
c© Copyright by Koushik Sen, 2003

PREDICTIVE SAFETY ANALYSIS OF CONCURRENT PROGRAMS

BY

KOUSHIK SEN

B.Tech., Indian Institute of Technology at Kanpur, 1999

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2003

Urbana, Illinois

Acknowledgments

The work is supported in part by the Defense Advanced Research Projects Agency (the

DARPA IPTO TASK Program, contract number F30602-00-2-0586 and the DARPA IXO

NEST Program, contract number F33615-01-C-1907) and ONR Grant N00014-02-1-0715.

I would like to thank my advisor, Prof. Gul Agha, for his advice, support and intellectual

guidance. He has always been available and willing to discuss anything.

A special thanks to Prof. Grigore Roşu for getting me started in this new research area

and discussing the details of the technique.

I gratefully thank Abhay Vardhan for reviewing earlier drafts of the thesis. I would also

like to thank Prasanna Thati, Wooyoung Kim for having discussion on the ideas presented

in this thesis.

I would like to thank my wife and my parents for creating a healthy environment for

work and for providing emotional support in times of crisis.

iii

Table of Contents

List of Tables . v

List of Figures . vi

Chapter 1 Introduction . 1
1.1 Example . 4
1.2 Our Contributions . 5

Chapter 2 Related Work . 6
2.1 Model Checking . 6
2.2 Distributed Debugging . 7
2.3 Runtime Verification . 9

Chapter 3 Multithreaded Systems . 10
3.1 Multithreaded Executions and Shared Variables 10
3.2 Causality and Multithreaded Computations 11
3.3 Relevant Causality . 12
3.4 Deriving the Main Algorithm . 12
3.5 Computation Lattice . 16

Chapter 4 Multithreaded Safety Analysis . 21
4.1 Safety in Temporal Logics . 21
4.2 Checking Safety against a Single Run . 23
4.3 Checking Safety against All Runs . 28

Chapter 5 Implementation . 33

Chapter 6 Conclusion and Future Work . 37

References . 39

iv

List of Tables

4.1 Semantics of ptLTL . 22

v

List of Figures

1.1 JMPaX Architecture . 3

3.1 Computation lattice and three runs. 19

vi

Chapter 1

Introduction

Systems in the real world consist many of distributed components that interact with each

other concurrently. Such systems are called concurrent systems. Concurrent systems are im-

plemented in different ways in practice, the most common paradigms being message passing

systems and shared memory systems. In message passing systems, the different components,

which can be threads, processes, or actors [2], communicate by exchanging messages. The

mode of message exchange can be asynchronous or synchronous. In shared memory systems,

the different components of the system communicate through updates of shared variables in

a common memory. Most modern programming languages support concurrent programming

either through message passing or through shared memory. For example, Java supports con-

current programming through threads : threads communicate through reading and writing

of shared variables. Programs consisting of multiple threads and shared variables are called

multithreaded programs. In multithreaded programs, an execution can take many potential

paths depending on the order and speed of execution of the different threads. Therefore

the complexity of the system increases and ensuring the correctness of the system becomes

difficult. Nevertheless, it may be very important to ensure that something bad never hap-

pens in the running system. Properties expressing the fact that “nothing bad happens in

the system” are called safety properties. Checking safety properties in the running system

is called runtime safety analysis. We present foundational, scalable techniques for runtime

safety analysis of multithreaded programs. In this technique we assume that there is an

1

entity, called observer, that performs the runtime safety analysis. We present a simple and

effective algorithm that allows an external observer of an executing multithreaded program

to detect and predict safety violation. The idea is to instrument the system before its ex-

ecution, so that it will emit a sequence of events at runtime to an observer. The observer

analyzes the sequence of events by considering all consistent reordering of the events and

predicts potential safety violations in the system. A particularly appealing aspect of our

approach is that, despite the fact that a single execution, or interleaving, of a concurrent

program can be observed, a comprehensive analysis of all possible executions consistent with

the observation is performed. Thus, tools built on our techniques have the ability to predict

safety violation errors in concurrent programs by observing executions which themselves may

be successful.

The work in this dissertation falls under the area that has recently been called runtime

verification [13, 12]: a program is executed to see a property holds during its execution. Run-

time safety analysis is a subarea that, in particular, analyzes safety properties in runtime.

A major goal of runtime verification is to combine aspects of testing and formal methods

techniques. Testing scales well, and is by far the most used technique in practice to validate

software systems. On the other hand, one can explore the whole state space of the system

and systematically and exhaustively to check if every possible computations done by a pro-

gram satisfies the desired property. This technique is called model checking. However, in

model checking the entire state space that must be explored may be very large and hence

computationally intractable. By merging testing and formal specification as used in model

checking, runtime verification aims to achieve the benefits of both approaches, while avoiding

some of the pitfalls of ad hoc testing and the complexity of full-blown theorem proving and

model checking. Of course, there is a price to be paid in order to obtain a scalable technique:

the entire state space of the system cannot be covered. The suggested framework can only

be used to examine single execution traces, and therefore cannot be used to prove a system

correct. However, a single execution trace typically contains much more information than

2

what appears at first sight. We show how one can analyze all the other concurrent executions

that are hidden behind a particular observed execution.

Based on our algorithm, we have developed a prototype tool called Java MultiPathEx-

plorer (JMPaX – see Figure 1.1). JMPaX can reveal errors in Java multithreaded programs

that are hard or impossible to detect otherwise. Using a suitable logic, the user of JMPaX

specifies safety properties of interest. The safety properties are formulas over the global state

of a compiled multithreaded program. JMPaX calls an instrumentation script which auto-

matically instruments the executable multithreaded program to emit relevant state update

events to an external observer. Finally, the instrumented program is run on any JVM. During

the execution, JMPaX analyzes the safety violation messages reported by the observer.

Specification

Java

Multithreaded

Program

Bytecode

Compile

Instrumentor

Instrumented

Bytecode

Translator

SpecificationImpl

LTL
 Monitor

Execute

Level 0

Level 5

Level 4

Level 3

Level 2

Level 1

Computation Lattice

Monitor

Execution

Program Execution

JVM

Instrument

Event Stream

Instrumentation

Module

Monitoring

Module

Figure 1.1: JMPaX Architecture

3

1.1 Example

To be more concrete, let us consider a real-life example where JMPaX was able to detect a

violation of a safety property from a single execution of the program. However, the likelihood

of detecting this bug only by monitoring an observed run is very low. The example consists

of a two threaded program to control the landing of an airplane. It has three variables

landing, approved, and radio; their values are 1 when the plane is landing, landing has

been approved, and radio signal is live, and 0 otherwise. The safety property that we want to

verify is “If the plane has started landing, then it is the case that landing has been approved

and since the approval the radio signal has never been down.” As shown in Subsection 4.1,

this property can be formally written in our extension of past time linear temporal logic as

the formula

↑landing→ [approved, ↓radio)s.

The code snippet for a naive implementation of this control program is given as follows:

int landing = 0, approved = 0, radio = 1;
void thread1(){

askLandingApproval();
if(approved==1){

print("Landing approved");
landing = 1;
print("Landing started");

} else {
print("Landing not approved");

}
}

void askLandingApproval(){
if(radio==0) approved = 0;
else approved = 1;

}

void thread2(){
while(radio){checkRadio();}}

void checkRadio(){
randomly change value of radio;}

4

The above code uses some dummy functions, namely askLandingApproval and checkRadio,

which can be implemented in their entirety in a real scenario. The program has a serious

problem which cannot be detected easily from a single run. The problem is as follows.

Suppose the plane has received approval for landing and just before it started landing the

radio signal went off. In this situation, the plane must abort landing. But this situation will

very rarely arise in an execution: namely, when radio is set to 0 between the approval of

landing and the start of actual landing. So a simple observer will probably not detect the

bug. However, note that even if the radio goes off after the landing has started, JMPaX can

still construct a possible run in which radio goes off between landing and approval. Thus

JMPaX will be able to predict the safety violation from a single successful execution of the

program. This example shows the power of our runtime verification technique.

1.2 Our Contributions

We can think of at least three major contributions of the work presented in this paper.

1. We nontrivially extend the runtime safety analysis capabilities of existing systems, by

providing the ability to predict safety errors from successful executions in multithreaded

systems; we are not aware of any other efforts in this direction.

2. We define the notion of relevant causality in multithreaded systems with shared vari-

ables and synchronization points; this notion is used to instrument multithreaded pro-

grams to emit to external observers a causal dependency partial relation on global state

updates via relevant events timestamped with appropriate vector clocks.

3. We implemented a modular prototype runtime analysis system, JMPaX, showing that,

despite their theoretical flavor, all the concepts presented in the paper are in fact quite

practical and can lead to new scalable verification tools.

5

Chapter 2

Related Work

Our work combines aspect of the formalisms and techniques used commonly in model check-

ing [8, 10], distributed debugging [21, 6, 5] and runtime-verification of safety properties

[13, 12, 16, 17] to achieve an efficient, scalable, predictive technique for runtime verification

of concurrent programs. We next discuss these commonly used techniques and compare

them with our approach.

2.1 Model Checking

Model checking is a push-button technique for verifying finite state concurrent systems

against required specification of the system. The tasks involved in model checking are as

follows:

• A formal model of the system is given in terms of a state transition system. The state

transition system is a tuple M = (S, S0, R, L), where

i. S is the finite set of states,

ii. S0 a subset of S is the set of initial states from which system can start its execution,

iii. R ⊆ S × S is a total relation, describing the possible transitions from one state

to another state of the system, and

6

iv. L : S → P(AP) is a labelling function, stating the atomic propositions (AP) that

hold in a given state.

The state transition system of a concurrent program can be constructed automatically

by exploring all possible states of the system that can be reached from the initial states.

• The properties that the model must satisfy are stated as a specification. The specifica-

tion is usually given in some logical formalism. The commonly used logics are temporal

logics.

• After expressing the model and the formal specification, the verification task involves

checking the conformance of the model to the given specification. In case of a negative

result, a counter-example is generated. This task is completely automatic.

In model checking, all possible computations of the systems are analyzed. So the method

is rigorous and complete. Model checking discovers a bug if it is present in the system.

Theoretically, model-checking is very efficient. However, in practice model-checking may

require the entire state space of the system to be stored before bug can be detected. This

problem is called the state space explosion problem. In sequential programs input variables

may have many possible values leading to a large number of possible states. In concurrent

programs, nondeterministic execution can lead to a large number of states. If the total

number of possible states of the system is large, model checking becomes intractable which

makes this technique not scalable. We take the formal logics used to specify safety properties

and incorporate the logics in our approach. This makes our approach more formal compared

to the ad hoc testing used in traditional debugging.

2.2 Distributed Debugging

The other extreme approach for verification is distributed debugging [21, 6, 5]. The technique

is ad hoc and involves the testing of certain state predicates on global states as the program is

7

executed. In distributed debugging, distributed programs are assumed to be a set of processes

communicating through asynchronous message passing. A monitor process is assumed to be

responsible for debugging. An executing process sends events to the monitor whenever it

changes its local state, sends a message to some other process, or receives a message from

some other process. The monitor collects these events and constructs the sequence of global

states through which the system passes. Because the message passing is asynchronous,

messages can be received out of order. Thus, the global states constructed by the monitor

from the sequence of events may be obsolete, incomplete, or inconsistent. A global state is

inconsistent if it cannot be observed externally. The delay in message passing and difference

in relative computation speed may prevent an external observer from constructing the global

state of the system. Distributed debugging addresses this problem by using techniques to

construct consistent global states and to evaluate state predicates on these states. The

techniques use vector clocks to attach ordering information with the events. Each process

maintains a vector clock, an n-dimensional vector of natural numbers, where n is the number

of processes. Each entry Vi in the vector clock represents the latest event in the process i

that have causally affected the current event in the process owning the vector clock. The

vector clocks are updated whenever an event occurs in a process. These vector clocks are

sent to the monitor along with the events. The monitor extracts information about the order

of events from these vector clocks and constructs all possible consistent global states of the

system. It then evaluates the state predicates on the consistent global states.

The use of vector clocks [9, 19] helps a monitor construct states that are consistent

with the distributed computation but may not have occurred in the original execution.

Thus, not only can a monitor detect bugs in the current execution, it can predict bugs in

other possible consistent states of the system. Message passing systems are considered in

distributed debugging. We take the concept of vector clock for message passing systems and

extend it to multithreaded programs that communicate through shared variables.

8

2.3 Runtime Verification

A recent approach to scalable techniques for verification is to merge formal methods with

traditional testing in the most obvious way, resulting in a new research area called runtime

verification [12, 11, 13, 12, 16, 17]. The commonly cited works in this area are: a) NASA’s

PathExplorer (PaX) and its Java instance JPaX [12, 11], which is a runtime verification

system developed at NASA Ames, and b) UPENN’s MaC and its instance Java MaC [16, 17].

In runtime verification, the execution of the program is monitored as it is in the case of

debugging. However, instead of monitoring simple state predicates, more sophisticated logics,

such as past time temporal logic [14], linear temporal logic over finite traces [12] and extended

regular expressions, are used to monitor temporal properties. The suggested frameworks can

only be used to examine single execution traces, and therefore can not be used to prove a

system correct. However, a single execution trace typically contains much more information

than what appears at first sight. In this thesis, we show how one can analyze all other

potential executions that are consistent with the observed execution and the information

collected through vector clocks.

9

Chapter 3

Multithreaded Systems

We consider multithreaded systems in which several threads communicate with each other

via a set of shared variables. A crucial point to note is that some of the variable updates

can causally depend on others. We will present an algorithm which, given an executing

multithreaded system, generates appropriate messages to an external observer. The observer,

in order to perform its more elaborated system analysis, extracts the state update information

from such messages together with the causality partial order among the updates.

3.1 Multithreaded Executions and Shared Variables

Given n threads t1, t2, ..., tn, a multithreaded execution is a sequence of events e1e2 . . . er,

each belonging to one of the n threads and having type internal, read or write of a shared

variable. We use ej
i to represent the j-th event generated by thread ti since the start of

its execution. When the thread or position of an event is not important we can refer to it

generically, such as e, e′, etc.; we may write e ∈ ti when event e is generated by thread ti.

Let us fix an arbitrary but fixed multithreaded execution, say M, and let S be the set of all

shared variables. There is an immediate notion of variable access precedence for each shared

variable x ∈ S: we say e x-precedes e′, written e <x e′, if and only if e and e′ are variable

access events (reads or writes) to the same variable x, and e “happens before” e′, that is, e

occurs before e′ in M. This “happens-before” relation can be realized in practice by keeping

a counter for each shared variable, which is incremented at each variable access.

10

3.2 Causality and Multithreaded Computations

Let E be the set of events occurring in M and let ≺ be the partial order on E :

• ek
i ≺ el

i if k < l;

• e ≺ e′ if there is x ∈ S with e <x e′ and at least one of e, e′ is a write;

• e ≺ e′′ if e ≺ e′ and e′ ≺ e′′.

We write e||e′ if e 6≺ e′ and e′ 6≺ e. The partial order ≺ on E defined above is called the

multithreaded computation associated with the original multithreaded execution M. Syn-

chronization of threads can be easily and elegantly taken into consideration by just gener-

ating appropriate read/write events when synchronization objects are acquired/released, so

the simple notion of multithreaded computation as defined above is as general as practically

needed. A permutation of all events e1, e2, ..., er that does not violate the multithreaded

computation, in the sense that the order of events in the permutation is consistent with ≺,

is called a consistent multithreaded run, or simply, a multithreaded run.

A multithreaded computation can be thought of as the most general assumption that

an observer of the multithreaded execution can make about the system without knowing

its semantics. Indeed, an external observer simply cannot disregard the order in which the

same variable is modified and used within the observed execution, because this order can be

part of the intrinsic semantics of the multithreaded program. However, multiple consecutive

reads of the same variable can be permuted, and the particular order observed in the given

execution is not critical. By allowing an observer to analyze multithreaded computations

rather than just multithreaded executions like JPaX [11] and Java-MaC [16], one gets the

benefit of not only properly dealing with potential reorderings of delivered messages (e.g., due

to using multiple channels in order to reduce the monitoring overhead), but also of predicting

errors from analyzing successful executions, errors which may occur under a different thread

scheduling.

11

3.3 Relevant Causality

Some of the variables in S may be of no importance at all for an external observer. For

example, consider an observer whose purpose is to check the property “if (x > 0) then

(y = 0) has been true in the past, and since then (y > z) was always false”; formally,

using an interval temporal logic notation, this requirement can be compactly written as

(x > 0) → [y = 0, y > z)s. All the other variables in S except x, y and z are essentially

irrelevant for this observer. To minimize the number of messages we consider a subset R ⊆ E
of relevant events and define the R-relevant causality on E as the relation / :=≺ ∩(R×R),

so that e / e′ if and only if e, e′ ∈ R and e ≺ e′. It is important to notice though that the

other variables can also indirectly influence the relation /, because they can influence the

relation ≺. We next provide a technique based on vector clocks that correctly implements

the relevant causality relation.

3.4 Deriving the Main Algorithm

Inspired and stimulated by the elegance and naturality of vector clocks in representing causal

dependency in distributed systems [9, 19], we have devised a vector clock based algorithm

to represent the relevant causal dependency relation in multithreaded systems. After several

unsuccessful attempts to design it on a less rigorous basis, this algorithm was eventually

mathematically derived from its desired properties. In this section we present the algorithm

also in a mathematically driven style, because we believe that it reflects an instructive and

methodology for devising vector clock based algorithms for multithreaded systems.

Let Vi be an n-dimensional vector of natural numbers for each 1 ≤ i ≤ n. Since commu-

nication in multithreaded systems is done via shared variables, and since reads and writes

have different weights, we let V a
x and V w

x be two additional n-dimensional vectors for each

shared variable x; we call the former access vector clock and the latter write vector clock.

All vector clocks are initialized to 0. As usual, for two n-dimensional vectors, V ≤ V ′ iff

12

V [j] ≤ V ′[j] for all 1 ≤ j ≤ n, and V < V ′ iff V ≤ V ′ and there is some 1 ≤ j ≤ n such that

V [j] < V ′[j]; also, max{V, V ′} is the vector with max{V, V ′}[j] = max{V [j], V ′[j]} for each

1 ≤ j ≤ n. Our goal is to find an algorithm that updates these vector clocks and emits a

minimal number of events to an external observer who can further extract the relevant causal

dependency relation. The algorithm that we derive works as follows. Whenever a thread

pi with current vector clock Vi processes event ek
i , the following vector clock algorithm is

executed:

1. if ek
i is relevant, i.e., if ek

i ∈ R, then

Vi[i] ← Vi[i] + 1

2. if ek
i is a read of a variable x then

Vi ← max{Vi, V
w
x }

V a
x ← max{V a

x , Vi}

3. if ek
i is a write of a variable x then

V w
x ← V a

x ← Vi ← max{V a
x , Vi}

4. if ek
i is relevant then

send message 〈ek
i , i, Vi〉 to observer.

Formally, the requirements of the above algorithm, say A, which works as a filter of the

given multithreaded execution, must include the following natural but crucial

Requirements for A. After A updates the vector clocks as a consequence of the fact that

thread ti generates event ek
i during the multithreaded execution M, the following should hold:

(a) Vi[j] equals the number of relevant events of tj that causally precede ek
i ; if j = i and ek

i

is relevant then this number also includes ek
i ;

(b) V a
x [j] equals the number of relevant events of tj that causally precede the most recent

event1 that accessed (read or wrote) x; if i = j and ek
i is a relevant read or write of x

event then this number also includes ek
i ;

1Most recent with respect to the given multithreaded execution M.

13

(c) V w
x [j] equals the number of relevant events of pj that causally precede the most recent

write event of x; if i = j and ek
i is a relevant write of x then this number also includes

ek
i .

Finally and most importantly, A should correctly implement the relative causality relation

(stated formally in Theorem 3).

In order to derive our algorithm A satisfying the properties above, let us first introduce some

notation. For an event ek
i of thread ti, let (ek

i] be the indexed set {(ek
i]j}1≤j≤n, where (ek

i]j

is the set {el
j | el

j ∈ tj, el
j ∈ R, el

j ≺ ek
i } when j 6= i and the set {el

i | l ≤ k, el
i ∈ R} when

j = i. The following is immediate:

Lemma 1 With the notation above, for any 1 ≤ j ≤ n:

1. (el
j]j ⊆ (el′

j]j if l ≤ l′;

2. (el
j]j ∪ (el′

j]j = (e
max{l,l′}
j]j for any l and l′;

3. (el
j]j ⊆ (ek

i]j for any el
j ∈ (ek

i]j; and

4. (ek
i]j = (el

j]j for some appropriate l.

Therefore, by 4 above, one can uniquely and unambiguously encode a set (ek
i]j by just a

number, namely the size of the corresponding set (el
j]j, i.e., the number of relevant events

of thread tj up to its l-th event. This suggests that if the vector clock Vi maintained by A
stores that number in its j-th component then (a) in the list of requirements A would be

fulfilled.

Let us next move to the vector clocks of reads and writes of shared variables. For a

variable x ∈ S, let ax(e
k
i) and wx(e

k
i) be, respectively, the most recent events that accessed

x and wrote x in M, respectively. If such events do not exist then we let ax(e
k
i) and/or

wx(e
k
i) be undefined; if e is undefined then we also assume that (e] is empty. We introduce

the following notations for any x ∈ S:

(ek
i]

a
x =





(ek
i] if ek

i is an access to x event, and

(ax(e
k
i)] otherwise;

14

(ek
i]

w
x =





(ek
i] if ek

i is a write to x event, and

(wx(e
k
i)] otherwise.

Note that if A is implemented such that V a
x and V w

x store the corresponding numbers

of elements in the index sets of (ek
i]

a
x and (ek

i]
w
x immediately after event ek

i is processed by

thread ti, respectively, then (b) and (c) in the list of requirements for A are also fulfilled.

We next focus on how these vector clocks need to be updated by A when an event ek
i in

encountered. With the notation introduced so far, one can observe the following recursive

properties, where {ek
i }Ri is the indexed set whose components are empty for all j 6= i and

whose i-th component is either the one element set {ek
i } when ek

i ∈ R or the empty set

otherwise:

Lemma 2 Given any event ek
i in M such that ek

i is

1. An internal event then

(ek
i] = (ek−1

i] ∪ {ek
i }Ri ,

(ek
i]

a
x = (ax(e

k
i)], for any x ∈ S,

(ek
i]

w
x = (wx(e

k
i)], for any x ∈ S;

2. A read of x event then

(ek
i] = (ek−1

i] ∪ {ek
i }Ri ∪ (wx(e

k
i)],

(ek
i]

a
x = (ek

i] ∪ (ax(e
k
i)],

(ek
i]

a
y = (ay(e

k
i)], for any y ∈ S with y 6= x,

(ek
i]

w
y = (wy(e

k
i)], for any y ∈ S;

3. A write of x event then

(ek
i] = (ek−1

i] ∪ {ek
i }Ri ∪ (ax(e

k
i)],

(ek
i]

a
x = (ek

i],

(ek
i]

w
x = (ek

i],

(ek
i]

a
y = (ay(e

k
i)], for any y ∈ S with y 6= x,

(ek
i]

w
y = (wy(e

k
i)], for any y ∈ S with y 6= x.

15

Because each component set of each of the indexed sets occurring in the above recurrences

is of the form (el
j]j for appropriate j and l, and because each (el

j]j can be safely encoded

by a unique number, namely its size, one can then safely encode each of the above indexed

sets by an n-dimensional vector clock; these vector clocks are precisely Vi for all 1 ≤ i ≤ n

and V a
x and V w

x for all x ∈ S. It is a simple exercise now to derive2 the vector clock update

algorithm A. Therefore, A satisfies all the stated requirements (a), (b) and (c), so they can

be used as properties of A in the next theorem.

Theorem 3 If 〈e, i, V 〉 and 〈e′, j, V ′〉 are two messages sent by A, then e / e′ if and only if

V [i] ≤ V ′[i] if and only if V < V ′.

Proof: First, note that e and e′ are both relevant. The case i = j is trivial. Suppose i 6= j.

Since, by requirement (a) for A, V [i] is the number of relevant events that ti generated before

and including e and since V ′[i] is the number of relevant events of ti that causally precede

e′, then it is clear that V [i] ≤ V ′[i] if and only if e ≺ e′. For the second part, if e / e′ then

V ≤ V ′ follows again by requirement (a), because any event that causally precedes e also

precedes e′. Since there are some indices i and j such that e was generated by ti and e′ by

tj, and since e′ 6≺ e, by the first part of the theorem it follows that V ′[j] > V [j]; therefore,

V < V ′. For the other implication, if V < V ′ then V [i] ≤ V ′[i], so the result follows by the

first part of the theorem. ¤.

3.5 Computation Lattice

Consider what happens at the observer’s site. The observer receives messages of the form

〈e, i, V 〉 in any possible order. We let R denote the set of received relevant events, which we

simply call events in what follows. By using Theorem 3, the observer can infer the causal

2An interesting observation here is that one can regard the problem of recursively calculating (ek
i] as a

dynamic programming problem. As can often be done in dynamic programming problems, one can reuse
space and derive the Algorithm A.

16

dependency between the relevant events emitted by the multithreaded system. Inspired by

similar definitions at the multithreaded system’s [4], we define the important notions of rel-

evant multithreaded computation and run as follows. A relevant multithreaded computation,

simply called multithreaded computation from now on, is the partial order on events that

the observer can infer, which is nothing but the relation /. A relevant multithreaded run,

also simply called multithreaded run from now on, is any permutation of the received events

which does not violate the multithreaded computation. Our objective is to check safety

requirements against all (relevant) multithreaded runs of a multithreaded system.

We assume that the relevant events are only writes of shared variables that appear in

the safety formulae to be monitored, and that these events contain a pair of the name of

the corresponding variable and the value which was written to it. We call these variables

relevant variables. Note that events can change the state of the multithreaded system as seen

by the observer; this is formalized next. A relevant program state, or simply a program state

is a map from relevant variables to concrete values. Any permutation of events generates

a sequence of program states in the obvious way, however, not all permutations of events

are valid multithreaded runs. A program state is called consistent if and only if there is a

multithreaded run containing that state in its sequence of generated program states. We

next formalize these concepts.

For a given permutation of (relevant) events in R, say e1e2 . . . e|R|, we can let ek
i denote

the k-th event of thread pi for each 1 ≤ i ≤ n. Then the relevant program state after the

events ek1
1 , ek2

2 , ..., ekn
n is called a relevant global multithreaded state, or simply a relevant global

state or just state, and is denoted by Σk1k2...kn . A state Σk1k2...kn is called consistent if and

only if for any 1 ≤ i ≤ n and any li ≤ ki, it is the case that lj ≤ kj for any 1 ≤ j ≤ n and any

lj such that e
lj
j / eli

i . Let ΣK0 be the initial global state, Σ00...0. An important observation

is that e1e2 . . . e|R| is a multithreaded run if and only if it generates a sequence of global

states ΣK0ΣK1 . . . ΣK|R| such that each ΣKr is consistent and for any two consecutive ΣKr

and ΣKr+1 , Kr and Kr+1 differ in exactly one index, say i, where the i-th element in Kr+1

17

is larger by 1 than the i-th element in Kr. For that reason, we will identify the sequences

of states ΣK0ΣK1 . . . ΣK|R| as above with multithreaded runs, and simply call them runs.

We say that Σ leads-to Σ′, written Σ Ã Σ′, when there is some run in which Σ and Σ′ are

consecutive states. The set of all consistent global states together with the relation Ã forms

a lattice. The lattice has n mutually orthogonal axis representing each thread. For a state

Σk1k2...kn , we call k1 + k1 + · · · kn its level. A path in the lattice is a sequence of consistent

global states on increasing level, where the level increases by 1 between any two consecutive

states in the path. Therefore, a run is just a path starting with Σ00...0 and ending with

Σr1r2...rn , where ri is the total number of events of thread i for each 1 ≤ i ≤ n. Therefore, a

multithreaded computation can be seen as a lattice; we call this lattice a computation lattice.

Example 1. Suppose that one wants to monitor some safety property of the multi-

threaded program below. The program involves relevant variables x, y and z:

Initially: x = −1; y = 0; z = 0;

thread T1{
...

x++;

...

y = x + 1;

...

}

thread T2{
...

z = x + 1;

...

x++;

...

}
The ellipses indicate code that is not relevant, i.e., that does not access the variables x,

y and z. This multithreaded program, after appropriate instrumentation, sends messages

to an observer whenever the relevant variables are updated. A possible execution of the

program to be sent to the observer, described in terms of relevant variable updates, can be

{x = −1, y = 0, z = 0}, {x = 0}, {z = 1}, {y = 1}, {x = 1}

The first message to observer sends the initial state of the whole system as a set of variable-

18

value pairs. The second event is generated when the value of x is incremented by the first

thread. The above execution corresponds to the sequence of program states

(−1, 0, 0), (0, 0, 0), (0, 0, 1), (0, 1, 1), (1, 1, 1)

where the tuple (−1, 0, 0) denotes the state in which x = −1, y = 0, z = 0. Following the

vector clock algorithm, we can deduce that the observer will receive the multithreaded com-

putation in Figure 3.1 which generates the computation lattice shown in the same figure.

Notice that the observed multithreaded execution corresponds to just one particular mul-

S
 0
,0

x = -1,
 y
 = 0,
 z
 = 0

S
 2
,2

x = 1,
 y
 = 1,
 z
 = 1

S
 2
,1

x = 0,
 y
 = 1,
 z
 = 1

S
 2
,0

x = 0,
 y
 = 1,
 z
 = 0

S
 1
,1

x = 0,
 y
 = 0,
 z
 = 1

S
 1
,0

x = 0,
 y
 = 0,
 z
 = 0

e1
:<x=0,
 T1
,(1,0)>

e4
:<x=1,
 T2
,(1,2)>

e2
:<
z
=1,
T2
,(1,1)>

e3
:<
y
=1,
T1
,(2,0)>

e2
:<
z
=1,
T2
,(1,1)>

e3
:<
y
=1,
T1
,(2,0)>

e1
:<x=0,
 T1
,(1,0)>

e2
:<
z
=1,
T2
,(1,1)>

e3
:<
y
=1,
T1
,(2,0)>

e4
:<x=1,
 T2
,(1,2)>

T1

T2

S
 1
,2

x = 1,
 y
 = 0,
 z
 = 1

e4
:<x=1,
 T2
,(1,2)>

e3
:<
y
=1,
T1
,(2,0)>

Figure 3.1: Computation lattice and three runs.

tithreaded run out of the three possible. We will show that it is often possible that the

observed run does not violate any safety property, but the run nevertheless shows that there

are other possible runs that are not safe. We will propose an algorithm that will detect safety

19

violations in any possible run, even though the violation was not revealed by the particular

observed run. An appealing aspect of our algorithm is that, despite the fact that there can

be a potentially exponential number of runs (in the maximum width of a level), they can all

be analyzed in parallel, by generating and traversing the lattice on a level-by-level basis; the

previous levels are not needed, so memory can be reused.

20

Chapter 4

Multithreaded Safety Analysis

In this section, we first introduce the past time temporal logic that we use to express safety

properties, then we recall an algorithm to monitor such properties efficiently against a single

run, and finally we show how this algorithm nontrivially extends to monitoring multithreaded

computations given as partial orders.

4.1 Safety in Temporal Logics

We use past time Linear Temporal Logic (ptLTL)[18] to express our safety properties. Our

choice of past time linear temporal logic is motivated by two considerations:

1. It is powerful enough to express safety properties of concurrent systems;

2. The monitors for a safety formula written in ptLTL are very efficient; they perform

linearly in the size of the formula in the worst case [14].

Now we briefly review the basic notions of ptLTL , and describe some new operators that

are particularly useful for runtime monitoring. The syntax of ptLTL is given as follows:

F ::= true | false | a ∈ A | ¬F | F op F Propositional ops

¯F | ♦· F | ¡F | FSsF | FSwF Standard operators

↑F | ↓F | [F, F)s | [F, F)w Monitoring ops

21

ρ |= true is true for all ρ,
ρ |= a iff a holds in the state sn,
ρ |= ¬F iff ρ 2 F ,
ρ |= F1 op F2 iff ρ |= F1 and/or/implies/iff ρ |= F2, when op is ∧/ ∨ / → / ↔,
ρ |= ¯F iff ρ′ |= F , where ρ′ = ρn−1 if n > 1 and ρ′ = ρ if n = 1,
ρ |= ♦· F iff ρi |= F for some 1 ≤ i ≤ n,
ρ |= ¡F iff ρi |= F for all 1 ≤ i ≤ n,
ρ |= F1SsF2 iff ρj |= F2 for some 1 ≤ j ≤ n and ρi |= F1 for all 1 ≤ i ≤ n,
ρ |= F1SwF2 iff ρ |= F1SsF2 or ρ |= ¡F1,
ρ |= ↑F iff ρ |= F and it is not the case that ρ |= ¯F ,
ρ |= ↓F iff ρ |= ¯F and it is not the case that ρ |= F ,
ρ |= [F1, F2)s iff ρj |= F1 for some 1 ≤ j ≤ n and ρi 2 F2 for all j ≤ i ≤ n,
ρ |= [F1, F2)w iff [F1, F2)s or ρ |= ¡¬F2,

Table 4.1: Semantics of ptLTL

where op are the standard binary operators, namely ∧, ∨, →, ↔, and ¯F should be read

as “previously”, ♦· F as “eventually in the past”, ¡F as “always in the past”, F1SsF2 as “F1

strong since F2”, F1SwF2 as “F1 weak since F2”, ↑F as “start F”, ↓F as “end F”, [F1, F2)s

as “strong interval F1, F2”, and [F1, F2)w as “weak interval F1, F2”.

The logic is interpreted on a finite sequence of states or a run. If ρ = s1s2 . . . sn is a run

then we let ρi denote the prefix run s1s2 . . . si for each 1 ≤ i ≤ n. The semantics of the

different operators is given in Table 4.1.

The monitoring operators ↑, ↓, [,)s, and [,)w were introduced in [14, 17]. These oper-

ators have been found to be very intuitive and useful in specifying properties for runtime

monitoring. Informally, ↑F is true if and only if F starts to be true in the current state, ↓F
is true if and only if F ends being true in the current state, and [F1, F2)s is true if and only

if F2 was never true since the last time F1 was observed to be true, including the state when

F1 was true; the interval operator has a strong and a weak version. For example, if boot

and down are predicates on the state of a web server to be monitored, say for the last 24

hours, then [boot, down)s is a property stating that the server was rebooted recently and the

22

since then it was not down, while [boot, down)w say that server was not unexpectedly down

recently, meaning that it was either not down at all recently or it was rebooted recently and

since then it was not down.

In runtime monitoring, we start the process of monitoring from the point the first event is

generated and it continues as long as the events are generated. Thus given a ptLTL formula

F we check whether ρi |= F for all 1 ≤ i ≤ n, where ρ = s1s2 . . . sn is a finite run constructed

from the events.

4.2 Checking Safety against a Single Run

We describe an algorithm for monitoring the multithreaded execution or the observed run of a

multithreaded computation, which is just one path in the computation lattice, and illustrate

it through an example. This algorithm is a modified version of the algorithm presented

in [14]. The algorithm computes the boolean value of the formula to be monitored, by

recursively evaluating the boolean value of each of its subformulae in the current state. In

the process, it also uses the boolean value of certain subformulae evaluated in the previous

state. Next, we define this recursive function eval. The recursive nature of the temporal

operators in ptLTL enables us to define the boolean value of a formula in the current state

in terms of its boolean value in the previous state and the boolean value of its subformulae

in the current state. For example we can define:

23

ρ |= ♦· F iff ρ |= F or (n > 1 and ρn−1 |= ♦· F)

ρ |= ¡F iff ρ |= F and (n > 1 implies ρn−1 |= ¡F)

ρ |= F1SsF2 iff ρ |= F2 or

(n > 1 and ρ |= F1 and ρn−1 |= F1SsF2)

ρ |= F1SwF2 iff ρ |= F2 or

(ρ |= F1 and (n > 1 and ρn−1 |= F1SwF2))

ρ |= [F1, F2)s iff ρ 2 F2 and

(ρ |= F1 or (n > 1 and ρn−1 |= [F1, F2)s))

ρ |= [F1, F2)w iff ρ 2 F2 and

(ρ |= F1 or (n > 1 implies ρn−1 |= [F1, F2)w))

These definitions correspond to the code for the cases of the operators ♦· , ¡, Ss, Sw, [,)s,

and [,)w in the function eval. The function op(f) returns the operator of the formula f ,

binary(op(f)) returns true if op(f) is binary, unary(op(f)) returns true if op(f) is true, left(f)

returns the left subformula of f , right(f) returns the right subformula of f , and subformula(f)

returns the subformula of f .

boolean

eval(Formula f,State s,array now,array pre, int index){

if binary(op(f)) then{

lval ← eval(left(f), now, pre, index);

rval ← eval(right(f), now, pre, index); }

else if unary(op(f)) then

val ← eval(subformula(f), now, pre, index);

case(op(f)) of{

p : return p(s); true : return true; false : return false;

op : return rval op lval; ¬ : return not val;

Ss,Sw : now[++index] ← (pre[index] and lval) or rval;

24

return (pre[index] and lval) or rval;

[,)s, [,)w :

now[++index] ← (not rval) and (pre[index] or lval);

return (not rval) and (pre[index] or lval);

↑ : now[++index] ← val;

return (not pre[index]) and val;

↓ : now[++index] ← val;

return pre[index] and (not val);

¡ : now[++index] ← pre[index]and val; return now[index];

♦· : now[++index] ← pre[index] or val; return now[index];

¯ : now[++index] ← val; return pre[index];

}

}

Here, the pre array passed as an argument contains the boolean values of all subformulae

in the previous state that will be required in the current state. The now array, after the

evaluation of eval function, will contain the boolean values of all subformulae in the current

state that will be required in the next state. Note, the now array is passed as reference, and

its value is set in the function eval. The function eval, however, cannot be used to evaluate

the boolean value of a formula for the first state in a run, as the recursion handles the case

n = 1 in a different way. We define the function init to handle this special case as follows:

boolean init(Formula f,State s,array now, int index){

if binary(op(f)) then{

lval ← init(left(f), now, index);

rval ← eval(right(f), now, index); }

else if unary(op(f)) then

val ← init(subformula(f), now, index);

case(op(f)) of{

25

p : return p(s); true : return true; false : return false;

op : return rval op lval; ¬ : return not val;

Ss : now[++index] ← rval; return rval;

Sw : now[++index] ← lval or rval; return lval or rval;

[,)s : now[++index] ← (not rval) and lval;

return (not rval) and lval;

[,)w : now[++index] ← (not rval); return (not rval);

↑, ↓ : now[++index] ← val; return false;

¡,♦· ,¯ : now[++index] ← val; return val;

}

}

For a given formula f , we define the function monitor, that at each iteration, consumes

an event in the run, generates the next state from that event, and evaluates the formula for

the state generated:

monitor(Formula f,Run r = e1e2 . . . en){

State state ← {}; array now, pre;

state ← update(state, e1);

val ← init(f, state, now, 0);

if (not val) then output(‘property violated’);

for i = 2 to n do{

pre ← now;

state ← update(state, ei);

val ← eval(f, state, now, pre, 0);

if (not val) then output(‘property violated’);

}

}

In the initialization phase, the state variable is created from the event e1. The now array

26

is then calculated by calling the function init on the current state. After the calculation,

the result of init is checked for falsity, and an error message is issued if the result is false.

Otherwise, the main loop is started. The main loop goes through the run, starting from

the second event. At each iteration, now is copied to pre, the current state is generated by

consuming an event from the run, the formula f is evaluated in the current state using the

function eval, the result of evaluation is tested for falsity and an error message is generated

if the result is false.

The time complexity of this algorithm is Θ(mn), where m is the size of the original

formula and n is the length of the run. However, memory required by the algorithm1 is 2m′,

m′ being the number of temporal and monitor operators in the formula.

Let us return to the Example 1. Suppose that one wants to monitor the safety property

(x > 0) → [(y = 0), y > z)s on that program. The formula states that “if (x > 0), then

(y = 0) has been true in the past, and since then (y > z) was always false.”

For the possible execution or the observed run of the program mentioned in Section 3,

we have the following sequence of global states,

(−1, 0, 0), (0, 0, 0), (0, 0, 1), (0, 1, 1), (1, 1, 1)

where the tuple (−1, 0, 0) denotes the state in which x = −1, y = 0, z = 0. The formula

is satisfied in all the states of the sequence and so we say that the property specified by

the formula is not violated by the given run. However, another possible run of the same

computation is,

{x = −1, y = 0, z = 0}, {x = 0}, {y = 1}, {z = 1}, {x = 1}

This run corresponds to the sequence of states

1Here we assume that the recursive version is properly converted into an iterative algorithm using cps
transform.

27

(−1, 0, 0), (0, 0, 0), (0, 1, 0), (0, 1, 1), (1, 1, 1)

The formula is violated in the last state of this sequence. Note that, x > 0 in the 5th

state. This means that from 2nd state, in which y = 0, up to 5th state y > z must be false.

However, y > z in the 3rd state. This violates the formula. A monitoring algorithm such as

the one we describe, which considers only the observed run presented would fail to detect the

violation. In the next subsection, we propose an algorithm that will detect such a potential

bug from the original successful run.

4.3 Checking Safety against All Runs

The algorithm, presented in the previous subsection, can only monitor a single run. As

noticed earlier, monitoring one run may not reveal a bug that might be present in other

possible runs. Our algorithm removes this limitation by monitoring all the possible runs of

a multithreaded computation. The major hurdle in monitoring all possible runs is that the

number of possible runs can be exponential in the length of the computation. We avoid this

problem in our algorithm by traversing the computation lattice level by level. The events are

generated by the algorithm presented in Section 3. The monitoring module consumes these

events one by one, and monitors the safety formula on the computation lattice constructed

from the events. We now describe the monitoring module in more detail.

The monitoring module maintains a queue of events. Whenever an event arrives from

the running multithreaded program, it enqueues it in the event queue (Q). The module also

maintains a set of global states (CurrentLevel), that are present in the current level of the

lattice. For each event e in the event queue, it tries to construct a global state from the set

of states in the current level and the event e. If the global state is created successfully, it is

added to the set of global states (NextLevel) for the next level of the lattice. Once a global

state in the current level becomes unnecessary, it is removed from the set of global states in

28

the current level. When the set of global states in the current level becomes empty, we say

that the set of global states for the next level is complete. At that time the module checks

the safety formula (by calling monitorAll(NextLevel)) for the set of states in the next level.

If the formula is not violated, it marks the set of global states for the next level as the set of

states for the current level, removes unnecessary events from the event queue, and restarts

the iteration. The pseudocode for the process is given below:

for each (e ∈ Q){

if ∃s ∈ CurrentLevel s.t. isNextState(s, e) then

NextLevel ← addToSet(NextLevel, createState(s, e));

if isUnnecessary(s) then remove(s, CurrentLevel);

if isEmpty(CurrentLevel) then{

monitorAll(NextLevel);

CurrentLevel ← NextLevel; NextLevel ← {};

Q ← removeUnnecessaryEvents(CurrentLevel, Q);

}

}

Every global state s contains the value of all relevant shared variables in the program,

a n-dimensional vector clock VC (s) to represent the latest events from each thread that

resulted in that global state, and a vector of boolean values called flags. Each component of

flags is initially set to false. The predicate isNextState(s, e), checks if the event e can convert

the state s to a state s′ in the next level of the lattice. The pseudo-code for the predicate is

given below:

boolean isNextState(s, e){

i ← threadId(e);

if V C(s)[i] + 1 = V C(e)[i] then{

flags(s)[i] = true;

if (∀ 1 ≤ j ≤ n, j 6= i) V C(s)[j] ≥ V C(e)[j] then

29

return true; else return false; }

else return false;

}

where n is the number of threads, threadId(e) returns the index of the thread that generated

the event e, VC (s) returns the vector clock of global state s, VC (e) returns the vector clock

of event e, and flags(s) returns the vector flags associated with s. Note, here flags(s)[i] is

set to true if V C(s)[i] + 1 = V C(e)[i]. This means that e is the only event from thread i

that can possibly take state s to a state s′ in the next level. When all the components of

the vector flags(s) become true, we say that the state s is unnecessary. Thus the function

isUnnecessary(s) checks if (∀1 ≤ i ≤ n) flags(s)[i] = true, where n is the number of threads.

The function createState(s, e) creates a new global state s′, where s′ is a possible global

state that can result from s after the event e. For the purpose of monitoring we maintain,

with every global state, a set of pre arrays called PreSet, and a set of now arrays called

NowSet. In the function createState we set the PreSet of s′ with the NowSet of s. The

pseudocode for createState is as follows:

State createState(s, e){

s′ ← new copy of s;

j ← threadId(e); V C(s′)[j] ← V C(s)[j] + 1;

for i = 1 to n {flags(s′)[i] ← false; }

state(s′)[var(e) ← value(e)];

PreSet(s′) ← NowSet(s); return s′;

}

Here state(s′) returns the value of all relevant shared variables in state s′, var(e) returns the

name of the relevant variable that is written at the time of event e, value(e) is the value

that is written to var(e), and state(s′)[var(e) ←value(e)] means that in state(s′), var(e) is

updated with value(e).

The function addToSet(NextLevel , s) adds the global state s to the set NextLevel. If s

30

is already present in NextLevel, it updates the existing states’ PreSet with the union of the

existing states’ PreSet and the PreSet of s. Two global states are same if their vector clocks

are equal. The function removeUnnecessaryEvents(CurrentLevel , Q) removes from Q the

events that cannot contribute to the construction of any state at the next level. To do so,

it creates a vector clock Vmin whose each component is the minimum of the corresponding

component of the vector clocks of all the global states in the set CurrentLevel. It then

removes all the events in Q whose vector clocks are less than or equal to Vmin . This function

makes sure that we do not store the unnecessary events.

The function monitorAll performs the actual monitoring of the formula. In this function,

for each state s in the set NextLevel, we invoke the function eval (as discussed in the previous

section) on s, for each pre array in the set PreSet. If eval returns false, we issue a ‘property

violation’ warning. The now array that resulted from the invocation of eval is added to

the set NowSet of s. The pseudocode for the function monitorAll is given as follows:

monitorAll(NextLevel){

for each s ∈ NextLevel{

for each pre ∈ PreSet(s){

now ← {}; result ← eval(f, s, now, pre, 0);

if not result then output(‘property violated’);

NowSet(s) ← NowSet(s) ∪ {now}; }

}

}

If the multithreaded program has synchronization blocks, then we introduce, during in-

strumentation, a dummy shared variable that is read whenever we enter the synchronization

block and is written when we exit the block. This makes sure that all the events in one

execution of the block are causally dependent on the events in another execution of the same

block, so that the interleaving between them becomes impossible.

Here the size of each pre array or now array is m′, where m′ is the number of temporal

31

operators in the formula. Therefore, the size of the set PreSet or the set NowSet can be at

most 2m′
. This implies that the memory required for each state in the lattice is O(2m′

). If

the maximum width of the lattice is w, then the total memory required by the program is

O(w2m′
). The time taken by the algorithm at each iteration is O(w2m′

). However, if the

threads in a program have very few dependency or synchronization points, then the number

of valid permutations of the events can be very large, and therefore the width of the lattice

can become large. To handle those situations we add a parameter to the algorithm which

specifies the maximum width of the lattice: if the number of states in a level of the lattice

becomes larger than the maximum width, the algorithm is modified to consider only the

most probable states in the level.

32

Chapter 5

Implementation

We have implemented our monitoring algorithm, in a tool called Java Multi PathExplorer

(JMPaX)[1], which has been designed to monitor multithreaded Java programs. The current

implementation, see Figure 1.1, is written in Java and it assumes that all the shared variables

of the multithreaded program are static variables of type int. The implementation has

around 2000 lines of Java code. It has two main modules, the instrumentation module

and the monitoring module, consisting of around 20 classes. The instrumentation program,

named instrument, takes a specification file, a port number, and a list of class files as

command line arguments. An example of such command is

java instrument spec server 7777 A.class B.class C.class

where the specification file spec contains a list of named formulae. The specification for the

example discussed in Section 3 looks as follows:

F = (A.x > 0) -> [(A.x = 0),(A.y > A.z))s

where A is the class containing the shared variables x, y and z as static fields. The program

instrument instruments the classes, provided in the argument, as follows:

i) It adds access and write vector clocks as static fields for each shared variable;

ii) It adds code to create a vector clock whenever a thread is created;

iii) For each read and write access of the shared variables in the class files, it adds codes to

update the vector clocks according to the algorithm mentioned in Section 3;

33

iv) It adds codes to send messages to the server at the port number 7777 for all writes

of relevant variables. To do so, the instrument program extracts the relevant variables

from the specification file.

The instrumentation module uses BCEL [7] Java library to modify Java class files. It

enables us to insert vector clocks as static member fields in a class, that is otherwise not

possible with the tool JTrek [15]. We also make the update of vector clocks associated with

a read or write, atomic through synchronization. For this we need to add Java bytecode

both before and after the instructions getstatic and putstatic, that access the shared

variables. This task is easier in BCEL as compared to JTrek.

A translator, which is part of monitoring module, reads the specification and generates

a single Java class file, named SpecificationImpl.class. The monitoring module starts

a server to listen events from the instrumented program, parses them, enqueues them in

a queue, executes translator to generate SpecificationImpl.class, dynamically loads

the class SpecificationImpl.class, and starts monitoring the formulae on the queue of

events. It issues a warning whenever a formula is violated.

Example 1: For the Example 1 described in Section 3.5 the safety property of our interest

is:

(x > 0) → [(y = 0), y > z)s

The SpecificationImpl.java file generated by the translator for the above property is as

follows:

package osl.threadtester;

public class SpecificationImpl extends Specification {

public Formula createFormula() {

return Implies(AP(1),IntervalS(AP(2),AP(3)));

}

public boolean proposition(GlobalStateAndFormula s, int number) {

34

switch(number){

case 1:

return s.getValue("test.GlobalVars.x") > 0;

case 2:

return s.getValue("test.GlobalVars.y") == 0;

case 3:

return s.getValue("test.GlobalVars.y")

> s.getValue("test.GlobalVars.z");

}

return false;

}

}

Example 2: One of the test cases that we have implemented is the landing example de-

scribed in Chapter 1. JMPaX was able to detect violation of a safety property from a single

execution of the program. The safety property that we verified is:

↑landing→ [approved, ↓radio)s.

The translator generated the following SpecificationImpl.java file.

package osl.threadtester;

public class SpecificationImpl extends Specification {

public Formula createFormula() {

return Start(AP(1),IntervalS(AP(2),AP(3)));

}

public boolean proposition(GlobalStateAndFormula s, int number) {

switch(number){

case 1:

return s.getValue("test.GlobalVars.landing") == 1;

case 2:

return s.getValue("test.GlobalVars.approved") == 1;

case 3:

return s.getValue("test.GlobalVars.radio") == 1;

}

return false;

}

35

}

The monitor dynamically loads the compiled class for the above Java code and starts listening

for events at port 7777. The instrument module properly instrumented the original Java code

for the landing controller so that it can send event to the port 7777 while executed. From

a single execution of the code in which the radio went off after the landing, the monitoring

module constructed a possible run in which radio goes off between landing and approval,

and hence it detected the safety violation. This example shows the power of our runtime

verification technique.

36

Chapter 6

Conclusion and Future Work

We have investigated the problem of runtime analysis of multithreaded systems from a

fundamental perspective. We have developed scalable techniques for extracting relevant

events and their causal dependencies from an executing multithreaded program. We have

proposed and implemented algorithms to check safety properties against the computation

lattice of a multithreaded computation. We have also briefly presented our prototype tool

Java MultiPathExplorer, abbreviated JMPaX, which, at our knowledge, is the first tool

that can predict violations of safety properties expressed in temporal logics from correct

executions of multithreaded programs. We have also shown that, despite the fact that our

safety properties can refer to any state in the past and that there is a potentially exponential

number of multithreaded runs to be analyzed, one does not need to actually store the previous

states; one can analyze all the multithreaded runs in parallel, by traversing the computation

lattice top-down, level-by-level.

In future, we want to extend our technique to analyzing arbitrary distributed systems at

runtime. Currently we do not consider distributed systems with message passing because

of the fact that past time temporal logic is not a very suitable logic to express properties

of distributed systems. Alur et al. [3] show that temporal logic of causality can be good

candidate for expressing interesting properties of distributed systems. Meenakshi et al. [20]

propose another local logic for message passing systems that we intend to consider in future

work. We also intend to investigate the application of the technique to open distributed

37

systems based on actors [2]. In systems based on actor models, we want to guide the

execution of programs so that we can detect a bug quickly.

An extension to this technique is to associate probabilities to the transition system and

generate sample runs. The sample runs are then monitored for safety violations using our

technique. This gives statistical confidence in our analysis. We are currently investigating

different aspects of this statistical extension.

On the monitoring side we want to investigate and design efficient monitors for other

different logics that are used most commonly. They include: linear temporal logic for finite

traces, extended regular expression, and timed temporal logic. Moreover, there are plans to

develop a predictive analysis runtime environment for both multithreaded and distributed

systems, as well as to develop a GUI for JMPaX. This would help ordinary software engineers

to easily understand and readily use JMPaX. Finally, we plan to use JMPaX on real-world

NASA-related large applications.

38

References

[1] Java Multi PathEXplorer, March 2003. http://fsl.cs.uiuc.edu/jmpax/.

[2] G. Agha, I. A. Mason, S. F. Smith, and C. L. Talcott. A foundation for actor compu-

tation. Journal of Functional Programming, 7:1–72, 1997.

[3] R. Alur, D. Peled, and W. Penczek. Model checking of causality properties. In Proceed-

ings of the 10th Annual IEEE Symposium on Logic in Computer Science (LICS’95),

pages 90–100, San Diego, California, 1995.

[4] H. W. Cain and M. H. Lipasti. Verifying sequential consistency using vector clocks. In

Proceedings of the 14th annual ACM symposium on Parallel algorithms and Architec-

tures, pages 153–154. ACM, 2002.

[5] C. M. Chase and V. K. Garg. Detection of global predicates: Techniques and their

limitations. Distributed Computing, 11(4):191–201, 1998.

[6] R. Cooper and K. Marzullo. Consistent detection of global predicates. ACM SIGPLAN

Notices, 26(12):167–174, 1991. Proceedings of the ACM/ONR Workshop on Parallel

and Distributed Debugging.

[7] M. Dahm. Byte code engineering with the bcel api. Technical Report B-17-98, Freie

Universit at Berlin, Institut für Informatik, April 2001.

[8] J. E. M. Clarke, O. Grumberg, and D. A. Peled. Model checking. MIT Press, 1999.

39

[9] C. J. Fidge. Partial orders for parallel debugging. In Proceedings of the 1988 ACM

SIGPLAN and SIGOPS workshop on Parallel and Distributed debugging, pages 183–

194. ACM, 1988.

[10] K. Havelund and T. Pressburger. Model Checking Java Programs using Java

PathFinder. International Journal on Software Tools for Technology Transfer, 2(4):366–

381, Apr. 2000.

[11] K. Havelund and G. Roşu. Monitoring Java Programs with Java PathExplorer. In Pro-

ceedings of Runtime Verification (RV’01), volume 55 of Electronic Notes in Theoretical

Computer Science. Elsevier Science, 2001.

[12] K. Havelund and G. Roşu. Monitoring Programs using Rewriting. In Proceedings,

International Conference on Automated Software Engineering (ASE’01), pages 135–143.

IEEE, 2001.

[13] K. Havelund and G. Roşu. Runtime Verification 2001, volume 55 of Electronic Notes

in Theoretical Computer Science. Elsevier Science, 2001. Proceedings of a Computer

Aided Verification (CAV’01) satellite workshop.

[14] K. Havelund and G. Rosu. Synthesizing monitors for safety properties. In Proceedings

Tools and Algorithms for Construction and Analysis of Systems (TACAS’02), pages

342–356, 2002.

[15] JTrek Compaq Corp. www.digital.com/java/download/jtrek/.

[16] M. Kim, S. Kannan, I. Lee, and O. Sokolsky. Java-MaC: a Run-time Assurance Tool for

Java. In Proceedings of Runtime Verification (RV’01), volume 55 of Electronic Notes in

Theoretical Computer Science. Elsevier Science, 2001.

[17] I. Lee, S. Kannan, M. Kim, O. Sokolsky, and M. Viswanathan. Runtime assurance based

40

on formal specifications. In Proceedings of the International Conference on Parallel and

Distributed Processing Techniques and Applications, 1999.

[18] Z. Manna and A. Pnueli. Temporal verification of reactive systems: Safety. Springer-

Verlag N.Y., Inc., 1995.

[19] F. Mattern. Virtual time and global states of distributed systems. In M. C. et. al.,

editor, Parallel and Distributed Algorithms: proceedings of the International Workshop

on Parallel and Distributed Algorithms, pages 215–226. Elsevier science, 1989.

[20] B. Meenakshi and R. Ramanujam. Reasoning about message passing infinite state

environments. In Proceedings ICALP 00, volume 1853 of Lecture Notes in Computer

Science. Springer, 2000.

[21] S. D. Stoller. Detecting global predicates in distributed systems with clocks. In Proceed-

ings of the 11th International Workshop on Distributed Algorithms (WDAG’97), pages

185–199, 1997.

41

