
Jalangi: A Selective Record-Replay and Dynamic Analysis
Framework for JavaScript

Koushik Sen
∗

EECS Department
UC Berkeley, CA, USA.

ksen@cs.berkeley.edu

Swaroop Kalasapur, Tasneem Brutch,
and Simon Gibbs

Samsung Research America
1732 North First Street, San Jose, CA, USA
{s.kalasapur,t.brutch,s.gibbs}@sisa.samsung.com

ABSTRACT
JavaScript is widely used for writing client-side web applica-
tions and is getting increasingly popular for writing mobile
applications. However, unlike C, C++, and Java, there are
not that many tools available for analysis and testing of
JavaScript applications. In this paper, we present a simple
yet powerful framework, called Jalangi, for writing heavy-
weight dynamic analyses. Our framework incorporates two
key techniques: 1) selective record-replay, a technique which
enables to record and to faithfully replay a user-selected part
of the program, and 2) shadow values and shadow execution,
which enables easy implementation of heavy-weight dynamic
analyses. Our implementation makes no special assump-
tion about JavaScript, which makes it applicable to real-
world JavaScript programs running on multiple platforms.
We have implemented concolic testing, an analysis to track
origins of nulls and undefined, a simple form of taint anal-
ysis, an analysis to detect likely type inconsistencies, and
an object allocation profiler in Jalangi. Our evaluation of
Jalangi on the SunSpider benchmark suite and on five web
applications shows that Jalangi has an average slowdown of
26X during recording and 30X slowdown during replay and
analysis. The slowdowns are comparable with slowdowns
reported for similar tools, such as PIN and Valgrind for x86
binaries. We believe that the techniques proposed in this
paper are applicable to other dynamic languages.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—
symbolic execution, testing tools

General Terms
Verification

Keywords
JavaScript; Dynamic Analysis; Concolic Testing

∗The work of this author was supported in full by Samsung
Research America.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ESEC/FSE ’13, August 18-26, 2013, Saint Petersburg, Russia
Copyright 2013 ACM 978-1-4503-2237-9/13/08 ...$15.00.

1. INTRODUCTION
JavaScript is the most popular programming language for

client-side web programming. Advances in browser tech-
nologies and JavaScript engines in the recent years have
fueled the use of JavaScript in Rich Internet Applications,
and several mobile platforms including Android, iOS, Ti-
zen, Windows 8, Blackberry, Firefox OS, support appli-
cations written in HTML5/JavaScript. A key reason be-
hind the popularity of JavaScript programs is that they are
portable. Once written, JavaScript based applications can
be executed on any platform that has a web browser with
JavaScript support, which is quite common in modern day
devices. JavaScript being a dynamic language, also attracts
developers through its flexible features that do not require
explicit memory management, static typing and compila-
tion. With a renewed interest in JavaScript, many complex
applications such as Google docs, gmail, and a variety of
games are being developed using HTML5/JavaScript. How-
ever, unlike C/C++, Java and C#, JavaScript is signifi-
cantly shorthanded in the tools landscape. The dynamic
and reflective nature of JavaScript makes it hard to analyze
it statically [27, 34, 25].

In this paper, we present a dynamic analysis framework,
called Jalangi, for JavaScript. The framework provides a
few useful abstractions and an API that significantly sim-
plifies implementation of dynamic analyses for JavaScript.
The framework works through source code instrumentation
and allows implementation of various heavy-weight dynamic
analyses techniques. Jalangi incorporates two ideas:

1. Selective record-replay, a technique which enables to
record and to faithfully replay a user-selected part of
the program. For example, if a JavaScript applica-
tion, uses several third-party modules, such as jQuery,
Box2DJS, along with an application specific library
called myapp.js, our framework enables us to only
record and replay the behavior of myapp.js.

2. Shadow values, which enables us to associate a shadow
value with any value used in the program. A shadow
value can contain useful information about the actual
value (e.g. taint information or symbolic representa-
tion of the actual value). The framework supports
shadow execution on shadow values, a technique in
which an analysis can update the shadow values and
analysis state, on each operation performed by the ac-
tual execution. For example, a shadow execution can
perform symbolic execution or dynamic taint propaga-
tion.

There are a few constraints which dictated the design of
the above techniques in Jalangi.

1. We wanted to design a framework that is independent
of browsers and JavaScript engines. Such a design en-
ables us to design dynamic analyses that are not tied
to a particular JavaScript engine. Independence from
browsers and JavaScript engines also enables us to eas-
ily maintain our framework in the face of rapidly evolv-
ing browser landscape—we do not need to upgrade or
rebuild our framework whenever there is an update of
the underlying browser. We achieve browser indepen-
dence through selective source instrumentation. An at-
tractive feature of Jalangi is that it can operate even
if certain source files are not instrumented.

2. We wanted a framework where dynamic analysis of
an actual execution on a browser (e.g. a mobile
browser) can be performed on a desktop or a cloud
machine. This is important when we want to per-
form a heavy-weight analysis, such as symbolic exe-
cution. A heavy-weight analysis is often impossible
to perform on a resource constrained mobile browser.
Moreover an analysis that requires access to various
system resources, such as file system, cannot be im-
plemented in a browser without significantly modify-
ing the browser. We address this design constraint
through a two-phase analysis framework. In the first
phase, an instrumented JavaScript application is exe-
cuted and recorded on a user selected platform (e.g.
mobile Chrome running on Android). In the second
phase, the recorded data is utilized to perform a user
specified dynamic analysis on a desktop environment.

3. A dynamic analyses framework should allow easy im-
plementation of a dynamic analysis. Previous re-
search [31, 20, 8, 6, 21] and our experience with con-
colic testing [13, 30] and race detection techniques have
shown that support for shadow values and shadow ex-
ecution could significantly simplify implementation of
dynamic analyses techniques. A straight-forward way
to implement shadow values would be to replace any
value, say val, used in a JavaScript execution by an ob-
ject, called annotated value, {actual: val, shadow:

"tainted"}, where the field actual stores the actual
value and the field shadow can store necessary infor-
mation about val. To accomodate such replacements,
we modify every operation (e.g. +, *, field access)
performed by the JavaScript execution because every
value, whether primitive or not, could now be wrapped
by an object. The modified operations first retrieve the
actual values from the annotated values representing
the operands of the operation and then perform the
operation on the actual values to compute the result
of the operation. This simple implementation would
work if we could modify every operation performed by
a JavaScript engine. Unfortunately, Jalangi instru-
ments only user-specified code. Moreover, Jalangi
cannot instrument native code. Therefore, if we call
array.pop(), where array is an annotated value and
pop is a native function, we will get an exception.
Jalangi alleviates this problem by using the selective
record-replay engine: it only records the execution of
the instrumented code and replays the instrumented

code. Any code that is not and can not be instru-
mented, including native code, is not executed dur-
ing the replay phase. Since Jalangi supports shadow
values and shadow execution during the replay phase,
it will never execute un-instrumented code on anno-
tated values. Thus, Jalangi’s record-replay technique
is necessary for correct support of shadow values and
shadow execution.

In Jalangi, we have implemented several existing and
new dynamic analyses:

• Concolic testing [13, 30]: concolic testing performs
symbolic execution along a concrete execution path,
generates a logical formula denoting a constraint on
the input values, and solves a constraint to gener-
ate new test inputs that would execute the program
along previously unexplored paths. Our implementa-
tion of concolic testing supports constraints over inte-
ger, string, and object types and novel type constraints.

• Tracking origins of null and undefined [6]: this anal-
ysis records source code locations where null and un-
defined values come into existence and reports them if
they cause an error. Whenever there is an error due to
such literals, such as accessing the field of a null value,
the shadow value of the literal is reported to the user.

• Dynamic taint analysis [21, 9]: a dynamic taint analy-
sis is a form of information flow analysis which checks
if information can flow from a specific set of memory
locations, called sources, to another set of memory lo-
cations, called sinks. We have implemented a simple
form of dynamic taint analysis in Jalangi.

• Detecting likely type inconsistencies: this dynamic
analysis checks if an object created at a given pro-
gram location can assume multiple inconsistent types.
Sometimes these kind of type inconsistencies could
point us to a potential bug in the program. We have
noticed such issues in two SunSpider benchmark pro-
grams.

• Simple object allocation profiler: this dynamic analy-
sis computes the number of objects created at a given
allocation site and how often the object has been ac-
cessed. If an allocation site creates too many constant
objects, then it could lead to memory inefficiency. We
have found such a problem in one of the web applica-
tions in our benchmark suite.

Jalangi is available at https://github.com/

SRA-SiliconValley/jalangi under Apache 2.0 license.
We evaluated Jalangi on the CPU-intensive SunSpider
benchmark suite and on several user-interaction rich web
applications. Our evaluation results show that Jalangi
has an average overhead of 26X during recording and 30X
during replay. This is better than PinPlay [22] by a factor
of 2X-3X and slower than Valgrind [20]. We also found that
existing dynamic analyses could easily be implemented in
Jalangi.

2. TECHNICAL DETAILS
To simplify exposition of our techniques (and to avoid ex-

planation of the nuances of JavaScript), we use a simple

JavaScript-like imperative language. The syntax of this lan-
guage is shown below.

v, v1, v2, . . . are variable identifiers
f, f1, f2, . . . are field identifiers
p, p1, p2, . . . are function parameter identifiers

op are operators such as +, -, *, ...
Pgrm ::= (` : Stmt)∗

Stmt ::= var v
v = c
v1 = v2 op v3
v1 = op v2
v1 = call(v2, v3, v4, . . .)
if v goto `
return v
v1 = v2[v3]
v1[v2] = v3
function v1(p1, . . .){(` : Stmt)∗} function definition

c ::= number
string
undefined
null
true
false
{f1: v1, . . .} object literal
[v1, . . .] array literal
function v1(p1, . . .){(` : Stmt)∗} function literal

A program in this language is a sequence of labeled state-
ments. The statements in the language are in three-address
code. if v goto ` is the only statement that allows condi-
tional jump to an arbitrary statement. A compiler frame-
work can be used to convert more complex statements of
JavaScript into statements of this language by introduc-
ing temporary variables and by adding additional state-
ment labels. For example, control-flow statements, such as
while, for, can be converted into a sequence of statements
in this language using if v goto `. We use the statement
v1 = call(v2, v3, v4, . . .) to represent function, method, and
constructor calls, where v2 denotes the function that is be-
ing called, v3 denotes the this object inside the function,
and v4, . . . denote the arguments passed to the function. We
use v1[v2] to denote both access to an element of an array
and access to a field of an object.

2.1 Selective Record-Replay
We assume that the user of Jalangi selects a subset of

the JavaScript source in a web application for record-replay.
Jalangi instruments the user-selected source for record-
replay. During the recording phase, the application is exe-
cuted with the instrumented files on a platform of the user’s
choice (e.g. a mobile browser or a node.js interpreter). Dur-
ing recording, the entire application is executed, i.e. all in-
strumented and un-instrumented JavaScript files and native
codes get executed. During the replay phase, Jalangi only
replays the execution of the instrumented sections. This
asymmetry of execution in the two phases has two key ad-
vantages:

1. One could record an execution of a JavaScript applica-
tion on an actual platform (e.g. a mobile browser) and
then replay the execution for the purpose of debugging
on a desktop JavaScript engine, such as node.js or a
JavaScript engine embedded in an IDE. The replay
does not require access to any browser-specific native
JavaScript libraries such as libraries for manipulating
the DOM.

2. During replay, since we avoid execution of un-
instrumented code and native code, we can easily

implement various dynamic analysis that depend on
shadow values and shadow executions.

A trivial way to perform faithful record-replay of an exe-
cution is to record every value loaded from memory during
an execution and use those values for corresponding memory
loads in the replay phase. This approach has two challenges:
1) How do we record values of objects and functions? 2)
How do we replay an execution when an un-instrumented
function or a native function, such as the JavaScript event
dispatcher, calls an instrumented function? Note that we
do not allow the execution of un-instrumented and native
functions during the replay phase. Therefore, we need an
alternative mechanism to execute instrumented functions
that are being invoked by un-instrumented functions dur-
ing recording. We address the first challenge by associating
a unique numerical identifier with every object and function
and by recording the value of those unique identifiers. We
address the second challenge by explicitly recording and call-
ing instrumented functions that are being invoked from un-
instrumented functions or are dispatched by the JavaScript
event dispatcher.

We avoid recording of every load of memory based on
the following observation: if we can compute the value of a
memory load during the replay phase by solely executing the
instrumented code, then we do not need to record the value
of the load.

In order to determine if the value of a memory load needs
to be recorded, Jalangi maintains a shadow memory dur-
ing the recording phase. The shadow memory is updated
along with the actual memory during the execution of in-
strumented code. Execution of un-instrumented and na-
tive code does not update the shadow memory. During the
load of memory in the recording phase, if Jalangi finds
any difference between the value of the actual memory be-
ing loaded and the value stored in the corresponding shadow
memory, Jalangi records the value of such memory loads.
This ensures that correct values are available during the re-
play phase.

Figure 1 shows the instrumentation that Jalangi per-
forms for record-replay. The instrumentation does not
change the behavior of the actual execution. Jalangi intro-
duces a shadow variable v′ for every local and global variable
v. Jalangi introduces a local variable p′ for every formal
parameter p of an instrumented function. Similarly, for ev-
ery field f of every object, Jalangi introduces a shadow
field f ′. Note that if v1[v2] denotes access of the field de-
noted by the string stored in v2, then v1[v2 + “′”] denotes
the access of the corresponding shadow field.

During the recording phase, Jalangi keeps the actual
memory and shadow memory in sync as much as possible.
Note that a field of an object may not be in sync with the
corresponding shadow field if the field gets updated in na-
tive or un-instrumented code. Whenever a variable or a field
of an object is updated, Jalangi adds instrumentation to
update the corresponding shadow variable or shadow field
of the object. For example, v1 = v2[v3] gets modified to
v1′ = v1 = v2[v3].

The instrumentation performs the following additional
three transformations:

• If a local or global variable v or a field of an ob-
ject v1[v2] is loaded in a statement, we first call
v′ = v = sync(v, v′) or v1[v2 + ”′”] = v1[v2] =

var v =⇒ var v′

var v

v = c =⇒ v′ = v = sync(c)

v1 = v2 op v3 =⇒ v2′ = v2 = sync(v2, v2′)
v3′ = v3 = sync(v3, v3′)
v1′ = v1 = v2 op v3

v1 = op v2 =⇒ v2′ = v2 = sync(v2, v2′)
v1′ = v1 = op v2

if v goto ` =⇒ v′ = v = sync(v, v′)
if v goto `

return v =⇒ v′ = v = sync(v, v′)
return v

v1 = v2[v3] =⇒ v2′ = v2 = sync(v2, v2′)
v3′ = v3 = sync(v3, v3′)
v2[v3 + “′”] = v2[v3] =

sync(v2[v3], v2[v3 + “′”])
v1′ = v1 = v2[v3]

v1[v2] = v3 =⇒ v1′ = v1 = sync(v1, v1′)
v2′ = v2 = sync(v2, v2′)
v3′ = v3 = sync(v3, v3′)
v1[v2 + “′”] = v1[v2] = v3

v1 = call(v2, v3, v4, . . .) =⇒ v2′ = v2 = sync(v2, v2′)
v3′ = v3 = sync(v3, v3′)
v4′ = v4 = sync(v4, v4′)

.

.

.
v1′ = v1 = sync(

instrCall(v2, v3, v4, . . .))

{f1: v1, . . .} =⇒ {f1: v1′ = v1 =
sync(v1, v1′), . . .}

[v1, . . .] =⇒ [v1′ = v1 = sync(v1, v1′), . . .]

function v1(p1, . . .){ =⇒ function v1(p1, . . .){
(` : Stmt)∗ enter(v1)
} var p1′

.

.

.
(` : Stmt)∗

}

Figure 1: Instrumentation for Record-Replay. sync(c) is
equivalent to sync(c, undefined).

sync(v1[v2], v1[v2 + ”′”]), respectively, before the ac-
tual load. In the recording phase, the function sync

records the value stored in the memory if the values
stored in the actual and shadow memory are differ-
ent (i.e. if the arguments of the sync are different).
In the replay phase, sync returns the first argument
if the corresponding load in the recording phase was
not recorded and returns the recorded value otherwise.
This ensures that in the replay phase, Jalangi gets the
exact value that is loaded during the recording phase.

• We replace call(v2, v3, v4, . . .) by
sync(instrCall(v2, v3, v4, . . .)). During the replay
phase, function instrCall invokes call(v2, v3, v4, . . .)
if function v2 is instrumented. Otherwise, it explicitly
calls any instrumented function that is invoked while
executing the un-instrumented or native function
v2. We use the function replay defined in Figure 2
to call instrumented functions whose callers are not
instrumented.

• We insert the statement enter(v1) as the first state-
ment of any instrumented function with name, say v1.
In the recording phase, enter(v1) records the value of
the function v1. In the replay phase, instrCall in-
vokes the recorded function if the function is called
from a un-instrumented or native function.

Figure 2 defines the functions sync, instrCall, and
enter, which are inserted by Jalangi instrumentation. The
library maintains an array trace of the recorded values
along with their types. trace[i] stores the value of the
ith memory load. The array is initialized and populated
during the recording phase and is used in the replay phase.
At the end of recording, trace is serialized to the filesystem
in JSON format. During replay, the serialized file is used to
initialize trace.

Function sync is defined as described before. If the sec-
ond argument of sync is not provided, then we assume that
the second argument is undefined. Jalangi uses the flag
recording to indicate if an execution is meant for recording
or replay. For a recording execution, if the two arguments
of sync are different, then Jalangi records the value and
the type of the value in the sparse array trace. Otherwise,
Jalangi skips recording, i.e. keeps the entry trace[i] un-

defined. If the value of v1 in sync is restricted to primi-
tive types (i.e. number, string, boolean, undefined, or null),
we can simply do trace[i] = v1. However, the type of
v1 could be an object or a function. To handle objects and
functions, sync calls trace[i] = getRecord(v1), where ge-
tRecord(v1) returns an object whose type field is set to the
type of v1 and val is set to v1 if v1 is of primitive type. If
type of v1 is a non-null object or function, then we use the
unique numerical id of the object or function as its value to
be recorded. The unique numerical id of a non-null object
or function is stored in its hidden field *id*. If the object
or function has no unique id, getRecord creates and assigns
a unique numerical id to the object or function.

In a replay execution, if trace[i] is undefined inside a
call of sync, then sync returns the value present in the actual
memory. Otherwise, sync returns the value recorded in the
trace. sync could simply return trace[i], if the value of
v1 in sync is restricted to primitive types. Since type of v1

could be object or function, trace[i].type records the type
of v1 and trace[i].val stores the value or unique id of v1 if
v1 is of primitive type or object/function type, respectively.
If the type of v1 is non-null object or function, we need to re-
turn the object or function that has the unique id recorded in
trace[i].val. sync calls syncRecord(rec, v1) to achieve
this. syncRecord maintains a map, objectMap, from unique
identifiers to object/functions. If syncRecord discovers that
the recorded unique id maps to an object/function in the
objectMap, it returns that object/function. Otherwise, if
syncRecord finds that the recorded unique identifier has no
map in the objectMap, syncRecord does the following:

• If v is a fresh object/function (i.e. which has not
been assigned an unique id in the current execution),
syncRecord assigns the recorded unique id rec.val to
the object v and updates objectMap to remember this
mapping. syncRecord returns the object v.

• Otherwise, syncRecord has encountered an undefined
value or a stale value. Therefore, syncRecord creates
a mock empty object/function, assigns the recorded id

// p e r s i s t t r a c e a f t e r r e c o r d i n g
// du r i n g r e p l a y i n i t i a l i z e t r a c e
// from p e r s i s t e d t r a c e
var t r a c e = [] ;
var i = 0 , id = 0 , objectMap = [] ;

function getRecord (v) {
if (v !== null && (typeof v === ’ o b j e c t ’ | |

typeof v === ’ f u n c t i o n ’)){
if (! v [”∗ i d ∗ ”]) v [”∗ i d ∗ ”] = ++id ;
return { type : typeof v , va l : v [”∗ i d ∗ ”]}

} else {
return { type : typeof v , va l : v } ;

}
}

function syncRecord (rec , v) {
var r e s u l t = rec . va l
if (r ec . va l !==null && (rec . type=== ’ o b j e c t ’ | |

r ec . type === ’ f u n c t i o n ’)){
if (objectMap [r ec . va l])

r e s u l t = objectMap [r ec . va l] ;
else {
if (typeof v !== rec . type | | v [”∗ i d ∗ ”])
v = (rec . type=== ’ o b j e c t ’) ?{} : function (){}

v [”∗ i d ∗ ”] = rec . va l ;
objectMap [r ec . va l] = v ;
r e s u l t = v ;
}

}
return r e s u l t

}

function sync(v1 , v2) {
i = i + 1 ;
if (r e co rd ing) {

if (v1 !== v2)
t r a c e [i] = getRecord (v1) ;

return v1 ;
} else {

if (t r a c e [i])
return syncRecord (t r a c e [i] , v1) ;

else
return v1 ;

}
}

function enter(v) {
i = i + 1 ;
if (r e co rd ing) {

t r a c e [i] = getRecord (v)
t r a c e [i] . i sFunCal l = true

}
}

function instrCall(f , o , a1 , . . . , an) {
if (r e co rd ing | | i s Ins t rumented (f))

return call(f , o , a1 , . . . , an)
else

return r ep lay ()
}

function r ep lay () {
while (t r a c e [i +1] . i sFunCal l) {

var f = syncRecord (t r a c e [i +1] , undef ined)
f ()

}
return undef ined

}

Figure 2: Record-Replay Library

to that object, updates the objectMap, and returns the
mock object/function.

The function replay plays an important role in the re-
play phase. It ensures that any instrumented function that
got invoked from an un-instrumented or native function, is
called by Jalangi explicitly. The replay function is de-

function AnnotatedValue (actual , shadow) {
t h i s . a c tua l = actua l ;
t h i s . shadow = shadow ;

}

function a(v) {
if (v i n s t a n c e o f AnnotatedValue)

return v . ac tua l
return v

}

function s(v) {
if (v i n s t a n c e o f AnnotatedValue)

return v . shadow
return undef ined

}

Figure 3: Annotated Value

pendent on the enter function inserted at the beginning of
every instrumented function. enter records the value of the
function that is currently being executed. It also sets the
field isFunCall of the record appended to trace to true. A
true value of trace[i].isFunCall indicates the record ap-
pended to trace corresponds to the invocation of the func-
tion denoted by trace[i].val. Now let us see how this
record is used in the replay phase. Jalangi calls instrCall
in place of any call statement in the code. instrCall, in
turn, invokes call if Jalangi is in the recording phase, or
during replay phase when function f is instrumented. This
ensures that Jalangi executes any function, whether instru-
mented or un-instrumented, normally during the recording
phase, and that Jalangi only executes instrumented func-
tions normally during the replay phase. If the function f

inside instrCall is un-instrumented, then there is a possi-
bility that f could have called some instrumented function
in the recording phase. In order to replay the execution of
those instrumented functions, Jalangi calls replay. re-

play first computes the function object by looking at the
next record in the trace and then invokes it if isFunCall is
true. The invocation does not pass any argument because
Jalangi has no record of the arguments being passed to the
function. The arguments get synced inside the function as
they are being read inside the function.

Jalangi starts the replay phase by calling the replay

function instead of calling the entry function of the applica-
tion.

2.2 Shadow Values and Shadow Execution
Jalangi enables a robust framework for writing dynamic

program analyses through shadow values and shadow exe-
cution. A user-defined shadow execution can be performed
by Jalangi during the replay phase. Jalangi only per-
forms shadow execution of instrumented code: without in-
strumentation, Jalangi cannot analyze the behavior of un-
instrumented or native code.

In shadow execution, Jalangi allows the replacement of
any value used in the execution by an annotated value. The
annotated value can carry extra information about the ac-
tual value. For example, an annotated value can carry taint
information in a taint analysis or a symbolic expression de-
scribing the actual value in symbolic execution. In Jalangi,
we denote an annotated value using an object of type An-

notatedValue defined in Figure 3. An object of type Anno-

tatedValue has two fields: the field actual stores the actual

value and the field shadow stores the shadow value, i.e. ex-
tra information about the actual value. A value, say v, in
JavaScript can be associated with shadow value, say s, by
simply replacing v by new AnnotatedValue(v, s). The pro-
jection function a(v) returns the actual value of v, if v is an
annotated value and returns v otherwise. Similarly, the pro-
jection function s(v) returns the shadow value associated
with v if v is an annotated value and returns undefined

otherwise.
If a JavaScript value is replaced by a user-defined anno-

tated value during an analysis, the built-in JavaScript oper-
ations will fail. For example, if we replace the number value
53 by the annotated value new AnnotatedValue(53, null),
then addition of this value with another number, say 31,
would result in NaN instead of 84. To avoid such situa-
tions, we instrument code so that Jalangi performs the
built-in JavaScript operations on the actual values instead
of the annotated values. For example, v1 op v2 is re-
placed by a(v1) op a(v2). Similarly, v1[v2] is replaced by
a(v1)[a(v2)]. The instrumentation inserted by Jalangi to
perform shadow execution with shadow values along with
record-replay is shown in Figure 4.

The instrumentation assumes that the global variable
anlys could point to a user-defined analysis object dur-
ing the replay phase. After the execution of a JavaScript
statement, the corresponding method in the anlys object
is called to perform a user-specific analysis. For example,
consider the statement v1 = v2 op v3. After the execu-
tion of this statement in the replay phase, Jalangi calls
the v1 = anlys.binary(op, v2, v3, v1) to perform an analysis
specific function for the binary operation op. For example,
if v2 is the number 53 and v3 is the annotated value new

AnnotatedValue(31,“tainted”), then after the execution of
the actual statement v1 will be 84 and then execution of
v1 = anlys.binary(op, v2, v3, v1) could store new Annotat-

edValue(84,“tainted”) in v1 to represent the fact if one of the
operands of a binary operation is tainted, then the result of
the operation is also tainted. Following is another example
in the context of symbolic execution. If v2 is the anno-
tated value new AnnotatedValue(1, ”2x1 + 1”) and v3 is the
annotated value new AnnotatedValue(3, ”x2−x1”), then af-
ter the execution of v1 = anlys.binary(+, v2, v3, v1), where
anlys performs symbolic execution, v1 will be the annotated

value new AnnotatedValue(4, ”x1 + x2”). Note that in the
symbolic execution, the symbolic expression corresponding
to a concrete value is represented as a string in the shadow
value.

2.3 Example Analysis: Tracking Origin of
null and undefined Values

In Figure 6 we describe a simple dynamic analysis using
the shadow execution framework for Jalangi. The analy-
sis tracks the origin of null and undefined in a JavaScript
execution. If during an execution, access is made to the
field of a null or undefined value, or if an invocation of a
value which is null or undefined is encountered, the anal-
ysis could report the line number of code where the null or
undefined value originated.

The analysis creates an object anlys, where we define
the methods literal, getField, and call. The operations
corresponding to these methods could create null and un-

defined values. Therefore, if the value returned by any of
these operations is null or undefined, we annotate the re-

var v =⇒ var v′

var v
if(anlys && anlys.literal)

v = anlys.literal(undefined)

v = c =⇒ v′ = v = sync(c)
if(anlys && anlys.literal)

v = anlys.literal(c)

v1 = v2 op v3 =⇒ v2′ = v2 = sync(v2, v2′)
v3′ = v3 = sync(v3, v3′)
v1′ = v1 = a(v2) op a(v3)
if(anlys && anlys.binary)

v1 = anlys.binary(op, v2, v3, v1)

v1 = op v2 =⇒ v2′ = v2 = sync(v2, v2′)
v1′ = v1 = op a(v2)
if(anlys && anlys.unary)

v1 = anlys.unary(op, v2, v1)

if v goto ` =⇒ v′ = v = sync(v, v′)
if(anlys && anlys.conditional)

anlys.conditional(v)

if a(v) goto `

return v =⇒ v′ = v = sync(v, v′)
return v

v1 = v2[v3] =⇒ v2′ = v2 = sync(v2, v2′)
v3′ = v3 = sync(v3, v3′)
a(v2)[a(v3) + “′”] = a(v2)[a(v3)] =
sync(a(v2)[a(v3)], a(v2)[a(v3) + “′”])

v1′ = v1 = a(v2)[a(v3)]
if(anlys && anlys.getField)

v1 = anlys.getField(v2, v3, v1)

v1[v2] = v3 =⇒ v1′ = v1 = sync(v1, v1′)
v2′ = v2 = sync(v2, v2′)
v3′ = v3 = sync(v3, v3′)
a(v1)[a(v2) + “′”] = a(v1)[a(v2)] = v3
if(anlys && anlys.putField)

a(v1)[a(v2)] =
anlys.putField(v1, v2, v3)

v1 = =⇒ v2′ = v2 = sync(v2, v2′)
call(v2, v3, v4, . . .) v3′ = v3 = sync(v3, v3′)

v4′ = v4 = sync(v4, v4′)

.

.

.
v1′ = v1 = sync(

instrCall(a(v2), v3, v4, . . .))
if(anlys && anlys.call)

v1 = anlys.call(v2, v3, v4, . . . , v1)

{f1: v1, . . .} =⇒ {f1: v1′ = v1 =
sync(v1, v1′), . . .}

[v1, . . .] =⇒ [v1′ = v1 = sync(v1, v1′), . . .]

function v1(p1, . . .){ =⇒ function v1(p1, . . .){
(` : Stmt)∗ enter(v1)
} var p1′

.

.

.
(` : Stmt)∗

}

Figure 4: Instrumentation for Record-Replay and Shadow
Execution

turn value with the location information. getLocation()

returns the line number in the original code where the in-
strumentation was inserted by Jalangi.

The above example shows how one could implement a
dynamic analyses using Jalangi. In our framework, we have

function syncRecord (rec , tv) {
M: var v = a(tv) , r e s u l t = rec . va l

if (r ec . va l !==null && (rec . type=== ’ o b j e c t ’ | |
r ec . type === ’ f u n c t i o n ’)){

if (objectMap [r ec . va l])
r e s u l t = objectMap [r ec . va l] ;

else {
if (typeof v !== rec . type | | v [”∗ i d ∗ ”])
v = (rec . type=== ’ o b j e c t ’) ?{} : function (){}

v [”∗ i d ∗ ”] = rec . va l ;
objectMap [r ec . va l] = v ;
r e s u l t = v ;
}

}
M: if (a(tv) === r e s u l t)
M: r e s u l t = tv

return r e s u l t
}

Figure 5: Updated syncRecord for Shadow Execution.
Modified lines are labeled with M:

an lys = {
l i t e r a l : function (c) {

if (c === null | | c === undef ined) {
return new AnnotatedValue (c , getLocat ion ())

}
} ,

g e tF i e l d : function (v1 , v2 , r) {
if (r === null | | r === undef ined){

return new AnnotatedValue (r , getLocat ion ())
}

} ,

c a l l : function (f , o , a1 , . . . , an , r) {
if (r === null | | r === undef ined){

return new AnnotatedValue (r , getLocat ion ())
}

}
}

Figure 6: Tracking origins of undefined and null

implemented full concolic testing and taint analysis using
shadow execution. We believe that many other dynamic
analyses can be implemented easily using Jalangi.

3. EXAMPLE
Consider the example JavaScript program in Figure 7. Let

us assume that the entire program is instrumented except
the body of the function foo. The trace generated by an
execution of the program in a browser is also shown in the
Figure. Note that during the recording phase, we create an
unique identifier for each of the objects accessed inside the
body of the program. The object document is available in
the browser, but the object never got created in the body
of the program. During the replay, a mock object is created
for document and document[“*id*”] is set to 2, an identifier
obtained from the recorded trace. document.URL is set to
"http://127.0.0.1/index.html", a string value obtained
from the trace. During the recording phase, mydoc gets set
to document inside un-instrumented code. Therefore, after
the execution of foo, mydoc will contain the object docu-
ment and the shadow variable mydoc’ will still be undefined.
Jalangi will, therefore, record the value of mydoc, when it
is returned from myload. During the replay, Jalangi will
sync the value of mydoc, which it will discover in objectMap.
The value of mydoc will be set to the mock object with id 2
created during the replay. Thus the replay phase will faith-

// un−i n s t r umen t ed
function f oo () {

mydoc = document ;
}
// to be i n s t r umen t ed
var mydoc ;

function myapp () {
document . onload = function myload () {

var ur l = document .URL;
foo () ;
return mydoc ;

}
} () ;

t r a c e = [
// sync f u n c t i o n l i t e r a l myapp and
// s e t myapp [”∗ i d ∗ ”] = 1

{ type : ” f u n c t i o n ” , va l : 1} ,
// r e c o r d e n t e r (myapp)

{ type : ” f u n c t i o n ” , va l : 1 , i sFunCal l : true } ,
// sync l o ad o f document and
// s e t document [”∗ i d ∗ ”] = 2

{ type : ” o b j e c t ” , va l : 2} ,
// sync f u n c t i o n l i t e r a l myload
// and s e t myload [”∗ i d ∗”]= 3

{ type : ” f u n c t i o n ” , va l : 3} ,
// r e c o r d e n t e r (myload)
// where myapp i s c a l l e d by the ev en t d i s p a t c h e r

{ type : ” f u n c t i o n ” , va l : 3 , i sFunCal l : true } ,
// sync g e tF i e l d , document [”URL”]

{ type : ” s t r i n g ” , va l : ”h t t p : / / 1 2 7 . 0 . 0 . 1 / i n d e x . h tm l ”} ,
// sync f u n c t i o n l i t e r a l f o o and
// s e t f o o [”∗ i d ∗”]= 4

{ type : ” f u n c t i o n ” , va l : 4} ,
// sync l o ad o f mydoc on r e t u r n

{ type : ” o b j e c t ” , va l : 2}
]

Figure 7: An example JavaScript program. Assume that
the function foo is not instrumented. Executing the pro-
gram on a browser generates the trace.

fully mimic the recorded execution even in a non-browser
environment.

4. IMPLEMENTATION
We have implemented Jalangi in JavaScript. The code

of this framework is available under Apache 2.0 open-source
license at https://github.com/SRA-SiliconValley/

jalangi. In the actual implementation, we do not trans-
form JavaScript into the three-address code described
in Section 2. Rather we modify the AST in place by
replacing each operation with an equivalent function call.
We perform instrumentation ahead-of-time; in future, we
plan to support load-time instrumentation using a proxy.

Handling eval

Jalangi exposes the instrumentation library as a function
instrumentCode. This enables us also to dynamically in-
strument any code that is created and evaluated at run-
time. For example, we modify any call to eval(s) to
eval(instrumentCode(s)).

Handling Exceptions
Exceptions do not pose any particular challenge in Jalangi
except for uncaught exceptions being thrown from un-
instrumented code. We wrap every function within a try-
catch-finally block. In the catch block, we re-throw the ex-
ception. In the finally block, we call any analysis specific

code corresponding to the function call.

Handling AJAX Calls and Event Handlers
Event handlers and handlers of AJAX calls appear as top-
level function invocations in the recorded trace. If the han-
dlers are instrumented, then the replay function defined in
Figure 2 invokes them in the order in which they were in-
voked in the recorded execution.

In record-replay described in Figure 1, we record any lit-
eral value, any value returned by a function call, and any
function value that is executed. This could still result in
large amount of record data. In our implementation, we
avoid recording any literal value. We only record the return
value of a function, if the function is un-instrumented or na-
tive. Similarly, we avoid recording a function value at the
beginning of the execution of the function, if the function is
called from an instrumented function.

Concolic Testing
We have implemented concolic testing as an analysis in
Jalangi. We store the symbolic expression corresponding
to each concrete value in its shadow value. Concolic execu-
tion takes place during the replay phase: the shadow exe-
cution updates the shadow value of each value. We perform
record-replay execution of the program for each generated
input.

In our implementation of concolic testing, we handle linear
integer constraints and string constraints involving concate-
nation, length, and regular expression matching. We also
handle type constraints and a limited set of constraints over
references. For example, if the type of an input variable
is unknown, we infer the possible types of the variable by
observing the operations performed on the variable.

Dynamic Taint Analysis
A dynamic taint analysis is a form information flow analysis
which checks if information can flow from a specific set of
memory locations, called sources, to another set of memory
locations, called sink. We have implemented a simple form
of dynamic taint analysis in Jalangi. In the analysis, we
treat read of any field of any object, which has not previ-
ously been written by the instrumented source, as a source
of taint. We treat any read of a memory location that could
change the control-flow of the program as a sink. We at-
tach taint information with the shadow value of an actual
value. Taint information is propagated by implementing the
various operations in the analysis. For example, if any of
the operands of an operation is tainted, then we return an
annotated value which is marked as tainted.

Detecting Likely Type Inconsistencies
The dynamic analysis checks if an object/function created at
a given program location can assume multiple inconsistent
types. It computes the types of object and function values
created at each definition site in the program. Specifically,
the analysis associates every object/function value with the
static program location where the object/function value got
created. It also maps each such program location to the
type that the objects/functions created at the location can
assume during the course of the execution. If an object or
a function value defined at a program location has been ob-
served to assume more than one type during the execution,
the analysis reports the program location along with the ob-

served types. Sometimes these kind of type inconsistencies
could point us to a potential bug in the program. We have
noticed such issues in two SunSpider benchmark programs.

Simple Object Allocation Profiler
This dynamic analysis records the number of objects created
at a given allocation site and how often the fields of the ob-
jects created at a given allocation site have been accessed.
The analysis also tracks if the objects’ fields have been up-
dated, that is the analysis tracks if the objects created at a
given allocation site are read-only or a constant. The analy-
sis reports the maximum and average difference between the
object creation time and the most recent access time of the
object. Time is reported in terms of the number of instruc-
tions being executed. If an allocation site creates too many
constant objects, then it could lead to performance issues.
We have found such an issue in one of the web applications
in our benchmark suite.

Limitations
Jalangi implementation has the following known limita-
tions which can prevent it from doing high-fidelity replay
in some scenarios. Some of these limitations arise in EC-
MAScript 5. Jalangi will fail to record if a JavaScript
engine disallows access to arguments.callee at the begin-
ning of a function call. This is a problem if an entire
script is made to run in strict mode. Jalangi cannot han-
dle updates made through the setter method of an ob-
ject in ECMAScript 5. Jalangi cannot handle the with

construct properly. Jalangi cannot track implicit type
conversion of externally created objects to primitive types.
JSON.stringify cannot accurately record a floating point
number, which could lead to imprecision during replay. We
believe that these limitations could be addressed in a future
release.

5. EVALUATION
We next report our results of evaluating Jalangi on sev-

eral benchmark programs. In our evaluation, we focussed on
four aspects: 1) ease of writing dynamic analyses, 2) fidelity
and robustness of record-replay, 3) performance of Jalangi,
and 4) programming issues detected during dynamic analy-
ses.

5.1 Ease of Writing Dynamic Analyses
We have written five dynamic analyses and a condition

coverage tool on top of Jalangi. The condition coverage
tool has 47 lines of JavaScript code, the origin tracker for
null and undefined has 61 lines of JavaScript code, taint
analysis has 68 lines of code, the object allocation tracker
has 174 lines of code, the type inconsistency checker has 543
lines of code, and concolic testing has 2225 lines of code.
In comparison, a concolic testing tool for Java with lesser
functionalities had more than 20,000 lines of code. Even
though number of lines of code is not a good measure for
the ease of writing a dynamic analysis, it provides a rough
estimate of the complexity of writing an analysis on top of
Jalangi.

5.2 Fidelity and Robustness
By fidelity, we mean the similarity between recording and

replay executions. By robustness, we mean the ability of

Jalangi to handle a program without introducing any er-
rors or exceptions of its own. To check fidelity of Jalangi,
we recoded all the memory loads both in record and replay
phases and checked if the two sequences of loads are the
same. Despite the limitations described in the previous sec-
tion, we managed to run Jalangi without any error on all
programs that we considered for evaluation. and Jalangi
produced exactly the same sequence of memory loads and
followed exactly the same execution paths.

5.3 Performance of JALANGI
We performed record-replay on 26 programs in the

JavaScript SunSpider (http://www.webkit.org/perf/
sunspider/sunspider.html) benchmark suite and
on five web apps written for the Tizen OS using
HTML5/JavaScript (https://developer.tizen.org/
downloads/sample-web-applications). The web apps
include annex—a two-player strategy game, shopping
list—which uses local storage API of HTML5, scientific
calculator, go—a two-player strategy game, and tenframe—
a math-based three-game combo for kids. During the
replay phase of these benchmark programs, we ran three
dynamic analyses: no analysis (denoted by empty), tracking
origins of null and undefined (denoted by track), and a
taint analysis (denoted by taint). We report the overhead
associated with the recording and replay phases in Table 1.
The experiments were performed on a laptop with 2.3 GHz
Intel Core i7 and 8 GB RAM. We ran the web apps on
Chrome 25 and performed the replay executions on node.js
0.8.14. We use time system command to measure runtime.

The SunSpider benchmarks have relatively small number
of lines of code, but they perform CPU intensive computa-
tions. The web apps perform both CPU intensive computa-
tions and manipulation of the DOM. We didn’t measure the
slowdown of the web apps because these are mostly inter-
active applications. For the SunSpider benchmark suite, we
observed an average slowdown of 26X during the recording
phase with a minimum of 1.5X and a maximum of 93X. On
the empty analysis during the replay phase, we observed an
average slowdown of 30X with a minimum of 1.5X and a
maximum of 93X. Track analysis showed an average slow-
down of 32.75X with a minimum of 1.5X and a maximum of
96X. The slowdown in recording is 2X-3X lower than that
of PinPlay [22] and the slowdown in the analysis phase is
slightly higher than slowdown noticed in valgrind [20], a
heavy-weight dynamic analysis tool for x86. We didn’t make
any effort to optimize our implementation, but we believe
suitable optimizations could further reduce the overhead.
For some programs in the SunSpider suite we noticed that
the number values recorded is quite high and recording phase
has higher overhead than replay. This is because these pro-
grams made many expensive native calls. The return values
of those calls were recorded. Replay skipped the execution
of those native calls, so we noticed lower overhead for replay.

In Jalangi, if we record every memory load, then we
notice a slowdown of 300X -1000X. Our proposed use of
shadow memory significantly reduces the number of loads
that we had to record for a faithful replay. The column titled
“% of Loads Recorded” reports the reduction in percentage.
We noticed an average reduction of 6.52% and a median
reduction of 0.73%. Programs doing a lot of native calls and
performing frequent manipulation of the DOM resulted in
large recoding of the memory loads.

Based on our evaluation, we are optimistic about the
utility of Jalangi as a tool framework aiding web devel-
opers. We believe that the utility offered by Jalangi is
much more valuable compared to the additional perfor-
mance penalty that the developers observe. Moreover, this
additional penalty would be incurred only during the de-
velopment phase, and the instrumentation introduced by
Jalangi would not become a part of the actual applications
deployed to users.

5.4 Performance of concolic testing
We ran concolic testing on several programs ported from

a concolic testing engine for Java. Even though concolic
testing is not the focus of this paper, we report the results
of running concolic testing on a small program (shown in
Table 2), which has complex string operations involving in-
tegers, string length, regular expression matching, and con-
catenation. This program is a slight variant of the program
used as a case study in [5]. In concolic testing, we only use
the theory of linear integers of CVC3 [4] and model string
operations using this theory. We noticed an average slow-
down of 145X during concolic execution with a maximum
slowdown of 613X and a minimum slowdown of 1.4X. The
recording phases showed a slowdown of 1.2X. The slowdown
in the concolic execution phase is mostly due to the calls to
the SMT solver.

5.5 Issues Detected by Dynamic Analyses
The likely type inconsistency checker noticed that the

function safe_add(x, y) (shown below) in crypto-sha1.js

of the SunSpider benchmark suite is mostly called with both
of its arguments set to number, but at one location it was
invoked with the second argument set to undefined. We
believe that this could be an unintended behavior.

function sa f e add (x , y)
{

var lsw = (x & 0xFFFF) + (y & 0xFFFF) ;
var msw = (x >> 16) + (y >> 16) + (lsw >> 1 6) ;
return (msw << 16) | (lsw & 0xFFFF) ;

}

The likely type inconsistency checker reported that the
function CreateP (shown below) in 3d-cube.js of the Sun-
Spider benchmark suite is mostly called as a constructor,
but at one location it was invoked as a function. As result
of the function call, the program creates an unnecessary V

field in the global object. We believe that this call is a pos-
sible programming error.

function CreateP (X,Y, Z) {
t h i s .V = [X,Y, Z , 1] ;

}

The object allocation profiler noticed that the method
getValue(place, _board) in the Annex game webapp cre-
ates a constant object containing at least 64 numbers thou-
sands of times. We believe that such unnecessary creation
of the constant object can be avoided by hoisting the object
creation outside the method.

6. RELATED WORK
There is a large body of work on record-replay systems

(see [10, 11] for survey of this area). In this section, we
discuss the papers that are closely related to Jalangi.

JSBench [26] is a technique for creating JavaScript bench-
marks using record-replay mechanisms. JSBench captures

Benchmark LOC
Records fLoads SlowR Slowdown in Replay

empty taint track
3d-cube 339 3670 0.09 18.33 25.16 28.67 26
3d-morph 56 6 < 0.01 18.2 33.2 35.83 33.6
3d-raytrace 443 79791 2.68 38.17 29.05 30.5 35
b-trees 52 146048 18.26 57.8 40 42.4 42.8
fannkuch 68 246 < 0.01 40.6 76.4 73 80.4
nbody 170 78 < 0.01 19 25.8 25.67 24.16
nsieve 39 5 < 0.01 16.4 23.6 30 24.2
3bit-in-byte 38 1 < 0.01 16.6 29 31 30.2
bits-in-byte 26 1 < 0.01 25 25 51.4 47
bitwise-and 31 1 < 0.01 12.83 21.83 29.2 26.2
controlflow 25 1 < 0.01 20 33.2 34.6 28.33
crypto-md5 288 42 < 0.01 12 18 22.2 22
crypto-sha1 225 52 < 0.01 13.4 19.4 21 21.2
date-tofte 300 32018 1.59 92.16 92.67 92.83 95.5
date-xparb 418 95715 17.81 29.83 21 22.67 25.67
math-cordic 101 8 < 0.01 29.6 35.6 45.4 40.17
partial-sums 33 5 < 0.01 14.6 23.4 22.16 23.8
spectral-norm 51 15 < 0.01 19.8 25.2 29.2 29.4
regexp-dna 1714 42 21 2 4 3.17 3.8
string-fasta 90 56947 2.77 40.17 30.33 34.5 38.6
string-tagcloud 266 117577 16.23 51.42 50.86 44 42.8
string-unpack 67 193057 33.21 29.88 13.25 13.75 17
nsieve-bits 35 3 < 0.01 20 36.6 45.4 40
crypto-aes 425 23926 0.73 19 21 23.67 23
string-validate 90 60 13.27 1.5 1.5 1.4 1.5
string-base64 136 40965 3.38 25 27.2 29.6 29.2
annex 9663 87623 0.86 - - - -
calculator 787 1288 17.64 - - - -
go 10,039 114609 0.97 - - - -
tenframe 1491 4656 28.89 - - - -
shopping 5397 1144 22.79 - - - -

Table 1: Results: “Records” column reports number of recorded
values, “fLoads” reports % of loads that were recorded, “SlowR”
reports slowdown during recording compared to normal execu-
tion. time system command is used to measure runtime.

f u n c t i o n i sVal idQuery (s t r)
{
/ / (1) c h e c k t h a t s t r c o n t a i n s ”/ ” f o l l o w e d
/ / by n o ”/ ” a n d c o n t a i n i n g ”? q = . . . ”
v a r s l a sh = s t r . la s t IndexOf (’ / ’) ;
i f (s l a sh < 0){

r e t u r n f a l s e ;
}
v a r r e s t = s t r . subs t r ing (s l a sh + 1) ;
i f (! (RegExp(’ \ \ \ ? q = [a−zA−Z]+ ’)) . t e s t (r e s t)){

r e t u r n f a l s e ;
}

/ / (2) C h e c k t h a t s t r s t a r t s w i t h ” h t t p : / / ”
i f (s t r . indexOf (” h t t p : / / ”)!==0){

r e t u r n f a l s e ;
}

/ / (3) T a k e t h e s t r i n g a f t e r ” h t t p : / / ”
/ / s t r i p t h e ”www . ” o f f i f p r e s e n t
v a r t=s t r . subs t r ing (” h t t p : / / ” . length , s l a sh) ;
i f (t . indexOf (”www . ”)===0){

t = t . subs t r ing (”www . ” . l ength) ;
}

/ / (4) C h e c k t h a t t h e r e s t i s e i t h e r
/ / ” l i v e . com ” o r ” g o o g l e . com ”
i f (t !== ” g o o g l e . c om ” && t!== ” l i v e . c om ”){

r e t u r n f a l s e ;
}
/ / s t r s u r v i v e d a l l c h e c k s
r e t u r n t r u e ;
}

Table 2: Sample code for evaluating per-
formance of concolic testing

the interactions of a web application with its surrounding
execution environment. It then creates a replayable pack-
aged JavaScript benchmark which can execute in the ab-
sence of the surrounding environment. JSBench does not
capture all memory loads or memory loads that could poten-
tially be modified by eval or un-instrumented code. There-
fore, JSBench could function improperly in the presence
of un-instrumented code. Jalangi alleviates this problem
by maintaining shadow memory. Selective record-replay
techniques have been proposed for Java [15, 28]. Unlike
Jalangi, these techniques statically identify the program
locations where values need to be recorded.

PinPlay [22], built on top of dynamic instrumentation
framework PIN [16] for x86, uses ideas similar to shadow
memory [19] to reduce the number of memory logs. Pin-
Play keeps shadow memory, which they call UserMem, in
sync with the actual memory at the byte and word level. In
JavaScript it is not possible to keep track of memory at byte
and word level. Jalangi uses a novel technique based on
unique identifiers to record and sync objects and functions
and uses mock objects to mimic behaviors of objects created
outside instrumented code.

Mugshot [18] is another record-replay system for
JavaScript that captures all events in a JavaScript program
and allows developers to deterministically replay past exe-
cutions of web applications. Ripley [33] replicates execution
of a client-side JavaScript program on a server side replica
to automatically preserve the integrity of a distributed com-
putation. DoDOM [23] records user interaction sequences
with web applications repeatedly, executes the application

under the captured sequence of user actions and observes its
behavior. WaRR [2] records user interactions with a web ap-
plication and uses the recorded interaction trace to perform
high-fidelity replay of the web application. In contrast to
these techniques, Jalangi performs selective record-replay
instead of targeting full record-replay of a web application.

The idea of shadow values in the context of x86 binaries
has been previously proposed in [20, 36] and has been used
in several analysis tools [36, 21, 6, 8]. Instead of creating
a separate address space for shadow values, Jalangi wraps
each JavaScript value in an object of type AnnotatedValue.
This simple technique is possible due to the dynamic nature
of JavaScript.

In the recent years, several static [35, 14, 1, 12, 34, 32]
and dynamic analysis [24, 27, 3, 17] tools for JavaScript have
been proposed. Richards et al. [27] observed that dynamic
features are widely used in JavaScript programs. These dy-
namic features make static analysis of JavaScript applica-
tions hard and previous research efforts have either ignored
or made incorrect assumptions regarding these dynamic fea-
tures. Dynamic analysis tools developed for JavaScript
include tools for testing [3, 29], race detection [24], and
security analysis [33]. However, there exists no dynamic
analysis framework for JavaScript similar to valgrind [20],
PIN [16], or DynamoRIO [7] for x86. Jalangi tries to fill
this gap by providing a dynamic analysis framework in which
one could easily prototype and build sophisticated browser-
independent dynamic program analyses for JavaScript.

7. REFERENCES
[1] C. Anderson, P. Giannini, and S. Drossopoulou. Towards

type inference for javascript. In 19th European conference
on Object-Oriented Programming, ECOOP’05, pages
428–452, 2005.

[2] S. Andrica and G. Candea. Warr: A tool for high-fidelity
web application record and replay. In Dependable Systems
Networks (DSN), pages 403–410, 2011.

[3] S. Artzi, J. Dolby, S. H. Jensen, A. Møller, and F. Tip. A
framework for automated testing of javascript web
applications. In 33rd International Conference on Software
Engineering, ICSE’11, pages 571–580. ACM, 2011.

[4] C. Barrett and C. Tinelli. CVC3. In 19th International
Conference on Computer Aided Verification (CAV ’07),
volume 4590 of LNCS, pages 298–302, 2007.

[5] N. Bjørner, N. Tillmann, and A. Voronkov. Path feasibility
analysis for string-manipulating programs. In Tools and
Algorithms for the Construction and Analysis of Systems,
pages 307–321, 2009.

[6] M. D. Bond, N. Nethercote, S. W. Kent, S. Z. Guyer, and
K. S. McKinley. Tracking bad apples: reporting the origin
of null and undefined value errors. In ACM SIGPLAN
conference on Object-oriented programming systems and
applications, OOPSLA ’07, pages 405–422, 2007.

[7] D. Bruening, T. Garnett, and S. Amarasinghe. An
infrastructure for adaptive dynamic optimization. In Code
generation and optimization: feedback-directed and runtime
optimization, CGO ’03, pages 265–275, 2003.

[8] M. Burrows, S. Freund, and J. Wiener. Run-time type
checking for binary programs. In Compiler Construction,
volume 2622 of LNCS, pages 90–105. Springer, 2003.

[9] J. Clause, W. Li, and A. Orso. Dytan: a generic dynamic
taint analysis framework. In International symposium on
Software testing and analysis, pages 196–206. ACM, 2007.

[10] F. Cornelis, A. Georges, M. Christiaens, M. Ronsse,
T. Ghesquiere, and K. D. Bosschere. A taxonomy of
execution replay systems. In International Conference on
Advances in Infrastructure for Electronic Business,
Education, Science, Medicine, and Mobile Technologies on
the Internet, 2003.

[11] C. Dionne, M. Feeley, and J. Desbiens. A taxonomy of
distributed debuggers based on execution replay. In
International Conference on Parallel and Distributed
Processing Techniques and Applications, pages 203–214,
1996.

[12] A. Feldthaus, M. Schaefer, M. Sridharan, J. Dolby, and
F. Tip. Efficient construction of approximate call graphs for
javascript ide services. In International Conference on
Software Engineering, ICSE ’13, 2013.

[13] P. Godefroid, N. Klarlund, and K. Sen. DART: Directed
Automated Random Testing. In PLDI’05, June 2005.

[14] S. H. Jensen, A. Møller, and P. Thiemann. Interprocedural
analysis with lazy propagation. In 17th international
conference on Static analysis, SAS’10, pages 320–339, 2010.

[15] S. Joshi and A. Orso. Scarpe: A technique and tool for
selective capture and replay of program executions. In
Software Maintenance, 2007, pages 234–243, 2007.

[16] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser,
G. Lowney, S. Wallace, V. J. Reddi, and K. Hazelwood.
Pin: building customized program analysis tools with
dynamic instrumentation. In ACM SIGPLAN conference
on Programming language design and implementation,
PLDI ’05, pages 190–200. ACM, 2005.

[17] A. Mesbah and A. van Deursen. Invariant-based automatic
testing of ajax user interfaces. In 31st International
Conference on Software Engineering, ICSE ’09, pages
210–220. IEEE, 2009.

[18] J. Mickens, J. Elson, and J. Howell. Mugshot: deterministic
capture and replay for javascript applications. In 7th
USENIX conference on Networked systems design and
implementation, NSDI’10, pages 11–11, 2010.

[19] S. Narayanasamy, C. Pereira, H. Patil, R. Cohn, and

B. Calder. Automatic logging of operating system effects to
guide application-level architecture simulation. In
International conference on Measurement and modeling of
computer systems, SIGMETRICS ’06/Performance ’06,
pages 216–227. ACM, 2006.

[20] N. Nethercote and J. Seward. Valgrind: a framework for
heavyweight dynamic binary instrumentation. In ACM
SIGPLAN conference on Programming language design
and implementation, PLDI ’07, pages 89–100. ACM, 2007.

[21] J. Newsome and D. Song. Dynamic taint analysis for
automatic detection, analysis, and signature generation of
exploits on commodity software. In 12th Annual Network
and Distributed System Security Symposium, 2005.

[22] H. Patil, C. Pereira, M. Stallcup, G. Lueck, and J. Cownie.
Pinplay: a framework for deterministic replay and
reproducible analysis of parallel programs. In 8th annual
IEEE/ACM international symposium on Code generation
and optimization, CGO ’10, pages 2–11, 2010.

[23] K. Pattabiraman and B. Zorn. Dodom: Leveraging dom
invariants for web 2.0 application robustness testing. In
IEEE 21st International Symposium on Software
Reliability Engineering, ISSRE ’10, pages 191–200, 2010.

[24] B. Petrov, M. Vechev, M. Sridharan, and J. Dolby. Race
detection for web applications. In 33rd ACM SIGPLAN
conference on Programming Language Design and
Implementation, PLDI ’12, pages 251–262. ACM, 2012.

[25] P. Ratanaworabhan, B. Livshits, and B. G. Zorn. Jsmeter:
comparing the behavior of javascript benchmarks with real
web applications. In USENIX conference on Web
application development, WebApps’10, pages 3–3, 2010.

[26] G. Richards, A. Gal, B. Eich, and J. Vitek. Automated
construction of javascript benchmarks. In ACM
international conference on Object oriented programming
systems languages and applications, OOPSLA ’11, pages
677–694. ACM, 2011.

[27] G. Richards, S. Lebresne, B. Burg, and J. Vitek. An
analysis of the dynamic behavior of javascript programs. In
ACM SIGPLAN conference on Programming language
design and implementation, pages 1–12. ACM, 2010.

[28] D. Saff, S. Artzi, J. H. Perkins, and M. D. Ernst. Automatic
test factoring for java. In 20th IEEE/ACM international
Conference on Automated software engineering, ASE ’05,
pages 114–123, New York, NY, USA, 2005. ACM.

[29] P. Saxena, D. Akhawe, S. Hanna, F. Mao, S. McCamant,
and D. Song. A symbolic execution framework for
javascript. In IEEE Symposium on Security and Privacy,
SP ’10, pages 513–528. IEEE, 2010.

[30] K. Sen, D. Marinov, and G. Agha. CUTE: A concolic unit
testing engine for C. In ESEC/FSE’05, Sep 2005.

[31] J. Seward and N. Nethercote. Using valgrind to detect
undefined value errors with bit-precision. In Annual
conference on USENIX Annual Technical Conference,
ATEC ’05, pages 2–2, 2005.

[32] M. Sridharan, J. Dolby, S. Chandra, M. Schäfer, and
F. Tip. Correlation tracking for points-to analysis of
javascript. In 26th European conference on Object-Oriented
Programming, ECOOP’12, pages 435–458, 2012.

[33] K. Vikram, A. Prateek, and B. Livshits. Ripley:
automatically securing web 2.0 applications through
replicated execution. In 16th ACM conference on Computer
and communications security, pages 173–186. ACM, 2009.

[34] S. Wei and B. G. Ryder. A practical blended analysis for
dynamic features in javascript. Technical report,
Department of Computer Science, Virginia Tech., 2012.

[35] D. Yu, A. Chander, N. Islam, and I. Serikov. JavaScript
instrumentation for browser security. In ACM symposium
on Principles of programming languages, POPL ’07, pages
237–249, 2007.

[36] Q. Zhao, D. Bruening, and S. Amarasinghe. Umbra:
Efficient and scalable memory shadowing. 8th Annual
IEEE/ACM International Symposium on Code Generation
and Optimization, pages 22–31, 2010.

