
13
Thin Middleware for

Ubiquitous Computing

Koushik Sen
Gul Agha

13.1 INTRODUCTION

As Donald Norman put it in his popular book Invisible Computers [12], “a good
technology is a disappearing technology.” A good technology seamlessly permeates
into our lives in such a way that we use it without noticing its presence. It is invisible
until it is not available. Ever since the invention of microprocessors, many computer
researchers have strived to make computer technology a “good” technology.

Advances in chip fabrication technology have reached a point where we can physi-
cally make computing devices disappear. Bulkier machines have given way to smaller
yet more powerful personal computers. It has become possible to implant a complete
package of a microprocessor with wireless communication, storage, and a sensor on
a cubic millimeter silicon die [8]. Specialized printers print out computer chips on
a piece of plastic paper [6]. Computer chips are woven into on a piece of fabric [9].
“Smart labels” (a.k.a passive RFID tags) [7] will soon be attached to every product
in the market.

The growth of devices with embedded computers will provide task-oriented, simple
services which are highly optimized for their operating environment. More user
oriented, human friendly services may be created by networking the embedded nodes,
and coordinating their software services.

Composing existing component services to create higher-level services has been
promoted by CORBA, DCOM, Jini, and similar middleware platforms. However,
these middleware services were designed without paying much attention to resource
management issues pertinent to embedded nodes: the middlewares tend to have large

201

footprints that do not fit into the typically small memories of tiny embedded com-
puters. Thus there is a need for a middleware which allows components to be glued
together without a large overhead.

Embedded nodes are autonomous and self contained. They have their own state
and a single thread of control, and a well defined interface for interaction. Interaction
between nodes is asynchronous in nature. The operating environment for these de-
vices may be unreliable. For these reasons, the interaction between different devices
must be arms-length – the failure of one device should not affect another. For exam-
ple, consider an intelligent home where the clock is networked to the coffee maker
and an alarm also triggers the coffee maker. An incorrectly operating coffee maker
should not cause the alarm clock to fail to operate. The autonomy and asynchrony in
the model we describe helps ensure such fault containment.

Embedded nodes are typically resource constrained – they have small communi-
cation range, far less storage, limited power supply, etc. These resource limitations
have a number of consequences. Small memory means that not every piece of code
that may be required over the lifetime of a node can be pre-loaded onto the node.
Limited power supply means that certain abstractions, such as those requiring busy
waiting to implement, may be too expensive to be practical.

We propose thin middleware as a model for network-centric, resource-constrained
embedded systems. There are two aspects to the thin middleware model. First, we
represent component services as Actors [1, 3]. The need for autonomy and asynchrony
in resource-constrained networks of embedded nodes makes Actors an appropriate
model to abstractly represent services provided by such systems. Service interac-
tions in the thin middleware are modeled as asynchronous communications between
actors. Second, we introduce the notion of meta-actors for service composition and
customization. Meta-actors represent system level behavior and interact with actors
using an event-based signal/notify model.

13.2 ACTORS

Actors [1, 3] were developed as a basis for modeling distributed systems. An actor
encapsulates a state, a set of procedures which manipulate the state, and a thread of
control. Each actor has a unique mail address and a mail buffer to receive messages.
Actors compute by serially processing messages queued in their mail buffers. An
actor waits if its mail buffer is empty. Actors interact by sending messages to each
other.

In response to a message, an actor carries out a local computation (which may
be represented by any computer program) and three basic kinds of actions (see Fig-
ure 13.1):

Send messages: an actor may send messages to other actors. Communication is
point-to-point and is assumed to be weakly fair: executing a send eventually
causes the message to be buffered in the mail queue of the recipient. Moreover,
messages are by default asynchronous and may arrive in an order different from
the one in which they were sent.

Create actors: An actor may create new actors with specified behaviors. Initially,
only the creating actor knows the name of the new actor. However, actor names
are first class entities which may be communicated in messages; this means

202

Communication

Behaviour

Mail Queue Transmitter

Methods

State

Actor

. . .

Fig. 13.1 Actor Model: Actors are concurrent objects that interact via asynchronous mes-
sages.

that coordination patterns between actors may be dynamic and the system is
extensible.

Become ready to accept a message: The actor becomes ready to process the next
message in its mail queue. If there is no message in its mail queue, the actor
waits until a new message arrives and processes it.

Asynchronous message passing is the distributed analog of method invocation in
sequential object-oriented languages. The send and create operations can be thought
of as explicit requests, while the ready operation is implicit at the end of a method.
That is, actors do not explicitly indicate that they are ready to receive the next message.
Rather, the system automatically invokes ready when an actor method completes.

Actor computations are abstractly represented using actor event diagrams as illus-
trated in Figure 13.2. Two kinds of objects are represented in such diagrams: actors
and messages. An actor is identified with a vertical line which represents the life-line
of the actor. The darker parts on the line represent the processing of a message by the
actor. The actor may create new actors (dotted lines) and may send messages (solid
lines) to other actors. The messages arrive at their target actors after arbitrary but
finite delay and get enqueued at the target actor’s mail queue.

Note that the nondeterminism in actor systems results from possible shuffles of the
order in which messages are processed. There are two causes of this nondeterminism.
First, the time taken by a message to reach the target actor depends on factors such as
the route taken by the message, network traffic load, and the fault-tolerance protocols
used. Second, the order in which messages are sent may itself be affected by the
processing speed at a node and the scheduling of actors on a given node. Nondeter-
minism in the order of processing messages abstracts over possible communication
and scheduling delays.

203

Create Actor

Computation

Messages

Fig. 13.2 Actor event diagram

The nondeterministic model of concurrency provides a loose specification. Prop-
erties expressed in this model state what may, or what must, eventually happen. In
reality, the probability that, for example, a message sent at a given time will be re-
ceived after a million years is practically infinitesimal. One way to express constraints
on the arbitrary interleavings resulting from a purely nondeterministic model is by
using a probabilistic model. In such a model, we associate a probability with each
transition which may depend on the current state of the system. Our specifications
then say something about when something may happen with a given probability. We
discuss a probabilistic model in some more detail below.

13.2.1 Probabilistic Discrete Real-time Model

Traditional models of concurrent computation do not assume a unique global clock
– rather each actor is asynchronous (for example, see [3, 2]). However, when mod-
eling interaction of the physical world with distributed computation, it is essential to
consider guarantees in real-time. Such guarantees are expressed in terms of a unique
global time or wall clock and the behavior of all devices and nodes is modeled in
terms of this reference time (for example, see [11, 14, 13, 10]). This amounts to a
synchronous model of actors and it implies a ’tight coupling’ in the implementation
of actors; network and scheduling delays, as well as clock drift on the nodes, must be
severely restricted.

In network embedded systems, a number of factors make a tight coupling in the
implementation of actors infeasible. For example, the operation of some embedded
devices may be unreliable, and message delivery may have nondeterministic delays
due to transmission failures, collisions, and message loss. So in large network embed-

204

1ms

0 ms

2 ms

Actor 1 Actor 2 Actor 3

Computations

p=0.3

p=0.1

p=0.2

p=07

p=0.8

p=0.5

p=0.9

Create Actor

Messages

Fig. 13.3 Probabilities to capture nondeterminism in computation and communication

ded systems, it is not feasible to maintain a unique reference clock. The introduction
of probability in the operations can be thought of as an intermediate synchronization
model. In a probabilistic model, we assume that the embedded nodes agree on a global
clock, but their drift from the clock is only probabilistically bound. Such probabilities
replace the qualitative nondeterminism in computation and communication.

We assume the actors and the messages in transit form a soup. The components
of the system follow a reference clock with some probability. The global time of
the whole system (soup) advances in discrete time steps. The time steps can be
compressed and stretched, depending on the kind of property we want to express. For
example, the time step can be set to one second or it may be set to one millisecond. The
global time of the system advances by one step when all the actions (computation
and communication) that are possible in that time step have happened (see Figure
13.3). We associate a local clock with each actor and it advances with every global
time step. However, it is reset to zero when the actor consumes a message. The clock
remains zero when the actor is idle.

At a given time step an actor may be in one of three states:
� ready to process a message from its mail queue,
� busy computing, or
� waiting, because there is no message in mail queue.

If the actor is in either of the first two states, it can take the following actions:
� complete the computation in its current time step; or,
� delay its computation by one time step.

205

In the first case, the local clock of the actor remains same and so it is open to other
actions in that time step. However, for the second action the local clock of the actor
advances by one time step and hence, all possible actions of that actor get disabled for
that time step. The two actions get enabled once the global time advances to the next
time step. As a function of the state of the system, we associate different probabilities
with each of the two actions.

Similarly, at a given time step a message can take three actions:

� it can get enqueued at the target actor,
� it can get lost and thus removed from the soup, or
� it can get delayed, in transit, by one time step.

If a message is delayed in transit, the local time of the message advances by one
time step and so the message cannot take any more actions in that global time step.
However, all the three actions will get enabled once the global time advances to the
next step. Probabilities are associated with each action. The probabilities depend on
factors such as the message density in the route taken by the message, the time for
which it has been delayed (value of local clock of the message), and the number of
messages sharing the same communication channel.

A computation path is defined as a sequence of states that the system has seen in the
course of its computation. Note that the system retains the same computation paths
as it would have in a nondeterministic model of concurrency. The probability that a
particular finite sequence of states in a path will occur is obtained by multiplying the
probabilities of all the actions in that sequence of states. Some of these probabilities
will grow sufficiently small that they will no longer be relevant to the proof of some
properties of our interest.

Using the above model, we can express properties of the form: “Within time
�
,

the system will reach a state which satisfies a property � with probability � .” For
example:

� the alarm clock will ring at 7:00 a.m. with probability 0.99.
� the microwave will complete popping 95% of the popcorn by 10 a.m. with

probability 0.98.

In implementing probabilistic timing specifications, one constrains the system level
behavior which involves networks of heterogeneous nodes. A middleware provides
a uniform interface to access such nodes. We represent the middleware itself as a
collection of actors. The model we describe enables dynamic customizability of the
execution environment of an actor in order to satisfy properties such as timing and
security.

13.3 REFLECTIVE MIDDLEWARE

A key requirement for middleware is that it must enable dynamic customization – so
that services can be pushed in and pulled out at runtime. This scheme of pushing-
in and pulling-out of services allows the middleware to keep on a node only those
services that are required by an application. The result is a light weight middleware.

206

Application

Image of application

Middleware

Image of middleware components

Reify
(inspect
middleware)

(modify
Reflect

components)
middleware

Fig. 13.4 Reflection: Application can inspect and modify middleware components.

Because an application may be aware of system level requirements for timing,
security, or messaging protocols, it needs to have access to the underlying system.
We support the ability of an application to modify its system level requirements by
dynamically changing the middleware through the use of computational reflection.

A reflective middleware provides a representation of its different components to
the applications running on top of it. The applications can inspect this representation
and modify it. The modifications made to the components are immediately mirrored
to the application. In this way, applications can dynamically customize the different
components of the middleware through reflection (see Figure 13.4).

We use the meta-actor extension of actors to provide a mechanism of architectural
customization [5]. A system is composed of two kinds of actors: base actors and
meta-actors. Base actors carry out application-level computation, while meta-level
actors are part of the runtime system (middleware) that manages system resources
and controls the base-actor’s runtime semantics.

13.3.1 Meta-architecture

From a systems point of view, actors do not directly interact with each other: instead,
actors make system method calls which request the middleware to perform a particular
action. A system method call which implements an actor operation is always ’block-
ing’: the actor waits till the system signals that the operation is complete. Middleware
components which handle system method calls are called meta-actors. A meta-actor
executes a method invoked by another actor and returns on the completion of the
execution. The requisite synchronization between an actor and its meta-actor is fa-
cilitated by treating the meta-actor as a passive object: it does not have its own thread
of control. Instead, the calling object is suspended. In other words, an actor and its

207

Actor

Meta
Actor

Meta
Actor

System Method
Invocation Path

Single Thread

Actor

Meta
Actor

Meta
Actor

System Method
Invocation Path

Single Thread

System

 Node

Meta−level stacks

Message queue
Message queue

Fig. 13.5 Stacks of meta-level actors in an embedded node.

meta-actor are not concurrent – the latter represents the system level interpretation of
the behavior of the former.

A meta-actor is capable of customizing the behavior of another actor by executing
the method invoked by it. An actor customized in this fashion is referred to as the base
actor relative to its meta-actor. To provide the most primitive model of customization
a meta-actor can customize a single base-actor. However, multiple customizations
may be applied to a single actor by building a meta-level stack, where a meta-level
stack consists of a single actor and a stack of meta-actors (see Figure 13.5). Each
meta-actor customizes the actor which is just below it in the stack. Messages received
by an actor in a meta-level stack are always delegated to the top of the stack so that
the meta-actor always controls the delivery of messages to its base-actor. Similarly
messages sent by an actor pass through all the meta-actors in the stack.

We identify each operation of a base-actor as a system method call as follows.

� send(msg): This operation invokes the system method transmit with msg
(msg is the message sent by the actor) as argument. If the actor has a meta-
actor on its top it calls the transmit method of the meta-actor and wait for its

208

transmit(msg) create(beh) ready()

Meta−actor

ready()create(beh)send(msg)

msg
beh

()

Base Actor

 () a

msg

Fig. 13.6 Interaction between meta-actor and base actor

return. The method returns without any value. Otherwise, if the actor is not
customized by a meta-actor, it passes the message to the system for sending.

� create(beh): This operation invokes the system method create with the
given beh (beh is the behavior with which the newly created actor will be
instantiated) as argument. If there is a meta-actor on top of the actor, it calls the
create method of the meta-actor and waits for its return. The method returns
the address a of the new actor. Otherwise, the actor passes the create request
to the system.

� ready(): The system method ready is invoked when an actor has completed
processing the current message and is waiting for another message. If the actor
has a meta-actor on top it calls the ready method of the meta-actor and waits
for its return. The method returns a message to the base-actor. Otherwise, the
actor picks up a message from its mail queue and processes it. Notice, there is
a single mail-queue for a given meta-level stack.

The method call-return mechanism for different actor operations and the availabil-
ity of a single queue for a meta-level stack makes the execution of a meta-level stack
single threaded. So explicit scheduling of each actor in the stack is not required. The
meta-actors behave as reactive passive objects which respond only when a system
method is invoked by its base actor. The single thread implementation of a meta-level
stack is important, as most of the embedded devices can have a single thread only.
An example of such a embedded OS is TinyOS which runs on motes.

Every meta-actor has a default implementation of the three system methods. These
implementations may be described as follows:

209

� transmit(msg): If there is a meta-actor on its top, it calls transmit(msg)
method of that meta-actor and waits for it to return. Otherwise, it asks the
system to send the message to the target and returns.

� create(beh): If the actor has a meta-actor at its top, it calls create(beh)
method of that meta-actor and waits for the actor to return with an actor address.
Otherwise, the actor passes the create request to the system and waits till it gets
an actor address from the system. After receiving new actor address, the actor
returns it to the base actor.

� ready(): If there is a meta-actor on top of it, it calls ready() method of
that meta-actor and waits for it to return a message. Otherwise, the actor, by
definition located at the top of the meta-level stack, dequeues a message from
the mail queue. After getting the message, the actor returns the message to the
base actor.

actor Encrypt(actor receiver)
�

// Encrypt outgoing
// messages if they
// are targeted to
// the receiver
method transmit(Msg msg)

�

actor target = msg.dest;
if (target == receiver)

target � encrypt(msg);
else

target � msg;
return;�

�

actor Decrypt()
�

// Decrypt incoming messages
// targeted for
// base actor (if necessary)
method ready()

�

Msg msg = ready();
if (encrypted(msg))

return(decrypt(msg));
else

return(msg);�
�

Fig. 13.7 Meta-Level Implementation of Encryption: The Encrypt meta-actor inter-
cepts transmit signals and encrypts outgoing messages. The Decrypt policy actor inter-
cepts messages targeted for the receiver (via the rcv method) and, if necessary, decrypts an
incoming message before delivering it.

As an example of how we may customize actors under this model, consider the
encryption of messages between a pair of actors. Figure 13.7 gives pseudo-code for
a pair of meta-actors which may be installed at each endpoint. The Encrypt meta-
actor implements the transmit method which is called by the base-actor while
sending a message. Within transmit, a message is encrypted before it is sent to
its target. The Decrypt meta-actor implements the ready method which is called
when the base actor is ready to process a message. Method ready decrypts the
message before returning the message to the base-actor.

The abstraction of the middleware in terms of meta-actors gives the power of
dynamic customization. Meta-actors can be installed or pulled out dynamically. This
pushing in and pulling out of meta-actors by the application itself makes it capable of
customizing the middleware. It also makes it possible to have only those middleware
components which are required by services of the current application – facilitating
our goal of thin middleware.

210

Encrypt1
Meta
Actor

Encrypt1
Meta
Actor

Encrypt1
Pulling out Pushing in

Encrypt2

Before
After

Encrypt2
Meta
Actor

Encrypt2
Meta
Actor

Actor Actor

SystemSystem

Fig. 13.8 Dynamic Customization: Pulling out and pushing in a new meta-actor for the
implementation of encryption algorithm

13.4 DISCUSSION

We have described some preliminary work on a model of reflective middleware. We
believe that further development of thin middleware will be central to the future
integration of computing and the physical world [4]. However, many important
problems have to be addressed before such an integration can be realized. We describe
two areas to illustrate the problems. These areas relate, respectively, to the model and
implementation of middleware.

A formal model of the interaction of the properties of actors and meta-actors
has been developed in terms of a two-level semantics [15]. This model needs to
be extended to its probabilistic real-time counterpart. For example, methods for
composition of transition probabilities for actors and their meta-actors have not been
developed.

More research is required in the implementation of thin middleware. Current
implementation of reflective actor middleware has been based on high-level languages
– which necessarily assume a large infrastructure. An alternate implementation would
be in terms of a very efficient and small virtual machine which allows enforcement of
timing properties. Related problems are incrementally compiling high-level code to
such a virtual machine and supporting the mobility of actors executing on the virtual
machine.

In our view, the solution to these and related problems define an ambitious research
agenda for the coming decade.

211

13.5 ACKNOWLEDGMENTS

The research described here has been supported in part by the Defense Advanced
Research Projects Agency (Contract numbers: F30602-00-2-0586 and F33615-01-
C-1907). We would like to thank Nadeem Jamali and Nirman Kumar for reviewing
previous versions of this paper and giving feedback.

REFERENCES

1. G. Agha. Actors: A Model of Concurrent Computation. MIT Press, 1986.

2. G. Agha. Modeling Concurrent Systems: Actors, Nets, and the Problem of
Abstraction and Composition. In 17th International Conference on Application
and Theory of Petri Nets, Osaka, Japan, June 1996.

3. G. Agha, I. A. Mason., S. F. Smith, and C. L. Talcott. A foundation for actor
computation. Journal of Functional Programming, 7:1–72, 1997.

4. Gul A. Agha. Adaptive middleware. Communications of the ACM, 45(6):30–32,
June 2002.

5. M. Astley and G. Agha. Customization and composition of distributed objects:
Middleware abstractions for policy management. In Proceedings of the Sixth
International Symposium of Foundations of Software Engineering, pages 1–9,
1998.

6. S. B. Fuller, E. J. Wilhelm, and J. M. Jacobson. Ink-jet printed nanoparticle
microelectromechanical systems. Journal of Microelectromechanical Systems,
11(1):54–60, 2002. http://www.media.mit.edu/molecular/projects.html.

7. AIM. Inc. http://www.aimglobal.org/technologies/rfid/.

8. J. M. Kahn, R. H. Katz, and K. S. J. Pister. Mobile Networking for Smart Dust.
In ACM/IEEE Intl. Conf. on Mobile Computing and Networking (MobiCom 99),
Seattle, WA, August 1999. http://robotics.eecs.berkeley.edu/ pister/SmartDust/.

9. MIT Media Lab. http://lcs.www.media.mit.edu/projects/wearables/.

10. B. Nielsen and G. Agha. Semantics for an Actor-Based Real-Time Language.
In 4th International Workshop on Parallel and Distributed Real-Time Systems
(WPDRTS). Submitted. Naval Surface Warfare Center Dahlgren Division/IEEE,
April 1995. In conjunction with 10th IEEE Int. Parallel Processing Symposium
(IPPS), Honolulu, Hawaii, USA.

11. B. Nielsen and G. Agha. Towards reusable real-time objects. Annals of Software
Engineering: Special Volume on Real-Time Software Engineering, 7:257–282,
1999.

12. D. Norman. The Invisible Computer. The MIT Press, Cambridge, MA, USA,
1998.

212

13. S. Ren. An Actor-Based Framework for Real-Time Coordination. PhD thesis,
Department Computer Science. University of Illinois at Urbana-Champaign,
1997. PhD. Thesis.

14. S. Ren, G. Agha, and M. Saito. A modular approach for programming distributed
real-time systems. Journal of Parallel and Distributed Computing, 36(1):4–12,
1996. Also published in School on Embedded Systems, European Educational
Forum 1996, pp 52–72.

15. Nalini Venkatasubramanian and Carolyn L. Talcott. Reasoning about meta level
activities in open distributed systems. In Symposium on Principles of Distributed
Computing, pages 144–152, 1995.

Author(s) affiliation:
� Koushik Sen, and Gul Agha

Department of Computer Science
University of Illinois at Urbana-Champaign
Email: [ksen,agha]@uiuc.edu

213

