
A Temporal Logic Based Framework for Intrusion
Detection

Prasad Naldurg, Koushik Sen, and Prasanna Thati

Department of Computer Science,
University of Illinois at Urbana-Champaign

Urbana, IL 61801, USA
{naldurg,ksen,thati }@cs.uiuc.edu

Abstract. We propose a framework forintrusion detectionthat is based on run-
time monitoring of temporal logic specifications. We specify intrusion patterns as
formulas in an expressively rich and efficiently monitorable logic calledEAGLE.
EAGLE supports data-values and parameterized recursive equations, and allows
us to succinctly express security attacks with complex temporal event patterns,
as well as attacks whose signatures are inherently statistical in nature. We use an
online monitoring algorithm that matches specifications of the absence of an at-
tack, with system execution traces, and raises an alarm whenever the specification
is violated. We present our implementation of this approach in a prototype tool,
calledMONID and report our results obtained by applying it to detect a variety of
security attacks in log-files provided by DARPA.

Key Words: Intrusion detection, security, temporal logic, runtime monitoring.

1 Introduction

Despite great progress in research on computer security, fully secure computer systems
are still a distant dream. Today any large and complex computer system has many secu-
rity flaws. Intrusion detectioninvolves monitoring the system under concern to identify
the misuse of these flaws as early as possible in order to take corrective measures.

There are two main approaches to intrusion detection:signature-based[10, 12] and
anomaly-based[1, 6, 14]. In the signature-based approach, system behavior is observed
for known patterns of attacks, while in the anomaly-based approach an alarm is raised
if an observed behavior deviates significantly from pre-learned normal behavior. Both
these approaches have relative advantages and disadvantages. The signature-based ap-
proach has a low false-alarm rate, but it requires us to know the patterns of security
attacks in advance and previously unknown attacks would go undetected. In contrast,
the anomaly-based approach can detect new attacks, but has a high false-alarm rate.

In this paper, we adopt atemporal logicapproach to signature-based intrusion detec-
tion. One can naturally specify the absence of a known attack pattern as asafetyformula
φ in a suitable temporal logic [5]. Such a temporal logic based approach was considered
in [16] using a variant of linear temporal logic (LTL) with first order variables. However
we consider a more expressive logic in which one can also express attack signatures in-
volving real-time constraints and statistical properties. We show how to automatically
monitor the specificationφ against the system execution and raise an intrusion alarm

whenever the specification is violated. We also show how this technique can be used
for simple types of anomaly-based intrusion detection. The idea is to specify the in-
tended behavior of security-critical programs as temporal formulas involvingstatistical
predicates, and monitor the system execution to check if it violates the formula. If the
observed execution violates the formula then an intrusion has occurred, and thus attacks
can be detected even if they are previously unknown.

Our approach to intrusion detection is motivated by the success of the relatively
new research area calledruntime verification[8, 18, 20], a major goal of which is to
use light-weight formal methods for system monitoring. We useEAGLE, introduced
in [4], for specification of attack-safe behavior of a system.EAGLE supports recur-
sively defined temporal formulas, parameterizable by both logical formulas and data-
expressions, over a set of three primitive modalities “next”, “previous”, and “concatena-
tion”. The logic enables us to express temporal patterns that involve reasoning about the
data-values observed in individual events, and thus allows us to specify attacks whose
signatures are inherently statistical in nature. Examples include password guessing at-
tacks or the ICMP-flood denial of service attack. For these attacks there is no clear
distinction between an intrusion and a normal behavior, and their detection involves
collecting temporal statistics at runtime and making a guess based on the collected
statistics.

We use an online algorithm [4] to monitorEAGLE formulas that processes each
event as soon as it occurs and modifies the monitored formula to store the relevant
summary. If, after any event the modified formula becomes false, an intrusion alarm is
raised. Thus the whole procedure works in real-time. We have implemented our pro-
posed approach in a prototype tool calledMONID which can detect intrusions either
online or offline. Figure 1 illustrates the framework. Information about system-level
events, obtained either from relevant log-files (offline) or generated by appropriately in-
strumented application code (online), are sent to a server. The server merges the events
from various sources by timestamp and preprocesses them into an abstract intermediate
form to generate a single event trace. Note that detecting certain attacks may require us
to observe events from various sources. Our monitor subsequently monitors this event
trace against a given specification, and raises an intrusion alarm if the specification is
violated.

We show the effectiveness of our approach by specifying several types of attacks
and by monitoring them usingMONID. Specifically, we perform offline monitoring us-
ing the large log-files made available by DARPA exclusively for the task of evaluating
intrusion detection systems [13]. We successfully detected the attacks specified with ac-
ceptable computational overheads for the monitoring procedure. The experiments sug-
gest that the proposed approach is a viable complement to existing intrusion detection
mechanisms.

Following is the layout of the rest of this paper: In Section 2 we discuss related
work in the area of intrusion detection and motivate our work. In Section 3, we briefly
describe the syntax, semantics, and monitoring algorithm forEAGLE followed by Sec-
tion 4 where we illustrate several common security-attack patterns specified inEAGLE.
In Section 5, we describe the implementation of our toolMONID followed by a sum-

2

� �� �

Log Record
Intrusion Alarm

α1.α2.α3.... |= φ ?

MONID

Event Record

Monitor
Merge by Time

Event Stream

& Pre−process

Network Log

File System Log

Webserver Log

α1α2α3
� �� �

φSpecification
Temporal Logic

Fig. 1. MONID: A framework for intrusion detection

mary of our experimental results on DARPA log-files. We conclude in Section 6 with a
brief discussion about future research directions.

2 Background and Motivation

The area of intrusion detection has seen synthesis of concepts and techniques from a
variety of disciplines, including expert systems [1, 17], artificial neural networks [6],
data mining [14], and static analysis [22]. A diverse collection of tools based on these
various approaches have been deployed and tested [2, 7]. In the following, we elaborate
on some of these approaches and clarify how our work fits in this context.

For signature-based approaches there are several languages with varying degrees
of expressivity for specifying attack patterns. Roger et al. in [16] used temporal logic
and model-checking based approach to detect intrusion. This work is closely related
to ours; however, unlike [16] we can express more sophisticated signatures involving
statistics and real-time by using powerful monitoring logicEAGLE. Ilgun et al [10]
propose the use of finite state transition diagrams to specify sequences of actions that
would lead the system from a secure initial state to a compromised final state. Koet
al [11] introduce a new class of grammars, called parallel environment grammars that
are specifically suitable for specifying behavior (traces) of concurrent processes. The
expected behavior of security critical programs is specified by a grammar, and an alarm
is raised if the observed execution trace is not in the language defined by the grammar.
Kumar et al [12] propose the use of Colored Petri nets for specifying attack patterns.
We note that in comparison to the other approaches, temporal logic specifications of
attack signatures tend to be much more compact and simpler to describe.

The state transition diagram and colored Petri net approaches can be seen as spe-
cial cases of rule-based expert systems [9]. In rule-based expert systems, in general,
knowledge about attacks is represented as a collection ofif-then rules which are fired
in response to the observed system execution. The main advantage of this approach is
the clear separation of knowledge base from the control mechanism that applies the
knowledge base for detecting intrusions.

3

In contrast to the signature-based approaches such as the above, the anomaly-based
approach to intrusion detection does not require a priori knowledge of the attacks. One
such approach is to collect statistical information [1, 15] about normal behavior into
a user, group or target machine profile, and raise an alarm if the observed behavior
deviates significantly from an estimated profile. One of the most rudimentary ones is
threshold detection, where the idea is to record the number of occurrences of specific
events and raise an alarm if the number is not within an expected range. As we will see
in Section 3, such threshold detection policies can be elegantly expressed as temporal
logic formulas.

Statistical profile-based anomaly detection can be seen as an instance of the gen-
eral class of intrusion detection systems thatlearn the normal system behavior by con-
structing some model for it, and use the model to predict the system behavior and de-
tect suspicious deviations. Other approaches in this category include that of time-based
inductive generalization [21], artificial neural networks [6], and data-mining[14]. In
time-based inductive generalization, the system behavior is modeled as a set of rules
that are dynamically modified during the learning phase depending on how the pre-
dictions of the rules match with the observed system behavior. In the artificial neural
networks approach, a neural net constitutes the model of system behavior and the net
is trained with representative normal scenarios. In the data-mining approach, large au-
dit trails are mined for patterns of normal or abusive behavior, which are then used for
signature-based or anomaly-based intrusion detection. Self-learning capabilities such
as the above are beyond the scope of our approach which is only intended for detecting
attacks whose patterns are known a priori.

Anomaly-based intrusion detection systems have the disadvantage of having high
false alarm rates due to inaccuracies in the learned model. In contrast, signature-based
approaches such as ours have low false alarm rate, but would fail to detect attacks that
differ even slightly from the given signature. Ideally, one would like a self-learning
intrusion detection system with low false alarm rates. For now, the signature-based sys-
tems are quite popular because of their simplicity, accuracy, and ease of use. These
systems would in any case be a valuable supplement to build more accurate anomaly-
based systems.

3 EAGLE: An Expressive Temporal Monitoring Logic

The patterns for security attacks in software systems are specified formally in the logic
EAGLE which is designed to support finite trace monitoring, and contains a small set of
operators. The logicEAGLE introduced in [4] supports recursive parameterized equa-
tions, with a minimal/maximal fix-point semantics, together with three temporal opera-
tors: next-time (©), previous-time (

⊙
), and concatenation (·). Rules which are used to

define new temporal operators can be parameterized with formulas and data-values, thus
supporting specifications that can involve data, which can span an execution trace. The
expressivity ofEAGLE, which is indeed very rich, as shown in [3, 4], can express prop-
erties involving real-time, statistics and data-values. To make the paper self-contained,
in this section, we give an informal introduction toEAGLE followed by its syntax, se-
mantics, and the runtime monitoring algorithm forEAGLE as described in [4].

4

The logicEAGLE and its monitoring algorithm assumes the following:

1. There is a finite sequence of eventsσ generated by some executing system. An
event is an instance of a record having a pre-specified schema. For example,

LoginLogoutEvent {userId: string,action: int, time: double}
is the schema of an event and{userId= "Bob" ,action= login , time= 18.7} is

an event representing the fact that user"Bob" has logged in at time18.7.
2. There is a formulaF in EAGLE which specifies the condition for the absence of an

attack.

We say thatσ is free of the attack specified byF if and only if σ satisfiesF .
Now, assume that we want to state a property that”Whenever there is a login

then eventually there is a logout”. The property can be written in classical future time
LTL: 2(action= login → ♦(action= logout)). The formulas2F (alwaysF) and
♦F (eventuallyF), for some propertyF , satisfy the following equivalences, where the
temporal operator©F stands fornext F(meaning ‘in next stateF ’):

2F ≡ F ∧©(2F) ♦F ≡ F ∨©(♦F)

One can show that2F is a maximal solution of the recursive equivalenceX≡ F∧©X,
while♦F is the minimal solution ofX≡F∨©X. In EAGLE one can write the following
definitions for the two combinatorsAlways and Eventually , and the formula to be
monitored (M1):

maxAlways (FormF) = F ∧©Always (F)
min Eventually (FormF) = F ∨©Eventually (F)
monM1 = Always ((action= login)→ Eventually (action= logout))

The Always operator is defined as having a maximal fix-point interpretation; the
Eventually operator is defined as having a minimal interpretation. For further details
the readers are referred to [4].

Let us complicate the above property a bit by stating that“Whenever there is a login
by any userx then eventually the userx logs out.”Thus, if"Bob" logs in then eventually
"Bob" must logout. Similarly, the property must hold for any user such as"Tom" , "Jim"
or "Kelly" . This property can be expressed by the following LTL formula with data-
value bindings:

2((action= login)→ let k = userIdin ♦(action= logout ∧userId= k))

In this formula we use the operator let_ in _ to bind the value ofuserIdin the current
event to the local variablek wheneveraction= login in the current event. We then
impose the condition that the value ofuserId in some event in future must be same as
the user id bound tok and that the action of the event must belogout . In EAGLE, we
use a parameterized rule to express this property, capturing the value ofuserIdas a rule
parameter:

min Bind (stringk) = Eventually (action= logout ∧userId= k)
monM2 = Always ((action= login)→ Bind (userId))

Rule Bind is parameterized with a stringk, and is instantiated inM2 whenaction=
login , hence capturing the value ofuserId at that moment. RuleBind replaces the
binding operator let_ in _.

5

Indeed one can combine the two rulesBind and Eventually into a single rule
EvLogout with one parameter to get the same monitor as follows:

min EvLogout (stringk) = (action= logout ∧userId= k)∨©EvLogout (k)
monM2 = Always ((action= login)→ EvLogout (userId))

Thus by allowing parameterized rules one gets the power of data-value binding in a
formula. It can be argued that the introduction of the operator let_ in _ is sufficient to
get the power of binding. However, parameterized rules can do more than simple data-
binding. For example, suppose we want to express the property that“Whenever there
is a login by any userx then eventually the userx logs out within 100 units of time.”
For this property we modify the ruleEvLogout by introducing two more parameters
denoting the time at which the previous event took place and the time left. The modified
rule and the monitor is given below:

min EvTimedLogout (stringk,doublet,doubleδ) = (δ− (time− t)≥ 0)
∧((action= logout ∧userId= k)∨©EvTimedLogout (k, time,δ− (time− t)))

monM3 = Always ((action= login)→ EvTimedLogout (userId, time,100))

Note that another simpler alternative to define the ruleEvTimedLogout is as follows:

min EvTimedLogout (stringk,doublet,doubleδ) = (time− t ≤ δ)
∧((action= logout ∧userId= k)∨©EvTimedLogout (k, t,δ))

A possible variation of our requirement for login and logout can be stated as”Whenever
there is a logout by any userx then in the past userx must have logged in”. This
property cannot be expressed concisely using the future time temporal operators only.
However, the property can be expressed elegantly by a mixture of past-time and future-
time temporal operators as follows:

2((action= logout)→ let k = userIdin ♦· (action= login ∧userId= k))

where♦·F denotes eventually in pastF . This operator can be defined recursively in
EAGLE using the primitive operator

⊙
which is the past-time equivalent of©. Thus

the monitor definition can be written as follows:

min EventuallyInPast (FormF) = F ∨⊙
EventuallyInPast (F)

min Bind (stringk) = EventuallyInPast (action= logout ∧userId= k)
monM4 = Always ((action= login)→ Bind (userId))

Thus rules inEAGLE allow us to define customized temporal operators with also the
ability to bind and manipulate data. This capability proves to be indispensable for suc-
cinctly expressing attack-safe system executions. We recall the syntax and semantics of
EAGLE to make the paper self-contained.

3.1 Syntax and Semantics

Syntax A specificationS consists of a declaration partD and an observer partO. D
consists of zero or more rule definitionsR, andO consists of zero or more monitor

6

definitionsM, which specify what is to be monitored. Rules and monitors are named
(N).

S ::= D O D ::= R∗ O ::= M∗
R ::= {max|min} N(T1 x1, . . . ,Tn xn) = F
M ::= monN = F
T ::= Form| primitive type
F ::= expression| true| false| ¬F | F1∧F2 | F1∨F2 | F1 → F2 |

©F |⊙F | F1 ·F2 | N(F1, . . . ,Fn) | xi

A rule definitionR is preceded by a keyword indicating whether the interpretation is
maximal or minimal. Maximal rules define safety properties (nothing bad ever hap-
pens), while minimal rules define liveness properties (something good eventually hap-
pens). For us, the difference only becomes important when evaluating formulas at the
boundaries of a trace. To understand how this works it suffices to say here that mon-
itored rules evolve as new events are appearing. Assume that the end of the trace has
been reached (we are beyond the last event) and a monitored formulaF has evolved
to F ′. Then all applications inF ′ of maximal fix-point rules will evaluate to true, since
they represent safety properties that apparently have been satisfied throughout the trace,
while applications of minimal fix-point rules will evaluate to false, indicating that some
event did not happen.

The rule parameters are typed and can either be a formula of type Form, or of a
primitive type such as int, long, float, etc., or any other composite types such as Set,
List, etc.. The body of a rule (or monitor) is a boolean valued formula of the syntactic
categoryForm(with meta-variablesF , etc.). Any recursive call on a rule must be strictly
guarded by a temporal operator. The propositions of this logic are boolean expressions
over fields of event. Formulas are composed using standard propositional logic opera-
tors together with a next-state operator (©F), a previous-state operator (

⊙
F), and a

concatenation-operator (F1 ·F2). Finally, rules can be applied and their arguments must
be type correct. That is, an argument of type Formcan be any formula, with the restric-
tion that if the argument is an expression, it must be of boolean type. An argument of a
primitive type must be an expression of that type. Arguments can be referred to within
the rule body (xi).

In what follows, a ruleN of the form

{max|min} N(Form f1, . . . ,Form fm,T1 p1, . . . ,Tn pn) = B,

where f1, . . . fm are arguments of type Formand p1, . . . pn are arguments of primitive
type, is written in short as:{max|min} N(Form f ,T p) = B, where f and p represent
tuples of typeFormandT respectively. Without loss of generality, in the above rule we
assume that all the arguments of type Formappear first.

Semantics An execution traceσ is a finite sequence of eventsσ = s1s2 . . .sn, where
|σ| = n is the length of the trace. The i’th eventsi of a traceσ is denoted byσ(i).
The termσ[i, j] denotes the sub-trace ofσ from positioni to position j, both positions
included; if i ≥ j thenσ[i, j] denotes the empty trace. Given a traceσ and a specification
D O, satisfaction is defined as follows:

σ |= D O iff ∀ (monN = F) ∈O . σ,1 |=D F

7

That is, a trace satisfies a specification if the trace, observed from position1 (the first
state), satisfies each monitored formula. The definition of the satisfaction relation|=D
⊆ (Trace× nat)× Form, for a set of rule definitionsD, is presented below, where
0≤ i ≤ n+1 for some traceσ = s1s2 . . .sn. Note that the position of a trace can become
0 (before the first state) when going backwards, and can becomen+ 1 (after the last
state) when going forwards, both cases causing rule applications to evaluate to either
true if maximal or false if minimal, without considering the body of the rules at that
point.

σ, i |=D expressioniff 1≤ i ≤ |σ| andevaluate(expression)(σ(i)) == true
σ, i |=D true iff σ, i 6|=D false
σ, i |=D ¬F iff σ, i 6|=D F
σ, i |=D F1∧F2 iff σ, i |=D F1 andσ, i |=D F2
σ, i |=D ©F iff i ≤ |σ| andσ, i +1 |=D F
σ, i |=D

⊙
F iff 1≤ i andσ, i−1 |=D F

σ, i |=D F1 ·F2 iff ∃ j s.t. i ≤ j ≤ |σ|+1 andσ[1, j−1], i |=D F1 andσ[j,|σ|],1 |=D F2

σ, i |=D N(F ,P) iff





if 1≤ i ≤ |σ| then:
σ, i |=D B[f 7→ F , p 7→ evaluate(P)(σ(i))]
where (N(Form f ,T p) = B) ∈ D

otherwise, ifi = 0 or i = |σ|+1 then:
ruleN is defined as maxin D

An expression (a proposition) is evaluated at the current event in case the positioni is
within the trace (1≤ i ≤ n). In the boundary cases (i = 0 and i = n+ 1) a proposition
evaluates to false. Propositional operators have their standard semantics in all positions.
A next-time formula©F evaluates to true if the current position is not beyond the
last event andF holds in the next position. Dually for the previous-time formula. The
concatenation formulaF1 ·F2 is true if the traceσ can be split into two sub-tracesσ =
σ1σ2, such thatF1 is true onσ1, observed from the current positioni, andF2 is true
on σ2 (ignoringσ1, and thereby limiting the scope of past time operators). Applying a
rule within the trace (positions1. . .n) consists of replacing the call with the right-hand
side of the definition, substituting arguments for formal parameters; if an argument is of
primitive type its evaluation in the current state is substituted for the associated formal
parameter of the rule, thereby capturing a desired freeze variable semantics.

3.2 The Monitoring Algorithm

We briefly describe the computation mechanism used to check if anEAGLE formula is
satisfied by a sequence of events. We assume that thepropositionsor theexpressions
of an EAGLE formula are specified with respect to the fields of the event record. At
every event the algorithm evaluates the monitored formula on the event and generates
another formula. At the end of the event sequence, the value of the evolved formula is
determined; if the value is true the formula is satisfied by the event sequence, otherwise,
the formula is violated.

Formally, the evaluation of a formulaF at an events= σ(i) results in an another
formulaF ′ = eval(F,s) with the property thatσ, i |= F if and only if σ, i +1 |= F ′. At
the end of the trace we compute the boolean functionvalue(F), whereF is the evolved

8

formula, such thatvalue(F) is true if and only ifσ, |σ|+ 1 |= F and false otherwise.
Thus for a given traceσ = s1s2 . . .sn and anEAGLE formulaF , σ satisfiesF if and only
if value(eval(. . .eval(eval(F,s1),s2) . . . ,sn)) = true. The details of the algorithm can
be found in [4] which gives the definition of the functionseval andvaluealong with
two other auxiliary functionsupdateand init. The definition of these four functions
forms the calculus ofEAGLE. For this paper, to help in understanding, we describe the
algorithm informally through an example.

Suppose we want to monitor the following specification, described in Section 3

maxAlways (FormF) = F ∧©Always (F)
min EvTimedLogout (stringk,doublet,doubleδ) = (time− t ≤ δ)

∧((action= logout ∧userId= k)∨©EvTimedLogout (k, t,δ))
monM3 = Always ((action= login)→ EvTimedLogout (userId, time,100))

against the sequence of 2 eventse1 = {userId= "Bob" ,action= login , time= 17.0},
e2 = {userId= "Bob" ,action= logout , time= 150.0}. At the first event the formula
M3 gets modified as follows:

eval(M3,e1) = EvTimedLogout ("Bob" ,17.0,100) ∧
Always ((action= login)→ EvTimedLogout (userId, time,100))

Note that the relevant summary of the event, involving the user id"Bob" and the times-
tamp 17.0 has got assimilated into the modified formula. At the second event the pred-
icate(time− t ≤ δ) gets instantiated to(150.0−17.0≤ 100) which is false. Hence the
whole formula becomes false, indicating that the two-event trace violates the property.

One point which is worth stressing on is that the logicEAGLE has a finite trace
semantics. The monitoring algorithm as described above can determine the satisfaction
or the violation of a formula at the end of a trace only. However, in intrusion detection,
end of trace makes no sense as the sequence of events can be theoretically infinite. In
that situation we want to raise an alarm as soon as a property is violated. This is done
by checking after every event if the formula becomes unsatisfiable. Checking unsat-
isfiability of a formula inEAGLE is undecidable as it involves data-values. However,
note that it is always possible to write a formula, corresponding to the absence of an
attack, such that, whenever the attack pattern appears in the event sequence, the for-
mula becomes false. The reason behind this is that we can always specify an attack
pattern by a formulaφ such thatφ, when evaluated over a sequence of events represent-
ing the pattern becomes true. This is calledspecifying-bad prefixes[19]. Once we have
the attack pattern specification in terms ofφ, we can specify the safe behavior of the
system as¤(¬φ). Note that this formula becomes false (hence unsatisfiable) whenever
a sequence of events representing the attack is detected. Hence, checking unsatisfia-
bility for the evaluation of this formula at any point simply reduces to checking if the
evaluated formula is false.

3.3 EAGLE FLIER: Monitoring Engine

We use the monitoring engineEAGLE FLIER to implement our intrusion detection
framework, calledMONID. The engineEAGLE FLIER, written in Java, is available as

9

a library. The library provides two basic methods that can be called by any client pro-
gram for the purpose of monitoring. The first methodparse takes a file containing a
specification involving several monitors (sets of monitored formulas) written inEAGLE

and compiles them internally into data structures representing monitors. After compi-
lation, the client program calls the methodeval iteratively for every event. This call
internally modifies the monitors according to the definition ofeval in Subsection 3.2.
If at any step the monitored formulas become false, an error message is printed or a
pre-specified method is invoked to take a corrective measure.

4 Example Attack Specifications

In this section, we present a few examples of howEAGLE can be used to specify for-
mulas that correspond to desirable properties of execution traces of a system being
monitored. An intrusion or an attack in this context is a trace that violates this speci-
fication. We draw our examples from real-world attacks to showcase the applicability
of our framework. These examples highlight the expressive power of our formalism,
as well as exemplify the various features ofEAGLE. Moreover, we believe that many
attack signatures in practice can be expressed using templates of our examples with
minor modifications. In all the examples we use the ruleAlways defined in Section. 3.

Smurf attacks

The first attack we describe is the Smurf IP Denial of Service (DoS) attack. An attacker
creates a forged ICMP echo request message (also called a “ping” packet) with the
victim’s name as the sender and sets the destination IP address to a broadcast IP address.
This attack can result in a large amount of ICMP echo reply packets being sent from
broadcast hosts that respond to the request, to the victim, which can cause network
congestion or outages.

In order to detect this attack, we need to look at network events from a log created
by a network auditing tool such astcpdump. The formula for the absence of this attack
is given below:

maxAttack () = (type= “ICMP”)∧ isBroadcast(ip)
monSmurfSafety = Always (¬Attack ())

In the above example, the record schema of an event contains thetypefield that cor-
responds to the type of the network packet and the fieldip that corresponds to the return
IP address of a network packet. In the specification, we first specify the attack pattern
by the ruleAttack that checks if the type of the packet is“ICMP” and the destination
address of the packet is a broadcast IP address (isBroadcast), whereisBroadcastis a
predicate over the event which checks if the last two bytes of the IP address provided as
argument are 0 or 255. Then a good behavior of the system with respect to this attack
can be stated as “Always there is no attack”.

10

Cookie-Stealing Scenario

The next example describes what is called the “cookie-stealing” attack. In order to
monitor this attack we need to look at a web-server (application-level) log that contains
a record of all sessions that the server participates in, along with session-specific state
information.

A cookie is a session-tracking mechanism issued by a web-application server to a
web-client and store client-specific session information. Clients automatically include
these cookies that can act as authentication tokens in their requests. In this example we
assume that a session is identified by its IP address. An attack occurs when a malicious
user hijacks a session by reusing an old cookie issued to a different IP address. The
formula below asserts that a particular cookie must always be used by the same IP
address.

min SafeUse (stringc, int i) = ((name= c)→ (ip = i))∧⊙
SafeUse (c, i)

monCookieSafe = Always (SafeUse (name, ip))

A trace that violates this formula therefore encodes a cookie-stealing attack. In the
above example, the record schema of an event contains thenamefield which corre-
sponds to name of the cookie, and theip field that corresponds to the IP address of the
client using the cookie. The parameterized ruleSafeUse checks whether the association
between a particular cookie identified by the cookie name and an IP address (specified
as arguments) is the same as this association in the past. This example highlights the
use of value-binding and the previous operator to describe history-based intrusion sig-
natures.

Multi-domain Buffer Overflows

The next example illustrates how we can combine information about events from dif-
ferent logs in a cross-domain intrusion detection exercise. This scenario examines both
web-server’s access logs, as well as network logs to infer when a buffer-overflow attack
has been attempted against the server. Network packets are analyzed, looking for binary
data. Subsequently, the web-server’s access logs are checked to see if a matching event
can be found, where the web-server closes the connection successfully after receiving
some binary data. If no matching log record is found, within a specific timeout, then the
buffer overflow attack was successful and the web-server is now executing the attackers
code. This example is specified by the formula shown next.

min EventuallyClosed (long t, longd, long i1, long i2) = (time− t < d)∧
((ip1 = i1∧ ip2 = i2∧ log = web∧ type= closed)∨©EventuallyClosed (t,d, i1, i2))

monBufferSafe = Always ((log = network∧ type= binary)
→ EventuallyClosed (time,100, ip1, ip2))

The record schema for an event contains thelog field which indicates the name of
the log to which the event belongs, thetypefield which can bebinary, closed, etc., the
time field representing the time at which the event occurred, theip1 field represent-
ing the source IP address, and theip2 representing the destination IP address. In the

11

rule EventuallyClosed , the argumentst, d, i1, andi2 represent the time at which the
rule is invoked, the timeout period, the source IP address, and the destination IP ad-
dress, respectively. The ruleEventuallyClosed asserts that eventually within timed
the connection involving IP addressesi1 and i2 must get closed. Finally, the monitor
BufferSafe states that it is always the case that if there is a event of binary access in the
network log then eventually within time100there must be a matching event in the web-
server log that denotes the closing of the connection. Here a connection is identified by
the source and destination IP addresses.

Password guessing Attack

The next example illustrates the ability ofEAGLE to collect statistics at runtime to
detect a potential intrusion. In the password-guessing attack, an unauthorized user uses
thetelnetprogram to attempt to login into a machine over a network. If a user is allowed
to guess an arbitrary number of passwords for a given user-name, it is only a matter of
time before the password is broken. Most systems terminate atelnetsession if a user
makes more than three invalid password guesses over a short-time period. Some systems
restrict the total number of invalid login attempts over the course of a longer time-period
to prevent an attacker from succeeding by initiating multiple short sessions.

In order to detect this attack, we need to have access to the host’s audit logs. On So-
laris machines for example, auditing can be turned on by running Sun’s Basic Security
Monitoring (BSM) software. In order to encode this attack, we present a template that
can be reused for any signature that specifies a threshold frequency of events of interest
in a trace, which when exceeded constitutes an attack:

maxFailure () = (type= login)∧¬success
maxGuess(long i,FormF) = (ip = i)∧Failure ()
maxCounter (long t, longd, int c, long i, int C) = (time− t < d)

→ ((Guess(i)→ (c≤C∧©Counter (t,d,c+1, i,C)))
∧(¬Guess(i)→ Counter (t,d,c, i,C)))

monPassGuessSafe = Always (Failure ()→ Counter (time,300,1, ip,3))

In the ruleCounter , the argumentst, d, c, i, andC represent the rule invocation
time, the timeout period, the current number of unsuccessful-guesses count, the source
IP address doing the guess, and the threshold count. An attack occurs when the number-
of-guess countc from the IP addressi exceeds the threshold countC within the timeout
period d. Whenever there is aFailure () in login, the parameterized ruleCounter
starts with the initial count set to1. For every occurrence of an event, indicating login-
failure from the same IP address within the timeout timed, the number-of-guess count
is increased by one. The ruleCounter also checks if within timed whetherc ex-
ceedsC; in which case the whole rule becomes false indicating an attack. The monitor
PassGuessSafe asserts that whenever there is a failure of login from an IP address then
eventually within time300the number of login-failures from the same IP address must
be less than or equal to3.

12

Port-Sweep Attack

The Port-sweep attack is the most sophisticated example in this section. A port sweep
is a surveillance scan through many ports on a single network host. Each port scan is
essentially a message sent by the attacker to the victim’s port and elicits a response from
the victim that indicates the port’s status. The aim of the attacker is to determine which
services are supported on the host, and use this information to exploit vulnerabilities
in these services in the future. Port scans may be legitimate, when a client is trying to
determine if a service is being offered. However, when the number of port scans exceeds
a certain threshold within a short time-period, the victim machine can assume that the
scans are malicious. In order to detect this attack, once again, we need to include a
time-period and a frequency explicitly in our formula, and can use the template from
the previous example:

maxNewPort (long i1, long i2,SetS) = (i1 = ip1)∧ (i2 = ip2)∧ (port /∈ S)
maxCounter (long t, longd, int c, long i1, long i2,SetS, int C) = (time− t < d)→

((NewPort (i1, i2,S)→ (c≤C∧©Counter (t,d,c+1, i1, i2,S∪{port},C)))
∧(¬NewPort (i1, i2,S)→©Counter (t,d,c, i1, i2,S,C)))

monPortScanSafe = Always (Counter (time,100,1, ip1, ip2,{port},10))

As before, the argumentst, d, c andC in the Counter rule serve the same purpose
as place holders for the initial time, the timeout period, the frequency count, and the
threshold count. The parameterizedCounter rule asserts that the number of port scans
observed in a tcpdump record between a source and destination IP (i1 andi2) address
pair never exceeds a certain thresholdC within time d. Note that in the ruleCounter
we add every new port number scanned to the setS of all port numbers (involvingi1
and i2) that are scanned within timed. The ruleNewPort checks if the port number,
involved in any communication between the IP addressesi1 andi2, exists in the setSof
all port numbers (involved in all communications betweeni1 andi2) within the timeout
periodd. This example shows how we can useEAGLE to collect statistics by using a
rich data-structure such as Set.

5 Implementation and Evaluation

5.1 MONID: Monitoring based Intrusion Detection Tool

The intrusion detection tool,MONID, is designed to operate in both online and offline
fashion. In the online mode,MONID runs as a server that receives streams of events
from various sources. To generate these events, the different logging modules are instru-
mented so that they filter and sendrelevantevents to the server. On receiving various
events, the server merges them in increasing order of timestamps and generates a single
event-stream, which is passed through a filter to get a projection of the events that are
required for monitoring. The filtered event stream is fed to theEAGLE FLIER to see if
the event stream violates the normal behavior of the system specified as a set ofEAGLE

formulas. Note thatEAGLE FLIER never stores the event stream while monitoring; in-
stead it collects the essential facts and assimilates them into the monitored formulas by

13

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0 50 100 150 200 250 300

O
ve

rh
ea

d

Event Number

Overhead
Average

Fig. 2. Performance Overhead of Port-Sweep
Attack

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0 10000 20000 30000 40000 50000 60000

O
ve

rh
ea

d

Event Number

Overhead
Average

Fig. 3. Performance Overhead of Password-
Guess Attack

transforming them into new formulas. This enables us to useEAGLE FLIER for online
monitoring. In the offline mode,MONID reads various log files and sends an event cor-
responding each log entry to the server. The server then processes the event stream as
before to detect intrusion. We perform most of our experiments in offline mode.

5.2 Evaluation

We test ourMONID tool with the standard DARPA Intrusion Detection Evaluation data
set [13] to study the overheads and explore the expressive power of our logic with real-
world examples. In our experiments withMONID, we focus on the data sets provided
in the 1998 offline Intrusion Detection Evaluation plan [13]. This data set focuses on
UNIX workstations. The experimental setup simulates a military base with a private
network marked as “Inside” connected to the “Outside” world through a Cisco AGS+
router. Two types of logs are available for analysis. Thetcpdumplogs were collected
by runningtcpdumpon this connecting router. This data contains the contents of ev-
ery packet transmitted between computers inside and outside of the military base, and
gives us network sessions of complete TCP/IP connections. The sessions were designed
to reflect (statistically) traffic seen on military bases and contain explicit examples of
different real attacks.

The other data available is from the Sun Basic Security Module (BSM) from the host
pascal, which was the victim of the simulated attacks, located on the “Inside” network.
This data contains audit information describing system calls made to the Solaris kernel.

We implemented and tested our tool against the smurf, port-sweep and password-
guessing as discussed in Section 4, of which we report the results of last two experi-
ments due to space limitation. We do not repeat the details of these attacks here. We
ran our tool on a 2.0 GHz Pentium M laptop with 1GB RAM, simulating the behavior
of a dedicated-monitor that passively observes traffic on the “Inside” network and pro-
cesses events from our victim host offline. The aim of our experiments is to demonstrate
that the tool can detect intrusions, and the monitoring and processing overheads of our
prototype tool are very low.

14

Our experiments detected 5 password-guess attack and 2 port-sweep attack in the
logs. The performance overheads for monitoring the Port-Sweep and Password-Attacks
are given in Figure 2 and 3, respectively. The X-axis in both graphs shows the number
of events we are monitoring, as they are obtained from our logs. Each data point is the
average overhead calculated for intervals of 10 and 1000 events respectively. The Y-axis
plots the ratio between the time spent by the monitor vs. the time between the genera-
tion of the events in the actual log. As long as this ratio is less than 1, our monitoring is
feasible. The results, show that the average overhead, is around0.009 for Port-Sweep
attacks and0.016for Password-Guessing attacks, suggesting that online mode is feasi-
ble and efficient.

6 Conclusion

We have proposed a framework for intrusion detection using a temporal logic approach.
In contrast to other such temporal logic based approaches [16], we use an expressively
rich logic in which one can express both signature based and simple anamoly based at-
tack specifications. We automatically monitor such attack specifications with respect to
the system execution. An intrusion is detected when the observed execution violates the
formula being monitored. We demonstrate this approach by specifying formulas for de-
tecting several types of well-known attacks, and by testing a prototype implementation
of our monitoring algorithm over large event-logs made available by DARPA for eval-
uation purposes. We believe that our examples are generic and can be used as template
for specifying a large number of other attacks.

Our approach opens up several interesting directions for future research. We plan
to conduct a more systematic performance study and categorize the overheads more
precisely. With the aim to exploit the expressiveness of our logic, we plan explore the
use of ideas introduced in [18, 19] forpredictingsecurity failures from successful ex-
ecutions in multi-threaded programs. Specifically, in addition to monitoring a given
specification against the currently observed trace, we can also compare the specifica-
tion with all the traces that correspond to different interleavings of the same partial
order (causality relation) between the underlying events. Another problem of interest
is to use the distributed monitoring framework introduced in [20] for detecting attacks
that involve multiple hosts on a network. We believe that our approach can complement
existing intrusion detection mechanisms and provide support for more expressive attack
specifications.

References

[1] D. Anderson, T. Frivold, and A. Valdes. Next-generation intrusion detection expert system.
Technical Report SRI-CSL-95-07, Computer Science Laboratory, SRI International, Menlo
Park, CA, May 1995.

[2] S. Axelsson. Intrusion detection systems: A taxonomy and survey. Technical Report 99–15,
Dept. of Computer Engineering, Chalmers University of Technology, Sweden, 2000.

[3] H. Barringer, A. Goldberg, K. Havelund, and K. Sen. Program monitoring with ltl in eagle.
In Workshop on Parallel and Distributed Systems: Testing and Debugging (PADTAD’04)
(Satellite workshop of IPDPS’04), Santa Fe, New Mexico, USA, April 2004. (To Appear).

15

[4] H. Barringer, A. Goldberg, K. Havelund, and K. Sen. Rule-based runtime verification. In
Proceedings of 5th International Conference on Verification, Model Checking and Abstract
Interpretation (VMCAI’04), volume 2937 ofLecture Notes in Computer Science, pages 44–
57, Venice, Italy, January 2004. Springer-Verlag.

[5] E. M. Clarke, O. Grumberg, and D. A. Peled.Model Checking. MIT Press, 1999.
[6] H. Debar, M. Becker, and D. Siboni. A neural network component for an intrusion detection

system. InIEEE Computer Society Symposium on Research on Security and Privacy, pages
240–250, May 1992.

[7] H. Debar, M. Dacier, and A. Wespi. Towards a taxonomy of intrusion detection systems.
Computer Networks, 31(8):805–822, April 1999.

[8] K. Havelund and G. Roşu. Monitoring Java Programs with Java PathExplorer. InProceed-
ings of Runtime Verification (RV’01), volume 55 ofENTCS. Elsevier, 2001.

[9] J.P. Ignizio.Introduction to Expert Systems-the Development and Implementation of Rule-
Based Expert System. McGraw-Hill Science, 1991.

[10] K. Ilgun, R. Kemmerer, and P. Porras. State transition analysis: A rule-based intrusion
detection approach.IEEE Transactions on Software Engineering, 21(3):181–199, 1995.

[11] C. Ko, M. Ruschitzka, and K. Levitt. Execution monitoring of security-critical programs in
distributed systems: A specification-based approach. InIEEE Symposium on Security and
Privacy, pages 175–187, May 1997.

[12] S. Kumar and E. Spafford. A pattern matching model for misuse intrusion detection. In
National Computer Security Conference, pages 11–21, 1994.

[13] MIT Lincoln Laboratory. DARPA intrusion detection evaluation.
http://www.ll.mit.edu/IST/ideval/.

[14] W. Lee. A datamining framework for building intrusion detection models. InIEEE Sympo-
sium on Security and Privacy, pages 120–132, May 1999.

[15] P. Porras and P. Neumann. EMERALD: Event monitoring enabling responses to anomalous
live disturbances. InNational Information Systems Security Conference, 1997.

[16] M. Roger and J. Goubault-Larrecq. Log auditing through model-checking. In14th IEEE
Computer Security Foundations Workshop (CSFW’01). IEEE, 2001.

[17] M. Sebring, E. Shellhouse, M. Hanna, and R. Whitehurst. Expert systems in intrusion
detection: A case study. InNational Computer Security Conference, pages 74–81, 1998.

[18] K. Sen, G. Roşu, and G. Agha. Runtime Safety Analysis of Multithreaded Programs. In
9th European Software Engineering Conference and 11th ACM SIGSOFT International
Symposium on the Foundations of Software Engineering (ESEC/FSE’03), pages 337–346,
Helsinki, Finland, September 2003. ACM.

[19] K. Sen, G. Roşu, and G. Agha. Online efficient predictive safety analysis of multithreaded
programs. InProceedings of 10th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS’04), volume 2988 ofLNCS, pages 123–138,
Barcelona, Spain, March 2004.

[20] K. Sen, A. Vardhan, G. Agha, , and G. Roşu. Efficient decentralized monitoring of safety
in distributed systems. InProceedings of 26th International Conference on Software Engi-
neering (ICSE’04), pages 418–427, Edinburgh, UK, May 2004. IEEE.

[21] H. Teng, K. Chen, and S. Lu. Security audit trail analysis using inductively generated
predictive rules. InConference on Artificial Intelligence Applications, pages 24–29. IEEE
Computer Society Press, March 1990.

[22] D. Wagner and D. Dean. Intrusion detection via static analysis. InIEEE Symposium on
Security and Privacy, 2001.

16

