¢ : x =z — 1);
unconditional branching? : goto¢;); nondeterministic branchinfy : goto¢; or goto
£5); subroutine call¢ : gosubt;); return from subrouting? : return); and halt{ : halt).
So a net program is a sequence of distinctly labeled comnsuatsthat the targets of
goto and gosub statements are correct labels. Lipton'dtrasplies towell-structured
net programs, which are programs that can be decomposed imt&in program that
only calls level 1 subroutines, which in turn only call le@$ubroutines, etc., and the
jump commands in a subroutine only have other commands ofaime subroutine as
target. In terms of such programs Lipton’s result can bedtas follows.

Theorem 3 (Lipton [19, 10]). Given a well-structured net prograth the problem of
checking if some computation ends in the statement halt BSPACE-hard.

We will prove an EXPSPACE lower bound for the control statactability of
MPDSs by showing that every well-structured net program learsimulated by an
MPDS. More precisely, for any well-structured net progrBirthere is an MPD3A(P)

12

such that some computation 6fhalts if and only if a special statg,.;; is reachable
in A(P). Unfortunately, due to lack of space, we cannot give all thimits of the con-
struction of A(P); instead we will only sketch the main ideas. Correspondingéch
labeled statemert: stmt we will have a control statg . For each variable, there will

be a multi-set symbat; the number of such symbols n the bag will denote the current
value ofx. The stack at all times will have only one symbol, which wil popped at
times to remove a message from the multi-set store. We will sieetch the translation
of each of the basic commands. The goto statements justvaneothange of control
state without changing either the stack or the multi-setestimcrementinge involves
making a new asynchronous callidi.e., addingz to the multi-set). Decrementing

is a two step process: first we pop the stack (to get to an enguti)sand reach a new
control statey. Stateg’ has the property that if the new method serviced (i.e., redov
from multi-set and put on stack) is anything other thathen it simply makes the same
asynchronous call again, pops the stack and goes bagk ém the other hand if the
new method to be serviceds it simply new moves to the control state corresponding
to the next statement. The idea in simulating subroutins tsado transfer control to the
control state of the subroutine, and then at the same times raakasynchronous call
that stores the return address. On a return, we do sometiniigrsto the decrement
step, to only service the message storing the return addr@ssd on the return address
we go to the appropriate new control state. The resulting BIRBs the same order of
control states as the net program, and the stack alphalsbisfahe same size as the
net program. Thus, based on all these observations, we havyelkowing theorem.

Theorem 4. The control state reachability problem for MPDSs EXPSPARE].

Acknowledgment

We would like to thank Gul Agha, Chandrasekhar Boyapati, Cormac mdRanjit Jhala, and
Shaz Quadeer for providing valuable comments on this work. This walpported in part by
the ONR Grant N00014-02-1-0715, the NSF Grants NSF CNS 05-0%82F CCF 04-29639,
and NSF CAREER 04-48178.

References

1. J.-M. Autebert, J. Berstel, and L. Boasson. Context-free lareguagd pushdown automata.
pages 111-174, 1997.

2. T.Ball and S. Rajamani. The SLAM Toolkit. Proceedings of CAV'2001 (13th Conference
on Computer Aided Verificationyolume 2102 of NCS pages 260-264, 2001.

3. A.Bouajjani, J. Esparza, S. Schwoon, and J. Strejcek. Reachalpiditysis of multithreaded
software with asynchronous communication.Rroc. Foundations of Software Technology
and Theoretical Computer Science (FSTTCS'06)ume 3821 o NCS 2005.

4. A.Bouajjani, J. Esparza, and T. Touili. A generic approach to the stiadilysis of concurrent
programs with procedures. Rrinciples of Programming Languages (POPL'02P03.

5. A. Bouajjani, M. Mueller-OIm, and T. Touili. Regular symbolic analysisdghamic net-
works of pushdown systems. Rroc. 16th Intern. Conf. on Concurrency Theory (CON-
CUR’05), volume 3653 ofNCS 2005.

6. D. Caucal. On the regular structure of prefix rewritingiheoretical Computer Science
106:61-86, 1992.

7. S. Chaki, E. Clarke, A. Groce, S. Jha, and H. Veith. Modular vatiba of software com-
ponents in CIEEE Transactions on Software Engineering (TS¥)(6):388—402, 2004.

13

10.

11.
12.

13.

14.
15.
16.
17.
18.
19.
20.
21.
22.
23.

24,
. S. Qadeer, S. Rajamani, , and J. Rehof. Procedure sumnariemdel checking multi-

26.

27.
28.
29.
30.
31.

32.

. J. M. Cobleigh, D. Giannakopoulou, and C. S. Pasareanu. Lgaesumptions for compo-

sitional verification. InProc. of the 9th International Conference on Tools and Algorithms
for the Construction and Analysis of Systems (TACA&)es 331-346, 2003.

. L. E. Dickson. Finiteness of the odd perfect and primitive abundambers with- distinct

prime factors American Journal of Mathematic85:413-422, 1913.

J. Esparza. Decidability and complexity of Petri net problems — Aadioiction. InLectures
on Pteri Nets |: Basic Models. Adavnaces in Petri Naetsmber 1491 in Lecture Notes in
Computer Science, pages 374—428. 1998.

J. Esparza and A. Podelski. Efficient algorithms fof pmed post on interprocedural parallel
flow graphs. IrPrinciples of Programming Languages (POPL'0pages 1-11, 2000.

A. Finkel and P. Schnoebelen. Well-structured transition systeergwlrere! Theoretical
Computer Scienc®56(1):63-92, 2001.

A. Finkel, B. Willems, and P. Wolper. A direct symbolic approach taei@hecking push-
down systems. IfProc. 2nd Int. Workshop on Verification of Infinite State Systems (INFIN
ITY’97), volume 9 ofElectronic Notes in Theor. Comp. SEisevier, 1997.

C. Flanagan and S. Qadeer. A type and effect system for atonhicRyoc. of the ACM SIG-
PLAN conference on Programming language design and implementatidn’(), 2003.

T. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy Aligiracn Proc. of the ACM
Symposium on Principles of Programming Languagegies 58—-70, 2002.

T. A. Henzinger, R. Jhala, R. Majumdar, and S. Qadeer. Threatular abstraction refine-
ment. InProc. of the 15th International Conference on Computer-Aided VetidicCAV)
volume 2725 oLLNCS pages 262-274. Springer, 2003.

A. Holub. Taming Java Thread#APress, 2000.

J. B. Kruskal. The theory of well-quasi-ordering: A frequentlycdisred conceptlournal
of Combinatorial Theory: Series,A3(3):297-305, 1972.

R. Lipton. The reachability problem requires exponential spacehrileal Report 62, Yale
University, 1976.

D. Lugiez and P. Schnoebelen. The regular viewpoint on PAegsas.Theoretical Com-
puter Sciencg274(1-2):89-115, 2002.

R. Mayr. Decidability and Complexity of Model Checking Problems for Infinite-Stase Sy
tems PhD thesis, Technical University Munich, 1998.

F. Moller. Infinite results. IfProceedings of the Conference on Concurrency Thegmages
195-216, 1996.

M. Miller-Olm. Precise interprocedural dependence analysis of paredigligms.Theoret-
ical Computer Scien¢811(325—-388), 2004.

R. Parikh. On context-free languagdsurnal of the ACM13(4):570-581, 1966.

threaded software. IRrinciples of Programming Languages (POPL'02p04.

S. Qadeer and J. Rehof. Context-bounded model checkinghofizent software. 111th
International Conference on Tools and Algorithms for the Constructionfaradysis of Sys-
tems volume 3440 oL NCS pages 93-107, 2005.

S. Qadeer and D. Wu. KISS: keep it simple and sequenti?dC SIGPLAN 2004 confer-
ence on Programming language design and implementgpages 14—24, 2004.

G. Ramalingam. Context-sensitive synchronization-sensitive siaddyundecidableACM
Trans. Program. Lang. Sys2(2):416-430, 2000.

S. Graf and H. Saidi. Construction of abstract state graphs with Pv&onference on
Computer Aided Verification (CAV'9,Ajolume 1254 o£. NCS pages 72-83, 1997.

H. Seidl and B. Steffen. Constraint-based inter-procedurdysiea@f parallel programs. In
European Symposium on Programming (ESOP’06)ume 1782 oL NCS 2000.

K. Sen and M. Viswanathan. Model checking multithreaded prognaitih asynchronous
atomic methods. Technical Report UIUCDCS-R-2006-2683, UILBDG2

A. Welc, S. Jagannathan, and A. L. Hosking. Transactional marfito concurrent objects.
In Proceedings of the European Conference on Object-Oriented Pragiiagnvolume 3086
of LNCS pages 519-542. Springer, 2004.

14

