Jalangi: A Tool Framework for Concolic Testing, Selective
Record-Replay, and Dynamic Analysis of JavaScript

Koushik Sen”
EECS Department
UC Berkeley, CA, USA.

ksen@cs.berkeley.edu

ABSTRACT

We describe a tool framework, called JALANGI, for dy-
namic analysis and concolic testing of JavaScript programs.
The framework is written in JavaScript and allows imple-
mentation of various heavy-weight dynamic analyses for
JavaScript. JALANGI incorporates two key techniques: 1)
selective record-replay, a technique which enables to record
and to faithfully replay a user-selected part of the pro-
gram, and 2) shadow values and shadow execution, which
enables easy implementation of heavy-weight dynamic anal-
yses such as concolic testing and taint tracking. JALANGI
works through source-code instrumentation which makes it
portable across platforms. JALANGI is available at https:
//github.com/SRA-SiliconValley/jalangi under Apache
2.0 license. Our evaluation of JALANGI on the SunSpider
benchmark suite and on five web applications shows that
JALANGI has an average slowdown of 26X during recording
and 30X slowdown during replay and analysis. The slow-
downs are comparable with slowdowns reported for similar
tools, such as PIN and Valgrind for x86 binaries.

Categories and Subject Descriptors

D.2.5 [Software Engineering]: Testing and Debugging—
symbolic execution, testing tools

General Terms
Verification
Keywords

JavaScript; Dynamic Analysis; Concolic Testing

1. INTRODUCTION

JavaScript is the language of choice for writing client-side
web applications and is getting increasingly popular for writ-
ing mobile applications (e.g. web apps for Tizen OS and

*The work of this author was supported in full by Samsung
Research America.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ESEC/FSE *13, August 18-26, 2013, Saint Petersburg, Russia

Copyright 2013 ACM 978-1-4503-2237-9/13/08 ...$15.00.

Swaroop Kalasapur, Tasneem Brutch,
and Simon Gibbs
Samsung Research America
75 West Plumeria Drive, San Jose, CA, USA

{s.kalasapur,t.brutch,s.gibbs}@sisa.samsung.com

i08S), desktop apps (e.g. apps for Windows 8 and Gnome
Desktop), and server-side applications (e.g. node.js). How-
ever, there are not that many tools available for analysis,
testing, and debugging of JavaScript applications. We have
developed a simple yet powerful framework, called JALANGI,
for writing heavy-weight dynamic analyses for JavaScript.
In this paper, we briefly describe the framework and its
usage scenarios. The framework provides a few useful ab-
stractions and an API that significantly simplifies imple-
mentation of dynamic analyses for JavaScript. A detailed
description of the techniques underlying JALANGI can be
found in [6].

JALANGI works on any browser or node.js. We achieve
browser independence through selective source instrumenta-
tion. JALANGI can operate even if certain source files are not
instrumented. An analysis in JALANGI works in two-phases.
In the first phase, an instrumented JavaScript application is
executed and recorded on a user selected platform (e.g. mo-
bile chrome running on Android). In the second phase, the
recorded data is utilized to perform a user specified dynamic
analysis in a desktop environment.

JALANGI allows easy implementation of a dynamic anal-
ysis through the support of shadow values and shadow ez-
ecution. Shadow values enable us to associate a shadow
value with any value used in the program. In JALANGI, we
have implemented several dynamic analyses using shadow
values and execution: 1) concolic testing, 2) pure symbolic
execution, 3) tracking origins of null and undefined [1],
4) detecting likely type inconsistencies, 5) a simple object
allocation profiler, and 6) a simple dynamic taint analysis.

2. TECHNICAL DETAILS

We provide a summary of the technical details of JALANGI.
For a more detailed technical discussion, please refer to [6].
The user identifies a subset of a web application, for record
and replay, which is instrumented by JALANGI. The result-
ing instrumented code is executed on a platform of user’s
choice, during the recording phase. Even though a subset of
user-code is instrumented, the entire application is executed
during the recording phase, inclusive of instrumented and
uninstrumented JavaScript code, and native code. How-
ever, only the instrumented code is replayed by JALANGI
during the replay phase. The ability of JALANGI to execute
the JavaScript application in its entirety on user’s platform,
enables the recorded execution to be replayed on a develop-
ment laptop/desktop JavaScript engine for debugging, inclu-
sive of mobile browser, and node.js based systems, or an in-

tegrated development system with an embedded JavaScript
engine. This approach also enables the implementation of
dynamic analyses with underlying shadow values, which sup-
port shadow executions.

Record and replay can be effectively provided, by record-
ing every value loaded from memory during execution, and
re-using them during the associated memory loads dur-
ing replay. This approach, though sound, is not with-
out its challenges, such as: (1) How to effectively record
functions and objects? (2) How to provide for replay,
when un-instrumented of native function(s) (for example,
the JavaScript event dispather) call instrumented functions?
The first issue is resolved by providing indirect recording,
where a unique numerical identifier is associated with every
object and function, and by recording the values of these
identifiers. The second issue is addressed by explicit record-
ing and calling of instrumented functions, which in turn are
called from un-instrumented code, or are executed as a result
of being dispatched by the event handler of JavaScript.

Furthermore, we observed that the value of a memory load
during replay can be computed through execution of the in-
strumented code, without the need to record the values of
all memory loads. This was used to improve the efficiency
of JALANGI, by recording only the necessary memory loads.
To identify if the value of a memory load must be recorded,
JALANGI keeps track of shadow memory during recording
phase, which is updated along side actual memory, as the
instrumented code is executed. No updates to shadow mem-
ory result from the execution of native and un-instrumented
code. To ensure availability of correct values during the re-
play phase, JALANGI stores the value of memory loads only
if a difference is found in the value stored in a memory loca-
tion during the recording phase (i.e. if a difference is found
between the values of the actual memory being loaded and
its associated value stored in the shadow memory).

In JALANGI, any value used in execution during the replay
phase may be replaced by an annotated value, which may
provide additional information for the actual value used. An
example would be extra taint information needed to support
taint analysis, or it may be information related to actual
values in symbolic execution, which may be provided in the
form of a symbolic expression. JALANGI uses objects of type
ConcolicValue, to denote annotated values.

3. DYNAMIC ANALYSES

In JALANGI, we have implemented the following dynamic
analyses:

e Concolic testing [2, 7]: Concolic testing performs
symbolic execution along a concrete execution path,
generates a logical formula denoting a constraint on
the input values, and solves a constraint to gener-
ate new test inputs that would execute the program
along previously unexplored paths. Concolic testing
in JALANGI supports constraints over integer, string,
and object types and nowvel type constraints. We intro-
duced type constraints to handle the dynamic nature
of JavaScript—the type of an input variable could be
different for different feasible execution paths of the
program.

e Pure symbolic execution: Pure symbolic execution ex-
ecutes the program symbolically and never restarts the

program for the purpose of backtracking. It check-
points the state before executing a branch statement,
executes one branch, and later backtracks with the
checkpointed state to explore the other branch. For
small programs, pure symbolic execution avoids time
wastage due to repeated restarts.

e Tracking origins of null and undefined [1]: This anal-
ysis records source code locations where null and un-
defined values originate and reports the location when
an error occurs dues a null or undefined. Whenever
there is an error due to such literals, such as accessing
the field of a null value, the shadow value of the literal
is reported to the user. Such a report helps the pro-
grammer to easily identify the origin of the null value.

Detecting Likely Type Inconsistencies: The dynamic
analysis checks if an object created at a given pro-
gram location can assume multiple inconsistent type.
It computes the types of object and function values cre-
ated at each definition site in the program. If an object
or a function value defined at a program location has
been observed to assume more than one type during
the execution, the analysis reports the program loca-
tion along with the observed types. Sometimes these
kind of type inconsistencies could point us to a poten-
tial bug in the program. We have noticed such issues
in two SunSpider benchmark programs.

Simple Object Allocation Profiler: This dynamic anal-
ysis records the number of objects created at a given
allocation site and how often the object has been ac-
cessed. It reports if the objects created at a given
allocation site are read-only or a constant. It also re-
ports the maximum and average difference between the
object creation time and the most recent access time
of the object . If an allocation site creates too many
constant objects, then it could lead to memory ineffi-
ciency. We have found such a problem in one of the
web applications in our benchmark suite.

e Dynamic taint analysis [4]: A dynamic taint analy-
sis is a form of information flow analysis which checks
if information can flow from a specific set of mem-
ory locations, called sources, to another set of memory
locations, called sinks. We have implemented a sim-
ple form of dynamic taint analysis in JALANGI. In the
analysis, we treat read of any field of any object, which
has not previously been written by the instrumented
source, as a source of taint. We treat any read of a
memory location that could change the control-flow of
the program as a sink. We attach taint information
with the shadow value of an actual value.

4. IMPLEMENTATION

JALANGI is available at https://github.com/
SRA-SiliconValley/jalangi. We have implemented
JALANGI in JavaScript.

JALANGI operates by instrumenting JavaScript code. Ta-
ble 3 shows code obtained after instrumentation of the code
in Table 1. During instrumentation, JALANGI inserts vari-
ous callback functions from the JALANGI library. The call-
back functions are listed in Table 2. These functions wrap

J$.U(iid , op, oprnd); // wrapper for unary operations
J$.B(iid , op, left, right); // wrapper for binary operations
J$.C(iid , cond); // wrapper for conditional branches
J$.C1(iid , key); // wrapper for the key of a switch statement
J$.C2(iid , case); // wrapper for a case label of a switch
J$._(); // returns last value passed to J$.C
J$.H(iid , val); // wrapper for hash used in for—in
J$.I(val); // ignore argument
var a = {x:1, y:2}; J$.G(iid , base, offset); // wrapper for getField
J$.P(iid , base, offset , val); // wrapper for putField
function f2 (c) { J$.R(iid , name, val); // wrapper for local variable read
if (¢ >5) J$ W(iid , name, val, lhs); // wrapper for local variable write
a.y = a.x + c; J$.Niid, name, val, isArgument); // wrapper for initialization
return c; J$.T(iid , val, type); // wrapper for a object/function/regexp/array literal
} J$.F(iid, f, isConstructor); // wrapper for a function call
J$.M(iid , base, offset , isConstructor); // wrapper for a method call
1(12); J$.A(iid , base, offset, op); // wrapper for +=, —=,
J$.Fe(iid, val, dis); // callback at function entry
Table 1: Sample Code Be- J$.Fr(§§d); // callback at function.return
. J$.Se(iid, val); // callback at script entry
fore Instrumentation J$.Sr(iid); // callback at script exit
J$.Rt(iid, val); // wrapper for value being returned
J$.Ra(); // callback for grabbing return value
J$. makeSymbolic(symbol, val); // make a value symbolic
J$.addAxiom (formula, branch); // adds a constraint to the path constraint
J$.endExecution (); // callback at the end of an execution

Table 2: Callback Functions from Instrumented Code

if (typeof window == ’undefined ’) {
require (’/user/jalangi/src/js/analysis.js ’);
require (’/user/jalangi/src/js/InputManager.js ’);
require (’/user/jalangi/src/js/instrument/esnstrument.js ’);
require (process.cwd() + ’/inputs.js ’);
}
{
try {
J$.8e(73, ’tests/unit/instrument—small_jalangi_.js ’);
J$.N(77, ’a’, a, false);
J$.N(85, ’f2’, J$.T(81, f2, 12), false);
var a = J$.W(17, ’a’, J$.T(13, {
x: J$.T(5, 1, 22),
y: J$.T(9, 2, 22)
. 11), a);
function f2(c) {
jalangiLabelO:
while (true) {
try
J$.Fe(49, arguments.callee, this);
J$.N(53, ’arguments’, arguments, true);
J$.N(57, ’¢’, ¢, true);
if (J$.C(4, J$.B(6, '>’, J$ R(21, e, c), J$.T(25, 5, 22))))
J$.P(45,1$.R(29, a’ a) ,J$.B(10,°+°,J$.G(37,J8.R(33,a’,a),’x’),J$.R(41 c)));
return J$.Rt(97, J$. R(’c’, c));
} catch (J$e) {
throw J$e;
} finally
if (J$.Fr(93))
continue jalangiLabelO;
else
return J$.Ra();
}
) }
J$.F(69,J8.1(typeof fl==="undefined '?J$.R(61, fl’,undefined):J$.R(61, f1°,f1)), false)(J$.T(65,12,22))
} catch (J$e) {
throw J$e;
} finally {
J$.Sr(89);

, }
// JALANGI DO NOT INSTRUMENT

//@ sourceMappingURL=instrument—small_jalangi_.js.map

Table 3: After Instrumentation of Code in Table 1

Benchmark LOC Records | SlowR Slowdown ‘in Replay

empty taint | track
3d-cube 339 3670 18.33 25.16 | 28.67 26
3d-morph 56 6 18.2 33.2 | 35.83 33.6
3d-raytrace 443 79791 38.17 29.05 30.5 35
b-trees 52 146048 57.8 40 42.4 42.8
fannkuch 68 246 40.6 76.4 73 80.4
nbody 170 78 19 25.8 | 25.67 | 24.16
nsieve 39 5 16.4 23.6 30 24.2
3bit-in-byte 38 1 16.6 29 31 30.2
bits-in-byte 26 1 25 25 51.4 47
bitwise-and 31 1 12.83 21.83 29.2 26.2
controlflow 25 1 20 33.2 34.6 | 28.33
crypto-md5 288 42 12 18 22.2 22
crypto-shal 225 52 13.4 19.4 21 21.2
date-tofte 300 32018 92.16 92.67 | 92.83 95.5
date-xparb 418 95715 29.83 21 | 22.67 | 25.67
math-cordic 101 8 29.6 35.6 45.4 | 40.17
partial-sums 33 5 14.6 23.4 | 22.16 23.8
spectral-norm 51 15 19.8 25.2 29.2 29.4
regexp-dna 1714 42 2 4 3.17 3.8
string-fasta 90 56947 40.17 30.33 34.5 38.6
string-tagcloud 266 117577 51.42 50.86 44 42.8
string-unpack 67 193057 29.88 13.25 | 13.75 17
nsieve-bits 35 3 20 36.6 45.4 40
crypto-aes 425 23926 19 21 | 23.67 23
string-validate 90 60 1.5 1.5 1.4 1.5
string-base64 136 40965 25 27.2 29.6 29.2
annex 9663 87623 - - - -
calculator 787 1288 - - - -
go 10,039 114609 - - - -
tenframe 1491 4656 - - - -
shopping 5397 1144 - - - -

Table 4: Results: “Records” column reports num-
ber of values recorded, “SlowR” reports slowdown
during recording compared to normal execution.

the various operations in JavsScript. The selective record-
replay engine of JALANGI is implemented by defining these
callback functions.

JALANGI exposes the instrumentation library as a func-
tion instrumentCode. This enables us also to dynami-
cally instrument any code that is created and evaluated at
runtime. For example, we modify any call to eval(s) to
eval (instrumentCode(s)).

5. PERFORMANCE OF JALANGI

We ran JALANGI’s record-replay on 26 programs
in the JavaScript SunSpider (http://www.webkit.org/
perf/sunspider/sunspider.html) benchmark suite and
on five web apps written for the Tizen OS us-
ing HTML5/JavaScript. (https://developer.tizen.org/
downloads/sample-web-applications). Table 4 shows the
overhead associated with the record phase and with the three
dynamic analyses: no analysis (denoted by empty), tracking
origins of null and undefined (denoted by track), and a taint
analysis (denoted by taint). We also report the number of
values we recorded for each benchmark program. The ex-
periments were performed on a laptop with 2.3 GHz Intel
Core i7 and 8 GB RAM, running the web apps on Chrome
25 and performed the replay executions on node.js 0.8.14.

We did not measure the slowdown of the web apps because
these are mostly interactive applications. For the SunSpi-
der benchmark suite, we observed an average slowdown of
26X during the recording phase with a minimum of 1.5X
and a maximum of 93X. On the empty analysis during the
replay phase, we observed an average slowdown of 30X with
a minimum of 1.5X and a maximum of 93X. Track analysis

showed an average slowdown of 32.75X with a minimum of
1.5X and a maximum of 96X.

5.1 Issues Detected by JALANGI Dynamic
Analyses

JALANGT’s likely type inconsistency checker found that the
function CreateP in 3d-cube.js of the SunSpider bench-
mark suite is mostly used as a constructor, but at one lo-
cation it was called as a function. As result of the function
invocation, the program creates an unnecessary V field in
the global object. We believe that this call is a possible
programming error.

JALANGI’s object allocation profiler noticed that the
method getValue(place, _board) in the Annex game we-
bapp creates a constant object thousands of times. We be-
lieve that such unnecessary creation of the constant object
can be avoided by hoisting the constant object outside the
method.

6. RELATED WORK

To our best knowledge JALANGI is the first dynamic analy-
sis framework for JavaScript. There are few tools that could
perform record-replay of JavaScript programs. JSBench [5]
uses record-replay mechanisms to create JavaScript bench-
marks. Mugshot [3] is captures all events to determinis-
tically replay executions of web applications. Ripley [§]
replicates execution of a client-side JavaScript program on
a server side replica.

7. CONCLUSION

JALANGI has taken care of various challenging details of
JavaScript. One can easily implement a dynamic analysis
in the JALANGI framework since all the worrisome corners
of JavaScript are handled. We expect that JALANGI will
facilitate future research on dynamic analysis of JavaScript.

8. REFERENCES

[1] M. D. Bond, N. Nethercote, S. W. Kent, S. Z. Guyer, and
K. S. McKinley. Tracking bad apples: reporting the origin of
null and undefined value errors. In ACM SIGPLAN
conference on Object-oriented programming systems and
applications, OOPSLA ’07, pages 405-422, 2007.

[2] P. Godefroid, N. Klarlund, and K. Sen. DART: Directed
Automated Random Testing. In PLDI’05, June 2005.

[3] J. Mickens, J. Elson, and J. Howell. Mugshot: deterministic
capture and replay for JavaScript applications. In 7th
USENIX conference on Networked systems design and
implementation, NSDI'10, pages 11-11, 2010.

[4] J. Newsome and D. Song. Dynamic taint analysis for
automatic detection, analysis, and signature generation of
exploits on commodity software. In 12th Annual Network
and Distributed System Security Symposium, 2005.

[5] G. Richards, A. Gal, B. Eich, and J. Vitek. Automated
construction of JavaScript benchmarks. In ACM
international conference on Object oriented programming
systems languages and applications, OOPSLA ’11, pages
677-694. ACM, 2011.

[6] K. Sen, S. Kalasapur, T. Brutch, and S. Gibbs. Jalangi: A
selective record-replay and dynamic analysis framework for
JavaScript. In ESEC/FSE’13, August 2013. To appear.

[7] K. Sen, D. Marinov, and G. Agha. CUTE: A concolic unit
testing engine for C. In ESEC/FSE’05, Sep 2005.

[8] K. Vikram, A. Prateek, and B. Livshits. Ripley:
automatically securing web 2.0 applications through
replicated execution. In 16th ACM conference on Computer
and communications security, pages 173-186. ACM, 2009.

