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Abstract. We present an automated and configurable
technique for runtime safety analysis of multithreaded
programs which is able to predict safety violations from
successful executions. Based on a formal specification of
safety properties that is provided by a user, our tech-
nique enables us to automatically instrument a given
program and create an observer so that the program
emits relevant state update events to the observer and
the observer checks these updates against the safety
specification. The events are stamped with dynamic vec-
tor clocks, enabling the observer to infer a causal partial
order on the state updates. All event traces that are
consistent with this partial order, including the actual
execution trace, are then analyzed online and in para-
llel. A warning is issued whenever one of these potential
trace violates the specification. Our technique is scal-
able and can provide better coverage than conventional
testing but its coverage need not be exhaustive. In fact,
one can trade-off scalability and comprehensiveness: a
window in the state space may be specified allowing the
observer to infer some of the more likely runs; if the size
of the window is 1 then only the actual execution trace
is analyzed, as is the case in conventional testing; if the
size of the window is ∞ then all the execution traces
consistent with the actual execution trace are analyzed.

1 Introduction

In multithreaded systems, threads can execute concur-
rently communicating with each other through a set of
shared variables, yielding an inherent potential for sub-
tle errors due to unexpected interleavings. Both rigor-
ous and light-weight techniques to detect errors in mul-
tithreaded systems have been extensively investigated.
Rigorous techniques include formal methods, such as

model checking and theorem proving, which by exploring
–directly or indirectly– all possible thread interleavings,
guarantee that a formal model of the system satisfies its
safety requirements. Unfortunately, despite impressive
recent advances, the size of systems for which model
checking or automatic theorem proving is feasible re-
mains rather limited. As a result, most system builders
continue to use light-weight techniques such as testing
to identify bugs in their implementations.

There are two problems with software testing. First,
testing is generally done in an ad hoc manner: the soft-
ware developer must hand-translate the requirements
into specific dynamic checks on the program state. Sec-
ond, test coverage is often rather limited, covering only
some execution paths: if an error is not exposed by a par-
ticular test case then that error is not detected. To mit-
igate the first problem, software often includes dynamic
checks on a system’s state in order to identify problems
at run-time. To ameliorate the second problem, many
techniques increase test coverage by developing test-case
generation methods that generate test cases which may
reveal potential errors with high probability [6,15,26].

Based on experience with related techniques and
tools, namely Java PathExplorer (JPaX) [12] and
its sub-system Eagle [2], we have proposed in [22,23]
an alternative approach, called predictive runtime anal-
ysis. The essential idea of this analysis technique is as
follows. Suppose that a multithreaded program has a
safety error, such as a violation of a temporal property,
a deadlock, or a data-race. As in testing, we execute the
program on some carefully chosen input (a test case).
Suppose that the error is not revealed during a par-
ticular execution, i.e., the execution is successful with
respect to that bug. If one regards the execution of a
program as a flat, sequential trace of events or states,
as in NASA’s JPaX system [12], University of Pennsyl-
vania’s Java-MaC [14], Bell Labs’ PET [11], Nokia’s
Third Eye framework [16] inspired by Logic Assurance
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system [24], or the commercial analysis systems Tempo-
ral Rover and DBRover [7–9], then there is not much left
to do to find the error except to run another, hopefully
better, test case. However, by observing the execution
trace in a smarter way, namely as a causal dependency
partial order on state updates, we can predict errors that
may potentially occur in other possible runs of the mul-
tithreaded program.

Our technique merges testing and formal methods
to obtain some of the advantages of both while avoid-
ing the pitfalls of ad hoc testing and the complexity of
full-blown formal verification. Specifically, we develop a
runtime verification technique for safety analysis of mul-
tithreaded systems that can be tuned to analyze a num-
ber of traces that are consistent with an actual execution
of the program. Two extreme instances of our technique
involve checking all or one of the variant traces:

– If all traces are checked then it becomes equivalent
to online model checking of an abstract model of the
program, called the multithreaded computation lat-
tice, extracted from the actual execution trace of the
program, like in POTA [19] or JMPaX [22].

– If only one trace is considered, then our technique
becomes equivalent to checking just the actual exe-
cution of the multithreaded program, as is done in
testing or like in other runtime analysis tools like
MaC [14] and PaX [12,2].

In general, depending on the application, one can
configure a window within the state space to be explored
which, intuitively speaking, provides a causal distance
from the observed execution within which all traces are
exhaustively verified. We call such a window a causality
cone. An appealing aspect of our technique is that all
these traces can be analyzed online, as the events are
received from the running program, and in parallel. The
worst case cost of such an analysis is proportional to
both the size of the window and the size of the state
space of the monitor.

There are three important interrelated components
in our runtime verification technique. Our algorithm syn-
thesizes these components automatically from the safety
specification:

Instrumentor. The code instrumentor, based on the
safety specification, entirely automatically adds code
to emit events when relevant state updates occur.

Observer. The observer receives the events from the in-
strumented program as they are generated, enqueues
them and then builds a configurable abstract model
of the system, known as a computation lattice, on a
layer-by-layer basis.

Monitor. As layers are completed, the monitor checks
them against the safety specification and then dis-
cards them.

The concepts and notions presented in this paper
have been experimented and tested on JMPaX 2.0, a

prototype monitoring system for Java programs that we
have built. JMPaX 2.0 extends its predecessor JMPaX
in at least four non-trivial novel ways:

– The technical notion of dynamic vector clock is in-
troduced, which allows us to properly deal with the
dynamic creation and destruction of threads.

– The variables that are shared between threads need
not be static: an automatic instrumentation tech-
nique has been devised that detects automatically
when a variable is shared.

– The notion of cone heuristic, or global state window,
is introduced. The cone heuristic enables us to in-
crease the runtime efficiency by analyzing the most
likely states in the computation lattice and tune how
comprehensive we wish to be.

– The runtime prediction paradigm used is indepen-
dent of the safety formalism, in the sense that it al-
lows the user to specify any safety property whose
bad prefixes can be expressed as a non-deterministic
finite automaton (NFA).

Part of this work was presented at the 10th International
Conference on Tools and Algorithms for the Construc-
tion and Analysis of Systems (TACAS’04) [23].

2 Monitors for Safety Properties

Safety properties are a very important, if not the most
important, class of properties that one should consider
in monitoring. This is because once a system violates
a safety property, there is no way to continue its exe-
cution to satisfy the safety property later. Therefore, a
monitor for a safety property can precisely say at run-
time when the property has been violated, so that an
external recovery action can be taken. From a monitor-
ing perspective, what is needed from a safety formula is
a succinct representation of its bad prefixes, which are
finite sequences of states leading to a violation of the
property. Therefore, one can abstract away safety prop-
erties by languages over finite words.

Automata are a standard means to succinctly rep-
resent languages over finite words. In what follows we
define a suitable version of automata, called monitor,
with the property that it has a “bad” state from which
it never gets out:

Definition 1. Let S be a finite or infinite set, that can
be thought of as the set of states of the program to be
monitored. Then an S-monitor or simply a monitor, is
a tuple Mon = 〈M,m0, b, ρ〉, where

– M is the set of states of the monitor;
– m0 ∈M is the initial state of the monitor;
– b ∈ M is the final state of the monitor, also called

bad state; and
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– ρ : M × S → 2M is a non-deterministic transition
relation with the property that ρ(b,Σ) = {b} for any
Σ ∈ S.

Sequences in S?, where ε is the empty one, are called
(execution) traces. A trace π is said to be a bad prefix
in Mon iff b ∈ ρ({m0}, π), where ρ : 2M × S? → 2M

is recursively defined as ρ(M, ε) = M and ρ(M, πΣ) =
ρ(ρ(M,π), Σ), where ρ : 2M × S → 2M is defined as
ρ({m} ∪ M, Σ) = ρ(m,Σ) ∪ ρ(M, Σ) and ρ(∅, Σ) = ∅,
for all finite M ⊆M and Σ ∈ S.

M is not required to be finite in the above definition,
but 2M represents the set of finite subsets of M. In
practical situations it is often the case that the monitor is
not explicitly provided in a mathematical form as above.
For example, a monitor can be a specific type of program
whose execution is triggered by receiving events from
the monitored program; its state can be given by the
values of its local variables, and the bad state is a fixed
unique state which once reached cannot be changed by
any further events.

There are fortunate situations in which monitors can
be automatically generated from formal specifications,
thus requiring the user to focus on system’s formal safety
requirements rather than on low level implementation
details. In fact, this was the case in all the experiments
that we have performed so far. We have so far experi-
mented with requirements expressed either in extended
regular expressions (ERE) or various variants of tempo-
ral logics, with both future and past time. For example,
[20,21] show coinductive techniques to generate mini-
mal static monitors from EREs and from future time
linear temporal logics, respectively, and [13,2] show how
to generate dynamic monitors, i.e., monitors that gen-
erate their states on-the-fly, as they receive the events,
for the safety segment of temporal logic. Note, however,
that there may be situations in which the generation of
a monitor may not be feasible, even for simple require-
ments languages. For example, it is well-known that the
equivalent automaton of an ERE may be non-elementary
larger in the worst case [25]; therefore, there exist rela-
tively small EREs whose monitors cannot even be stored.

Example 1. Consider a reactive controller that main-
tains the water level of a reservoir within safe bounds. It
consists of a water level reader and a valve controller.
The water level reader reads the current level of the
water, calculates the quantity of water in the reservoir
and stores it in a shared variable w. The valve controller
controls the opening of a valve by looking at the cur-
rent quantity of water in the reservoir. A very simple
and naive implementation of this system contains two
threads: T1, the valve controller, and T2, the water level
reader. The code snippet is given in Fig. 1.

Here w is in some proper units such as mega gallons
and v is in percentage. The implementation is poorly
synchronized and it relies on ideal thread scheduling.

Thread T1: Thread T2:

while(true) { while(true) {
if(w > 18) delta = 10; l = readLevel();

else delta = -10; w = calcVolume(l);

for(i=0; i<2; i++) { sleep(100);

v = v + delta; }
setValveOpening(v);

sleep(100);

}
}
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Fig. 1. Two threads (T1 controls the valve and T2 reads the water
level) and a monitor.

A sample run of the system can be {w = 20, v =
40}, {w = 24}, {v = 50}, {w = 27}, {v = 60}, {w =
31}, {v = 70}. As we will see later in the paper, by a
run we here mean a sequence of relevant variable writes.
Suppose we are interested in a safety property that says
“If the water quantity is more than 30 mega gallons, then
it is the case that sometime in the past water quantity
exceeded 26 mega gallons and since then the valve is
open by more than 55% and the water quantity never
went down below 26 mega gallon”. We can express this
safety property in two different formalisms: linear tem-
poral logic (LTL) with both past-time and future-time
operators, or extended regular expressions (EREs) for
bad prefixes. The atomic propositions that we will con-
sider are p : (w > 26), q : (w > 30), r : (v > 55). The
properties can be written as follows:

F1 = ¤(q → ((r ∧ p)S ↑p))
F2 = {}∗{¬p}{p,¬q}+

({p,¬q,¬r}{p,¬q}∗{q}+ {q}∗{q,¬r}){}∗

The formula F1 in LTL (↑ p is a shorthand for “p
and previously not p”) states that “It is always the case
that if (w > 30) then at some time in the past (w > 26)
started to be true and since then (r > 55) and (w > 26).”
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The formula F2 characterizes the prefixes that make F1

false. In F2 we use {p,¬q} to denote a state where p and
¬q holds and r may or may not hold. Similarly, {} rep-
resents any state of the system. The monitor automaton
for F2 is given also in Fig. 1.

3 Multithreaded Programs

We consider multithreaded systems in which threads
communicate with each other via shared variables. A
crucial point is that some variable updates can causally
depend on others. We will describe an efficient dynamic
vector clock algorithm which, given an executing multi-
threaded program, generates appropriate messages to be
sent to an external observer. Section 4 will show how the
observer, in order to perform its more elaborated anal-
ysis, extracts the state update information from such
messages together with the causality partial order.

3.1 Multithreaded Executions and Shared Variables

A multithreaded program consists of n threads t1, t2, ...,
tn that execute concurrently and communicate with each
other through a set of shared variables. A multithreaded
execution is a sequence of events e1e2 . . . er generated by
the running multithreaded program, each belonging to
one of the n threads and having type internal, read or
write of a shared variable. We use ej

i to represent the
jth event generated by thread ti since the start of its
execution. When the thread or position of an event is
not important we can refer to it generically, such as e,
e′, etc.; we may write e ∈ ti when event e is generated
by thread ti. Let us fix an arbitrary but fixed multi-
threaded execution, say C, and let S be the set of all
variables that were shared by more than one thread in
the execution. There is an immediate notion of variable
access precedence for each shared variable x ∈ S: we say
e x-precedes e′, written e <x e′, iff e and e′ are variable
access events (reads or writes) to the same variable x,
and e “happens before” e′, that is, e occurs before e′ in
C. This can be realized in practice by keeping a counter
for each shared variable, which is incremented at each
variable access.

3.2 Causality and Multithreaded Computations

Let E be the set of events occurring in C and let ≺ be
the partial order on E :

– ek
i ≺ el

i if k < l;
– e ≺ e′ if there is x ∈ S with e <x e′ and at least one

of e, e′ is a write;
– e ≺ e′′ if e ≺ e′ and e′ ≺ e′′.

We write e||e′ if e 6≺ e′ and e′ 6≺ e. The tuple (E ,≺)
is called the multithreaded computation associated with

the original multithreaded execution C. Synchronization
of threads can be easily and elegantly taken into con-
sideration by just generating dummy read/write events
when synchronization objects are acquired/released, so
the simple notion of multithreaded computation as de-
fined above is as general as practically needed. A permu-
tation of all events e1, e2, . . ., er that does not violate
the multithreaded computation, in the sense that the or-
der of events in the permutation is consistent with ≺, is
called a consistent multithreaded run, or simply, a mul-
tithreaded run.

A multithreaded computation can be thought of as
the most general assumption that an observer of the mul-
tithreaded execution can make about the system without
knowing what it is supposed to do. Indeed, an external
observer simply cannot disregard the order in which the
same variable is modified and used within the observed
execution, because this order can be part of the intrin-
sic semantics of the multithreaded program. However,
multiple consecutive reads of the same variable can be
permuted, and the particular order observed in the given
execution is not critical. As seen in Section 4, by allow-
ing an observer to analyze multithreaded computations
rather than just multithreaded executions, one gets the
benefit of not only properly dealing with potential re-
orderings of delivered messages (e.g., due to using mul-
tiple channels in order to reduce the monitoring over-
head), but especially of predicting errors from analyzing
successful executions, errors which can occur under a
different thread scheduling.

3.3 Relevant Causality

Some of the variables in S may be of no importance
at all for an external observer. For example, consider
an observer whose purpose is to check the property “if
(x > 0) then (y = 0) has been true in the past, and
since then (y > z) was always false”; formally, using
the interval temporal logic notation in [13], this can be
compactly written as (x > 0) → [y = 0, y > z). All the
other variables in S except x, y and z are essentially
irrelevant for this observer. To minimize the number of
messages, like in [17] which suggests a similar technique
but for distributed systems in which reads and writes
are not distinguished, we consider a subset R ⊆ E of
relevant events and define the R-relevant causality on
E as the relation / :=≺ ∩(R × R), so that e / e′ iff
e, e′ ∈ R and e ≺ e′. It is important to notice though
that the other variables can also indirectly influence the
relation /, because they can influence the relation ≺.
We next provide a technique based on vector clocks that
correctly implements the relevant causality relation.

3.4 Dynamic Vector Clock Algorithm

We provide a technique based on vector clocks [10,3,18,
1] that correctly and efficiently implements the relevant
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causality relation. Let V : ThreadId → Nat be a partial
map from thread identifiers to natural numbers. We call
such a map a dynamic vector clock (DVC) because its
partiality reflects the intuition that threads are dynam-
ically created and destroyed. To simplify the exposition
and the implementation, we assume that each DVC V is
a total map, where V [t] = 0 whenever V is not defined
on thread t.

We associate a DVC with every thread ti and denote
it by Vi. Moreover, we associate two DVCs V a

x and V w
x

with every shared variable x; we call the former access
DVC and the latter write DVC. All the DVCs Vi are kept
empty at the beginning of the computation, so they do
not consume any space. For DVCs V and V ′, we say
that V ≤ V ′ if and only if V [j] ≤ V ′[j] for all j, and we
say that V < V ′ iff V ≤ V ′ and there is some j such
that V [j] < V ′[j]; also, max{V, V ′} is the DVC with
max{V, V ′}[j] = max{V [j], V ′[j]} for each j. Whenever
a thread ti with current DVC Vi processes event ek

i , the
following algorithm A is executed:

1. if ek
i is relevant, i.e., if ek

i ∈ R, then
Vi[i] ← Vi[i] + 1

2. if ek
i is a read of a variable x then
Vi ← max{Vi, V

w
x }

V a
x ← max{V a

x , Vi}
3. if ek

i is a write of a variable x then
V w

x ← V a
x ← Vi ← max{V a

x , Vi}
4. if ek

i is relevant then
send message 〈ek

i , i, Vi〉 to observer.

In the following discussion we assume a fixed number
of threads n. In a program where threads can be created
and destroyed dynamically, we only consider the threads
that have causally affected the final values of the relevant
variables at the end of the computation. For the above
algorithm the following result holds:

Lemma 1. After event ek
i is processed by thread ti

(a) Vi[j] equals the number of relevant events of tj that
causally precede ek

i ; if j = i and ek
i is relevant then

this number also includes ek
i ;

(b) V a
x [j] equals the number of relevant events of tj that

causally precede the most recent event in C that ac-
cessed (read or wrote) x; if i = j and ek

i is a relevant
read or write of x event then this number also in-
cludes ek

i ;
(c) V w

x [j] equals the number of relevant events of tj that
causally precede the most recent write event of x; if
i = j and ek

i is a relevant write of x then this number
also includes ek

i .

To prove the above lemma we introduce some useful
formal notation and then state and prove the following
two lemmas. For an event ek

i of thread ti, let (ek
i ] be

the indexed set {(ek
i ]j}1≤j≤n, where (ek

i ]j is the set {el
j |

el
j ∈ tj , el

j ∈ R, el
j ≺ ek

i } when j 6= i and the set
{el

i | l ≤ k, el
i ∈ R} when j = i. Intuitively, (ek

i ] contains

all the events in the multithreaded computation that
causally precede or are equal to ek

i .

Lemma 2. With the notation above, for 1 ≤ i, j ≤ n:

1. (el′
j ]j ⊆ (el

j ]j if l′ ≤ l;

2. (el′
j ]j ∪ (el

j ]j = (emax{l′,l}
j ]j for any l and l′;

3. (el
j ]j ⊆ (ek

i ]j for any el
j ∈ (ek

i ]j; and
4. (ek

i ]j = (el
j ]j for some appropriate l.

Proof: 1. is immediate, because for any l′ ≤ l, any event
ek
j at thread tj preceding or equal to el′

j , that is one with
k ≤ l′, also precedes el

j .

2. follows by 1., because it is either the case that l′ ≤ l,
in which case (el′

j ]j ⊆ (el
j ]j , or l ≤ l′, in which case

(el
j ]j ⊆ (el′

j ]j . In either case 2. holds trivially.

3. There are two cases to analyze. If i = j then el
j ∈ (ek

i ]j
if and only if l ≤ k, so 3. becomes a special instance of
1.. If i 6= j then by the definition of (ek

i ]j it follows that
el
j ≺ ek

i . Since el′
j ≺ el

j for all l′ < l and since ≺ is
transitive, it follows readily that (el

j ]j ⊆ (ek
i ]j .

4. Since (ek
i ]j is a finite set of totally ordered events, it

has a maximum element, say el
j . Hence, (ek

i ]j ⊆ (el
j ]j .

By 3., one also has (el
j ]j ⊆ (ek

i ]j . ¤

Thus, by 4 above, one can uniquely and unambiguously
encode a set (ek

i ]j by just a number, namely the size of
the corresponding set (el

j ]j , i.e., the number of relevant
events of thread tj up to its lth event. This suggests that
if the DVC Vi maintained by A stores that number in
its jth component then (a) in Lemma 1 holds.

Before we formally show how reads and writes of
shared variables affect the causal dependency relation,
we need to introduce some notation. First, since a write
of a shared variable introduces a causal dependency be-
tween the write event and all the previous read or write
events of the same shared variable as well as all the
events causally preceding those, we need a compact way
to refer at any moment to all the read/write events of a
shared variable, as well as the events that causally pre-
cede them. Second, since a read event introduces a causal
dependency to all the previous write events of the same
variable as well as all the events causally preceding those,
we need a notation to refer to these events as well. For-
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mally, if ek
i is an event in a multithreaded computation

C and x ∈ S is a shared variable, then let

(ek
i ]ax =





The thread-indexed set of all the relevant
events that are equal to or causally precede
an event e accessing x, such that e occurs
before or it is equal to ek

i in C,

(ek
i ]wx =





The thread-indexed set of all the relevant
events that are equal to or causally precede
an event e writing x, such that e occurs
before or it is equal to ek

i in C.

It is obvious that (ek
i ]wx ⊆ (ek

i ]ax. Some or all of the
thread-indexed sets of events above may be empty. By
convention, if an event, say e, does not exist in C, then
we assume that the indexed sets (e], (e]ax, and (e]wx are all
empty (rather than “undefined”). Note that if V a

x and
V w

x in A store the corresponding numbers of elements in
the index sets of (ek

i ]ax and (ek
i ]wx immediately after event

ek
i is processed by thread ti, respectively, (b) and (c) in

Lemma 1 hold.
Even though the sets of events (ek

i ], (ek
i ]ax and (ek

i ]wx
have mathematically clean definitions, they are based
on total knowledge of the multithreaded computation
C. Unfortunately, C can be very large in practice, so
the computation of these sets may be inefficient if not
done properly. Since our analysis algorithms are online,
we would like to calculate these sets incrementally, as
the observer receives new events from the instrumented
program. A key factor in devising efficient update algo-
rithms is to find equivalent recursive definitions of these
sets, telling us how to calculate a new set of events from
similar sets that have been already calculated at previ-
ous event updates.

Let {ek
i }Ri be the indexed set whose j components are

empty for all j 6= i and whose ith component is either
the one element set {ek

i } when ek
i ∈ R or the empty set

otherwise. With the notation introduced, the following
important recursive properties hold:

Lemma 3. Let ek
i be an event in C and let el

j be the
event preceding1 it in C. If ek

i is

1. An internal event then
(ek

i ] = (ek−1
i ] ∪ {ek

i }Ri ,
(ek

i ]ax = (el
j ]

a
x, for any x ∈ S,

(ek
i ]wx = (el

j ]
w
x , for any x ∈ S;

2. A read of x event then
(ek

i ] = (ek−1
i ] ∪ {ek

i }Ri ∪ (el
j ]

w
x ,

(ek
i ]ax = (ek

i ] ∪ (el
j ]

a
x,

(ek
i ]ay = (el

j ]
a
y, for any y ∈ S with y 6= x,

(ek
i ]wz = (el

j ]
w
z , for any z ∈ S;

3. A write of x event then

1 If ek
i is the first event then we can assume that el

j does not
exist in C, so by convention all the associated sets of events are
empty

(ek
i ] = (ek−1

i ] ∪ {ek
i }Ri ∪ (el

j ]
a
x,

(ek
i ]ax = (ek

i ],
(ek

i ]wx = (ek
i ],

(ek
i ]ay = (el

j ]
a
y, for any y ∈ S with y 6= x,

(ek
i ]wy = (el

j ]
w
y , for any y ∈ S with y 6= x.

Proof: 1. For the first equality, first recall that ek
i ∈ (ek

i ]
if and only if ek

i is relevant. Therefore, it suffices to show
that e ≺ ek

i if and only if e ≺ ek−1
i for any relevant event

e ∈ R. Since ek
i is internal, it cannot be in relation <x

with any other event for any shared variable x ∈ S, so by
the definition of ≺, the only possibilities are that either
e is some event ek′

i of thread ti with k′ < k, or otherwise
there is such an event ek′

i of thread ti with k′ < k such
that e ≺ ek′

i . Hence, it is either the case that e is ek−1
i

(so ek−1
i is also relevant) or otherwise e ≺ ek−1

i . In any
of these cases, e ∈ (ek−1

i ]. The other two equalities are
straightforward consequences of the definitions of (ek

i ]ax
and (ek

i ]wx .

2. Like in the proof of 1., ek
i ∈ (ek

i ] if and only if ek
i ∈ R,

so it suffices to show that for any relevant event e ∈ R,
e ≺ ek

i if and only if e ∈ (ek−1
i ] ∪ (el

j ]
w
x . Since ek

i is a
read of x ∈ S event, by the definition of ≺ one of the
following must hold:

– e = ek−1
i . In this case ek−1

i is also relevant, so e ∈
(ek−1

i ];
– e ≺ ek−1

i . It is obvious in this case that e ∈ (ek−1
i ];

– e is a write of x event and e <x ek
i . In this case

e ∈ (el
j ]

w
x ;

– There is some write of x event e′ such that e ≺ e′

and e′ <x ek
i . In this case e ∈ (el

j ]
w
x , too.

Therefore, e ∈ (ek−1
i ] or e ∈ (el

j ]
a
x.

Let us now prove the second equality. By the defini-
tion of (ek

i ]ax, one has that e ∈ (ek
i ]ax if and only if e is

equal to or causally precedes an event accessing x ∈ S
that occurs before or is equal to ek

i in C. Since ek
i is a

read of x, the above is equivalent to saying that either
it is the case that e is equal to or causally precedes ek

i ,
or it is the case that e is equal to or causally precedes
an event accessing x that occurs strictly before ek

i in C.
Formally, the above is equivalent to saying that either
e ∈ (ek

i ] or e ∈ (el
j ]

a
x. If y, z ∈ S and y 6= x then one

can readily see (like in 1. above) that (ek
i ]ay = (el

j ]
a
y and

(ek
i ]az = (el

j ]
a
z .

3. It suffices to show that for any relevant event e ∈ R,
e ≺ ek

i if and only if e ∈ (ek−1
i ] ∪ (el

j ]
a
x. Since ek

i is a
write of x ∈ S event, by the definition of ≺ one of the
following must hold:

– e = ek−1
i . In this case ek−1

i ∈ R, so e ∈ (ek−1
i ];

– e ≺ ek−1
i . It is obvious in this case that e ∈ (ek−1

i ];
– e is an access of x event (read or write) and e <x ek

i .
In this case e ∈ (el

j ]
a
x;

– There is some access of x event e′ such that e ≺ e′

and e′ <x ek
i . In this case e ∈ (el

j ]
a
x, too.
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Therefore, e ∈ (ek−1
i ] or e ∈ (el

j ]
a
x.

For the second equality, note that, as for the sec-
ond equation in 2., one can readily see that e ∈ (ek

i ]ax
if and only if e ∈ (ek

i ] ∪ (el
j ]

a
x. But (el

j ]
a
x ⊆ (ek

i ], so the
above is equivalent to e ∈ (ek

i ]. A similar reasoning leads
to (ek

i ]wx = (ek
i ]. The equalities for y 6= x immediate,

because ek
i has no relation to accesses of other shared

variables but x. ¤

Since each component set of each of the indexed sets
in these recurrences has the form (ek

i ]i for appropriate
i and k, and since each (ek

i ]i can be safely encoded by
its size, one can then safely encode each of the above
indexed sets by an n-dimensional DVC; these DVCs are
precisely Vi for all 1 ≤ i ≤ n and V a

x and V w
x for all

x ∈ S. Therefore, (a), (b) and (c) of Lemma 1 holds.
An interesting observation is that one can regard the
problem of recursively calculating (ek

i ] as a dynamic pro-
gramming problem. As can often be done in dynamic
programming problems, one can reuse space and derive
the Algorithm A. The following theorem states that the
DVC algorithm correctly implements causality in multi-
threaded programs.

Theorem 1. If 〈e, i, V 〉 and 〈e′, i′, V ′〉 are two mes-
sages sent by A, then e/e′ if and only if V [i] ≤ V ′[i] (no
typo: the second i is not an i′) if and only if V < V ′.

Proof: First, note that e and e′ are both relevant. The
case i = i′ is trivial. Suppose i 6= i′. Since, by (a) of
Lemma 1, V [i] is the number of relevant events that ti
generated before and including e and since V ′[i] is the
number of relevant events of ti that causally precede e′,
it is clear that V [i] ≤ V ′[i] if and only if e ≺ e′. For the
second part, if e / e′ then V ≤ V ′ follows again by (a)
of Lemma 1, because any event that causally precedes
e also precedes e′. Since there are some indices i and
i′ such that e was generated by ti and e′ by ti′ , and
since e′ 6≺ e, by the first part of the theorem it follows
that V ′[i′] > V [i′]; therefore, V < V ′. For the other
implication, if V < V ′ then V [i] ≤ V ′[i], so the result
follows by the first part of the theorem. ¤

4 Runtime Model Generation and Predictive
Analysis

In this section we consider what happens at the ob-
server’s site. The observer receives messages of the form
〈e, i, V 〉. Because of Theorem 1, the observer can infer
the causal dependency between the relevant events emit-
ted by the multithreaded system. We show how the ob-
server can be configured to effectively analyze all pos-
sible interleavings of events that do not violate the ob-
served causal dependency online and in parallel. Only
one of these interleavings corresponds to the real execu-
tion, the others being all potential executions. Hence, the
presented technique can predict safety violations from
successful executions.

4.1 Multithreaded Computation Lattice

Inspired by related definitions in [1], we define the im-
portant notions of relevant multithreaded computation
and run as follows. A relevant multithreaded computa-
tion, simply called multithreaded computation from now
on, is the partial order on events that the observer can
infer, which is nothing but the relation /. A relevant
multithreaded run, also simply called multithreaded run
from now on, is any permutation of the received events
which does not violate the multithreaded computation.
Our major purpose in this paper is to check safety re-
quirements against all (relevant) multithreaded runs of
a multithreaded system.

We assume that the relevant events are only writes
of shared variables that appear in the safety formulae
to be monitored, and that these events contain a pair
of the name of the corresponding variable and the value
which was written to it. We call these variables relevant
variables. Note that events can change the state of the
multithreaded system as seen by the observer; this is for-
malized next. A relevant program state, or simply a pro-
gram state, is a map from relevant variables to concrete
values. Any permutation of events generates a sequence
of program states in the obvious way, however, not all
permutations of events are valid multithreaded runs. A
program state is called consistent if and only if there
is a multithreaded run containing that state in its se-
quence of generated program states. We next formalize
these concepts. For a given computation, let R be the
set of relevant events and / be the R-relevant causality
associated with the computation.

Definition 2 (Consistent Run). For a given permu-
tation of events in R, say R = e1e2 . . . e|R|, we say that
R is a consistent run if for all pairs of events e and e′,
e / e′ implies that e appears before e′ in R.

Let ek
i be the kth relevant event generated by the

thread ti since the start of its execution. A cut C is a
subset of R such that for all i ∈ [1, n] if ek

i is present
in C then for all l < k, el

i is also present in C. A cut
is denoted by a tuple (ek1

1 , ek2
2 , ..., ekn

n ) where each entry
corresponds to the last relevant event for each thread
included in C. If a thread i has not seen a relevant event
then the corresponding entry is denoted by e0

i . A cut C
corresponds to a relevant program state that has been
reached after all the events in C have been executed.
Such a relevant program state is called a relevant global
multithreaded state, or simply a relevant global state or
even just state, and is denoted by Σk1k2...kn .

Definition 3 (Consistent Cut). A cut is said to be
consistent if for all events e and e′

(e ∈ C) ∧ (e′ / e) → (e′ ∈ C)
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A consistent global state is the one that corresponds
to a consistent cut. A relevant event el

i is said to be
enabled in a consistent global state Σk1k2...kn if and only
if C ∪ {el

i} is a consistent cut, where C is the consistent
cut corresponding to the state Σk1k2...kn . The following
proposition holds for an enabled event:

Proposition 1. A relevant event el
i is enabled in a con-

sistent global state Σk1k2...kn if and only if l = ki +1 and
for all relevant events e, if e 6= el

i and e / el
i then e ∈ C,

where C is the consistent cut corresponding to the state
Σk1k2...kn .

Proof. Since el
i is enabled in the state Σk1k2...kn , C∪{el

i}
is a cut. This implies that for all events ek

i , if k < l
then ek

i ∈ C ∪ {el
i} and hence ek

i ∈ C. In particular, all
the events e1

i , e
2
i , . . . , e

l−1
i are in C. However, el−1

i is the
last relevant event from thread ti which is included in
C. Therefore, ki = l − 1. Since el

i ∈ C ∪ {el
i}, e / el

i,
and C ∪ {el

i} is a consistent cut, e ∈ C ∪ {el
i} (by the

definition of consistent cut). Since by assumption e 6= el
i,

we have e ∈ C. ut

An immediate consequence of the above proposition
is the following corollary:

Corollary 1. If C is the consistent cut corresponding to
the state Σk1k2...kn and if el

i is enabled in Σk1k2...kn then
the state corresponding to the consistent cut C ∪ {el

i} is
Σk1k2...ki−1lki+1...kn or Σk1k2...ki−1(ki+1)ki+1...kn and we
denote it by δ(Σk1k2...kn , el

i).

Here the partial function δ maps a consistent state Σ and
a relevant event e enabled in that state to a consistent
state δ(Σ, e) which is the result of executing e in Σ. Let
ΣK0 be the initial global state, Σ00...0, which is always
consistent. The following result holds:

Lemma 4. If R = e1e2 . . . e|R| is a consistent multi-
threaded run then it generates a sequence of global states
ΣK0ΣK1 . . . ΣK|R| such that for all r ∈ [1, |R|], ΣKr−1 is
consistent, er is enabled in ΣKr−1 , and δ(ΣKr−1 , er) =
ΣKr .

Proof. The proof is by induction on r. By definition the
initial state ΣK0 is consistent. Moreover, e1 is enabled
in ΣK0 because the cut C corresponding to the state
ΣK0 is empty and hence the cut C ∪ {e1} = {e1} is
consistent. Since ΣK0 is consistent and e1 is enabled in
ΣK0 , δ(ΣK0 , e1) is defined. Let ΣK1 = δ(ΣK0 , e1).

Let us assume that ΣKr−1 is consistent, er is en-
abled in ΣKr−1 , and δ(ΣKr−1 , er) = ΣKr . Therefore,
δ(ΣKr−1 , er) = ΣKr is also consistent. Let C be the cut
corresponding to ΣKr . To prove that er+1 is enabled in
ΣKr we have to prove that C∪er+1 is a cut and it is con-
sistent. Let er+1 = el

i for some i and l i.e. er+1 is the lth

relevant event of thread ti. For every event ek
i such that

k < l, ek
i / el

i. Therefore, by the definition of consistent
run, ek

i appears before el
i for all 0 < k < l. This implies

that all ek
i for 0 < k < l are included in C. This proves

that C∪el
i is a cut. Since C is a cut, for all events e and e′

if e 6= el
i then (e ∈ C∪{el

i})∧(e′/e) → e′ ∈ C∪{el
i}. Oth-

erwise, if e = el
i then by the definition of consistent run,

if e′ /el
i then e′ appears before el

i in R. This implies that
e′ is included in C∪{el

i}. Therefore, C∪{el
i} is consistent

which proves that er+1 = el
i is enabled in the state ΣKr .

Since, ΣKr is consistent and er+1 is enabled in ΣKr ,
δ(ΣKr , er+1) is defined. We let δ(ΣKr , er+1) = ΣKr+1 .

ut
From now on, we identify the sequences of states

ΣK0ΣK1 . . . ΣK|R| as above with multithreaded runs,
and simply call them runs. We say that Σ leads-to Σ′,
written Σ Ã Σ′, when there is some run in which Σ and
Σ′ are consecutive states. Let Ã∗ be the reflexive tran-
sitive closure of the relation Ã. The set of all consistent
global states together with the relation Ã∗ forms a lat-
tice with n mutually orthogonal axes representing each
thread. For a state Σk1k2...kn , we call k1 + k1 + · · · kn

its level. A path in the lattice is a sequence of consis-
tent global states on increasing level, where the level
increases by 1 between any two consecutive states in the
path. Therefore, a run is just a path starting with Σ00...0

and ending with Σr1r2...rn , where ri is the total number
of relevant events of thread ti.

Therefore, a multithreaded computation can be seen
as a lattice. This lattice, which is called computation lat-
tice and referred to as L, should be seen as an abstract
model of the running multithreaded program, containing
the relevant information needed in order to analyze the
program. Supposing that one is able to store the com-
putation lattice of a multithreaded program, which is a
non-trivial matter because it can have an exponential
number of states in the length of the execution, one can
mechanically model-check it against the safety property.

Let VC (ei) be the DVC associated with the thread ti
when it generated the event ei. Given a state Σk1k2...kn

we can associate a DVC with the state (denoted by
VC (Σk1k2...kn)) such that VC (Σk1k2...kn)[i] = ki i.e. the
ith entry of VC (Σk1k2...kn) is equal to the number of rel-
evant events of thread ti that has causally effected the
state. With this definition the following results hold:

Lemma 5. If a relevant event e from thread ti is
enabled in a state Σ and if δ(Σ, e) = Σ′ then
∀j 6= i : VC (Σ)[j] = VC (Σ′)[j] and VC (Σ)[i] + 1 =
VC (Σ′)[i].

Proof. This follows directly from the definition of DVC
of a state and Corollary 1.

Lemma 6. If a relevant event e from thread ti is en-
abled in a state Σ then ∀j 6= i : VC (Σ)[j] ≥ VC (e)[j]
and VC (Σ)[i] + 1 = VC (e)[i].

Proof. VC (Σ)[i]+1 = VC (e)[i] follows from Lemma 5.
Say k = VC (e)[j] for some j 6= i. Then by (a) of
Lemma 1 we know that the kth relevant event from
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thread tj causally precedes e i.e. ek
j / e. Then by propo-

sition 1 ek
j ∈ C, where C is the cut corresponding to

Σ. This implies that k ≤ VC (Σ)[j] which proves that
∀j 6= i : VC (Σ)[j] ≥ VC (e)[j].

Lemma 7. If R = e1e2 . . . e|R| is a consistent mul-
tithreaded run generating the sequence of global states
ΣK0ΣK1 . . . ΣK|R| , then VC (ΣKi) can be recursively de-
fined as follows:

VC (ΣK0)[j] = 0 for all j ∈ [1, n]
VC (ΣKr )[j] = max (VC (ΣKr−1)[j],VC (er)[j])

for all j ∈ [1, n] and 0 < r ≤ |R|

Proof. ∀j ∈ [1, n] : VC (ΣK0)[j] = 0 holds by def-
inition. Let er be from thread ti. By Lemma 4
er is enabled in ΣKr−1 . Therefore, by Lemma 6,
∀j 6= i : VC (ΣKr−1)[j] ≥ VC (er)[j]. This im-
plies that ∀j 6= i : VC (ΣKr )[j] = VC (ΣKr−1)[j] =
max (VC (ΣKr−1)[j],VC (er)[j]). Otherwise if j = i, by
Lemma 6, VC (ΣKr−1)[j] + 1 = VC (er)[j]. Therefore,
VC (ΣKr )[j] = VC (ΣKr−1)[j] + 1 = VC (er)[j] =
max (VC (ΣKr−1)[j],VC (er)[j]). This proves that
∀j : VC (ΣKr )[j] = max (VC (ΣKr−1)[j],VC (er)[j]).

Corollary 2. If R = e1e2 . . . e|R| is a consistent mul-
tithreaded run generating the sequence of global states
ΣK0ΣK1 . . . ΣK|R| , then

VC (ΣKr )[i] = max (VC (e1)[i],VC (e2)[i], . . . ,VC (er)[i])
for all i ∈ [1, n] and 0 < r ≤ |R|

Example 2. Figure 2 shows the causal partial order on
relevant events extracted by the observer from the mul-
tithreaded execution in Example 1, together with the
generated computation lattice. The actual execution,
Σ00Σ01Σ11Σ12Σ22Σ23Σ33, is marked with solid edges
in the lattice. Besides its DVC, each global state in the
lattice stores its values for the relevant variables, w and
v. It can be readily seen on Fig. 2 that the LTL prop-
erty F1 defined in Example 1 holds on the sample run
of the system, and also that it is not in the language of
bad prefixes, F2. However, F1 is violated on some other
consistent runs, such as Σ00Σ01Σ02Σ12Σ13Σ23Σ33. On
this particular run ↑ p holds at Σ02; however, r does
not hold at the next state Σ12. This makes the formula
F1 false at the state Σ13. The run can also be symboli-
cally written as {}{}{p}{p}{p, q}{p, q, r}{p, q, r}. In the
automaton in Fig. 1, this corresponds to a possible se-
quence of states 00123555. Hence, this string is accepted
by F2 as a bad prefix.

Therefore, by carefully analyzing the computation
lattice extracted from a successful execution one can
infer safety violations in other possible consistent ex-
ecutions. Such violations give informative feedback to
users, such as the lack of synchronization in the exam-
ple above, and may be hard to find by just ordinary
testing. In what follows we propose effective techniques

to analyze the computation lattice. A first important
observation is that one can generate it on-the-fly and
analyze it on a level-by-level basis, discarding the previ-
ous levels. However, even if one considers only one level,
that can still contain an exponential number of states
in the length of the current execution. A second impor-
tant observation is that the states in the computation
lattice are not all equiprobable in practice. By allow-
ing a user configurable window of most likely states in
the lattice centered around the observed execution trace,
the presented technique becomes quite scalable, requir-
ing O(wm) space and O(twm) time, where w is the size
of the window, m is the size of the bad prefix monitor
of the safety property, and t is the size of the monitored
execution trace.

4.2 Level By Level Analysis of the Computation Lattice

A naive observer of an execution trace of a multithreaded
program would just check the observed execution trace
against the monitor for the safety property, say Mon
like in Definition 1, and would maintain at each mo-
ment a set of states, say MonStates in M. When a new
event arrives, it would create the next state Σ and re-
place MonStates by ρ(MonStates, Σ). If the bad state
b will ever be in MonStates then a property violation
error would be reported, meaning that the current exe-
cution trace led to a bad prefix of the safety property.
Here we assume that the events are received in the order
in which they are emitted, and also that the monitor
works over the global states of the multithreaded pro-
grams. This assumption is essential for the observer to
deduce the actual execution of the multithreaded pro-
gram. The knowledge of the actual execution is used by
the observer to apply the causal cone heuristics as de-
scribed later. The assumption is not necessary if we do
not want to use causal cone heuristics. The work in [22]
describes a technique for the level by level analysis of
the computation lattice without the above assumption.

A smart observer, as said before, will analyze not
only the observed execution trace, but also all the other
consistent runs of the multithreaded system, thus be-
ing able to predict violations from successful executions.
The observer receives the events from the running multi-
threaded program in real-time and enqueues them in an
event queue Q. At the same time, it traverses the compu-
tation lattice level by level and checks whether the bad
state of the monitor can be hit by any of the runs up
to the current level. We next provide the algorithm that
the observer uses to construct the lattice level by level
from the sequence of events it receives from the running
program.

The observer maintains a list of global states (Cur-
rLevel), that are present in the current level of the lat-
tice. For each event e in the event queue, it tries to con-
struct a new global state from the set of states in the cur-
rent level and the event e. If the global state is created
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Fig. 2. Computation Lattice

successfully then it is added to the list of global states
(NextLevel) for the next level of the lattice. The pro-
cess continues until certain condition, levelComplete?()
holds. At that time the observer says that the level is
complete and starts constructing the next level by set-
ting CurrLevel to NextLevel, NextLevel to empty set, and
reallocating the space previously occupied by CurrLevel.
Here the predicate levelComplete?() is crucial for gener-
ating only those states in the level that are most likely to
occur in other executions, namely those in the window,
or the causality cone, that is described in the next sub-
section. The levelComplete? predicate is also discussed
and defined in the next subsection. The pseudo-code for
the lattice traversal is given in Fig. 3.

Every global state Σ contains the value of all relevant
shared variables in the program, a DVC VC (Σ) to repre-
sent the latest events from each thread that resulted in
that global state. Here the predicate nextState? (Σ, e),
checks if the event e is enabled in the state Σ, where
threadId(e) returns the index of the thread that gener-
ated the event e, VC (Σ) returns the DVC of the global
state Σ, and VC(e) returns the DVC of the event e.
The correctness of the function is given by Lemma 6. It
essentially says that event e can generate a consecutive
state for a state Σ, if and only if Σ “knows” everything e
knows about the current evolution of the multithreaded
system except for the event e itself. Note that e may
know less than Σ knows with respect to the evolution
of other threads in the system, because Σ has global
information.

The function createState(Σ, e), which implements
the function δ described in Corollary 1 creates a new
global state Σ′, where Σ′ is a possible consistent global
state that can result from Σ after the event e. Together
with each state Σ in the lattice, a set of states of the

while(not end of computation){
Q ← enqueue(Q, NextEvent())
while(constructLevel()){}

}

boolean constructLevel(){
for each e ∈ Q and Σ ∈ CurrLevel {

if nextState?(Σ, e) {
NextLevel ← NextLevel ] createState(Σ, e)
if levelComplete?(NextLevel , e, Q) {

Q ← removeUselessEvents(CurrLevel , Q)
CurrLevel ← NextLevel
NextLevel ← ∅
return true}}}

return false
}

boolean nextState?(Σ, e){
i ← threadId(e);
if (∀j 6= i : VC (Σ)[j] ≥ VC (e)[j] and

VC (Σ)[i] + 1 = VC (e)[i]) return true
return false

}

State createState(Σ, e){
Σ′ ← new copy of Σ
j ← threadId(e); VC (Σ′)[j] ← VC (Σ)[j] + 1
pgmState(Σ′)[var(e) ← value(e)]
MonStates(Σ′) ← ρ(MonStates(Σ), Σ′)
if b ∈ MonStates(Σ′) {

output ′property may be violated′}
return Σ′

}
Fig. 3. Level-by-level traversal.
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monitor, MonStates(Σ), also needs to be maintained,
which keeps all the states of the monitor in which any
of the partial runs ending in Σ can lead to. In the func-
tion createState, we set the MonStates of Σ′ with the set
of monitor states to which any of the current states in
MonStates(Σ) can transit when the state Σ′ is observed.
pgmState(Σ′) returns the value of all relevant program
shared variables in state Σ′, var(e) returns the name of
the relevant variable that is written at the time of event
e, value(e) is the value that is written to var(e), and
pgmState(Σ′)[var(e) ← value(e)] means that in pgm-
State(Σ′), var(e) is updated with value(e). Lemma 5
justifies that DVC of the state Σ′ is updated properly.

The merging operation nextLevel]Σ adds the global
state Σ to the set nextLevel. If Σ is already present in
nextLevel, it updates the existing state’s MonStates with
the union of the existing state’s MonStates and the Mon-
states of Σ. Two global states are same if their DVCs are
equal. Because of the function levelComplete?, it may be
often the case that the analysis procedure moves from
the current level to the next one before it is exhaustively
explored. That means that several events in the queue,
which were waiting for other events to arrive in order to
generate new states in the current level, become unneces-
sary so they can be discarded. The function removeUse-
lessEvents(CurrLevel,Q) removes from Q all the events
that cannot contribute to the construction of any state
at the next level. It creates a DVC Vmin whose each com-
ponent is the minimum of the corresponding component
of the DVCs of all the global states in the set CurrLevel.
It then removes all the events in Q whose DVCs are less
than or equal to Vmin . This function makes sure that we
do not store any unnecessary events. The correctness of
the function is given by the following lemma.

Lemma 8. For a given relevant event e, if VC (e) ≤
Vmin then ∀Σ ∈ CurrLevel , e is not enabled in Σ.

Proof. If e is enabled in Σ then by Lemma 6, VC (e)[i] =
VC (Σ)+1, where ti is the thread that generated e. This
implies that if e is enabled in Σ then VC (e) 6≤ VC (Σ).
Since VC (e) ≤ Vmin we have ∀Σ ∈ CurrLevel , VC (e) ≤
VC (Σ). Therefore, e is not enabled in Σ.

The observer runs in a loop till the computation ends.
In the loop the observer waits for the next event from
the running instrumented program and enqueues it in Q
whenever it becomes available. After that the observer
runs the function constructLevel in a loop till it returns
false. If the function constructLevel returns false then
the observer knows that the level is not completed and
it needs more events to complete the level. At that point
the observer again starts waiting for the next event from
the running program and continues with the loop. The
pseudo-code for the observer is given at the top of Fig. 3.

4.3 Causality Cone Heuristic

The number of states on a level in the computation lat-
tice can be exponential in the length of the trace. In
online analysis, generating all the states in a level may
not be feasible. However, note that some states in a level
can be considered more likely to occur in a consistent run
than others. For example, two independent events that
can possibly permute may have a huge time difference.
Permuting these two events would give a consistent run,
but that run may not be likely to take place in a real
execution of the multithreaded program. So we can ig-
nore such a permutation. We formalize this concept as
causality cone, or window, and exploit it in restricting
our attention to a small set of states in a given level.

As mentioned earlier we assume that the events are
received in an order in which they happen in the compu-
tation. We can ensure this linear ordering by executing
the DVC algorithm in a synchronized block so that each
such execution takes place atomically with respect to
each other. Note that this ordering gives the real exe-
cution of the program and it respects the partial order
associated with the computation. This execution will be
taken as a reference in order to compute the most prob-
able consistent runs of the system.

If we consider all the events generated by the execut-
ing distributed program as a finite sequence of events,
then a lattice formed by any prefix of this sequence is a
sub-lattice of the computation lattice L. This sub-lattice,
say L′, has the following property: if Σ ∈ L′, then for
any Σ′ ∈ L if Σ′ Ã∗ Σ then Σ′ ∈ L′. We can see this
sub-lattice as a portion of the computation lattice L en-
closed by a cone. The height of this cone is determined by
the length of the current sequence of events. We call this
causality cone. All the states in L that are outside this
cone cannot be determined from the current sequence of
events. Hence, they are outside the causal scope of the
current sequence of events. As we get more events this
cone moves down by one level.

If we compute a DVC Vmax whose each component
is the maximum of the corresponding component of the
DVCs of all the events in the event queue Vmax repre-
sents the DVC of the global state appearing at the tip of
the cone. The tip of the cone, by Corollary 2, traverses
the actual execution run of the program.

To avoid the generation of a possibly exponential
number of states in a given level, we consider a fixed
number, say w, of most probable states in a given level.
In a level construction, we say that the level is complete
once we have generated w states in that level. However,
a level may contain less than w states. Then the level
construction algorithm gets stuck. Moreover, we cannot
determine if a level has less than w states unless we see
all the events in the complete computation. This is be-
cause we do not know the total number of threads that
participate in the computation beforehand. To avoid this
scenario we introduce another parameter l, the length of
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Fig. 4. Causality Cones

boolean levelComplete?(NextLevel, e, Q){
if size(NextLevel) ≥ w then

return true;
else if e is the last event in Q

and size(Q) == l then
return true;

else return false;
}

Fig. 5. levelComplete? predicate

the current event queue. We say that a level is complete
if we have used all the events in the event queue for the
construction of the states in the current level and the
length of the queue is l and we have not crossed the
limit w on the number of states. The pseudo-code for
levelComplete? is given in Fig. 5

Note, here l corresponds to the number of levels of
the sub-lattice that can be constructed from the events in
the event queue Q. This is because, by Corollary 1, every
event in the queue Q generates a state in the next level
from a state in the current level in which it is enabled.

Example 3. Figure 6 shows the portion of the computa-
tion lattice constructed from the multithreaded execu-
tion in Example 1 when the causality cone heuristics is
applied with parameters w = 2 and l = 3. The possible
consistent run Σ00Σ01Σ02Σ03Σ13Σ23Σ33, shown on the
left side of the Figure 6, is pruned out by the heuristics.
In this particular run the two independent events e2 and
e5 that are permuted have long time difference in the ac-
tual execution. Therefore, we can safely ignore this run
among all other possible consistent runs.

5 Implementation

We have implemented these new techniques, in version
2.0 of the tool Java MultiPathExplorer (JMPaX), which

has been designed to monitor multithreaded Java pro-
grams. The current implementation is written in Java.
The tool has three main modules, the instrumentation
module, the observer module and the monitor module.

The instrumentation program, named instrument,
takes a specification file and a list of class files as com-
mand line arguments. An example is

java instrument spec A.class B.class C.class

where the specification file spec contains a list of
named formulae written in a suitable logic. The program
instrument extracts the name of the relevant variables
from the specification and instruments the classes, pro-
vided in the argument, as follows:

i) For each variable x of primitive type in each
class it adds access and write DVCs, namely
_access_dvc_x and _write_dvc_x, as new fields in
the class.

ii) It adds code to associate a DVC with every newly
created thread;

iii) For each read and write access of a variable of prim-
itive type in any class, it adds codes to update the
DVCs according to the algorithm mentioned in Sec-
tion 3.4;

iv) It adds code to call a method handleEvent of the
observer module at every write of a relevant vari-
able.

The instrumentation module uses the BCEL [5] Java li-
brary to modify Java class files. Currently, the instru-
mentation module instruments every variable of prim-
itive type in every class. This implies that, during the
execution of an instrumented program, the DVC algo-
rithm is executed for every read and write of variables
of primitive type. This degrades the performance of the
program considerably. We plan to improve the instru-
mentation by using escape analysis [4], to detect the pos-
sible shared variables through static analysis. This will
reduce the number of instrumentation points and hence
will improve the performance.

The observer module, that takes two parameters
w and l, generates the lattice level-by-level when
the instrumented program is executed. Whenever the
handleEvent method is invoked, it enqueues the event
passed as argument to the method handleEvent. Based
on the event queue and the current level of the lattice,
it generates the next level. In the process, it invokes the
nextStates method (corresponding to ρ in a monitor)
of the monitor module.

The monitor module reads the specification file writ-
ten either as an LTL formula or as a regular expression
and generates the non-deterministic automaton corre-
sponding to the formula or the regular expression. It
provides the method nextStates as an interface to the
observer module. The method raises an exception if at
any point the set of states returned by nextStates con-
tains the “bad” state of the automaton. The system be-
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Fig. 6. Causality Cone Heuristics applied to Example 2

ing modular, the user can plug in his/her own monitor
module for his/her logic of choice.

Since in Java synchronized blocks cannot be inter-
leaved, so corresponding events cannot be permuted,
locks are considered as shared variables and a write
event is generated whenever a lock is acquired or re-
leased. This way, a causal dependency is generated be-
tween any exit and any entry of a synchronized block,
namely the expected happens-before relation. Java syn-
chronization statements are handled exactly the same
way, that is, the shared variable associated to the syn-
chronization object is written at the entrance and at the
exit of the synchronized region. Condition synchroniza-
tions (wait/notify) can be handled similarly, by gener-
ating a write of a dummy shared variable by both the
notifying thread before notification and by the notified
thread after notification.

Note that the above technique for handing synchro-
nization constructs is conservative as it prevents us from
permuting two synchronized blocks even if the events
in the two blocks are independent of each other. Future
work involves finding an extension of the DVC algorithm
that can allow such permutations. This will enable us to
extract more interleavings from a computation.

6 Conclusion and Future Work

A formal runtime predictive analysis technique for mul-
tithreaded systems has been presented in this paper, in
which multiple threads communicating by shared vari-
ables are automatically instrumented to send relevant
events, stamped by dynamic vector clocks, to an exter-

nal observer which extracts a causal partial order on
the global state, updates and thereby builds an abstract
runtime model of the running multithreaded system. An-
alyzing this model on a level-by-level basis, the observer
can infer effectively, from a successful execution of the ob-
served system, when safety properties can be violated by
other executions. Attractive future work includes predic-
tions of liveness violations and predictions of data-race
and deadlock conditions.
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