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Abstract. We study the problem of model checking Interval-valued
Discrete-time Markov Chains (IDTMC). IDTMCs are discrete-time fi-
nite Markov Chains for which the exact transition probabilities are not
known. Instead in IDTMCs, each transition is associated with an inter-
val in which the actual transition probability must lie. We consider two
semantic interpretations for the uncertainty in the transition probabili-
ties of an IDTMC. In the first interpretation, we think of an IDTMC as
representing a (possibly uncountable) family of (classical) discrete-time
Markov Chains, where each member of the family is a Markov Chain
whose transition probabilities lie within the interval range given in the
IDTMC. We call this semantic interpretation Uncertain Markov Chains
(UMC). In the second semantics for an IDTMC, which we call Inter-
val Markov Decision Process (IMDP), we view the uncertainty as being
resolved through non-determinism. In other words, each time a state is
visited, we adversarially pick a transition distribution that respects the
interval constraints, and take a probabilistic step according to the cho-
sen distribution. We introduce a logic ω-PCTL that can express liveness,
strong fairness, and ω-regular properties (such properties cannot be ex-
pressed in PCTL). We show that the ω-PCTL model checking problem
for Uncertain Markov Chain semantics is decidable in PSPACE (same
as the best known upper bound for PCTL) and for Interval Markov De-
cision Process semantics is decidable in coNP (improving the previous
known PSPACE bound for PCTL). We also show that the qualitative
fragment of the logic can be solved in coNP for the UMC interpretation,
and can be solved in polynomial time for a sub-class of UMCs. We also
prove lower bounds for these model checking problems. We show that the
model checking problem of IDTMCs with LTL formulas can be solved
for both UMC and IMDP semantics by reduction to the model checking
problem of IDTMC with ω-PCTL formulas.

1 Introduction

Discrete Time Markov Chains (DTMCs) are often used to model and analyze the
reliability and performance of computer systems [6, 9, 15, 12]. A DTMC consists
of a finite number of states and a fixed probability of transition from one state
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to another state. The fixed probability assumption in a DTMC may often not
be realistic in practice [11, 14, 22, 13]. For example, in case of an open system
that interacts with an environment, transition probabilities may not be known
precisely due to incomplete knowledge about the environment. Imprecision in
the transition probabilities may arise if the probabilities in the system model
are estimated through statistical experiments, which only provide bounds on
the transition probabilities.

The model of Interval-valued Discrete-time Markov Chains (IDTMC) has
been introduced [11, 13] to faithfully capture these system uncertainties.
IDTMCs are DTMC models where the exact transition probability is not known,
and instead the transition probability is assumed to lie within a range. Three val-
ued abstractions of DTMCs also naturally result in IDTMCs [8]. Two semantic
interpretations have been suggested for such models. Uncertain Markov Chains
(UMC) [11, 18] is an interpretation of an IDTMC as a family of (possibly un-
countably many) DTMCs, where each member of the family is a DTMC whose
transition probabilities lie within the interval range given in the IDTMC. In the
second interpretation, called Interval Markov Decision Process (IMDP) [18], the
uncertainty is resolved through non-determinism. In other words, each time a
state is visited, a transition distribution that respects the interval constraints is
adversarially picked, and a probabilistic step is taken according to the chosen
distribution. Thus, IMDPs allow the possibility of modeling a non-deterministic
choice made from a set of (possibly) uncountably many choices.

The problem of model checking PCTL specifications for IDTMC was studied
in [18]. PSPACE model checking algorithms were given for both UMCs and
IMDPs. The model checking problem for UMCs was shown to be both NP-hard
and coNP-hard. For IMDPs, a PTIME-hardness was shown; in fact, this is a
consequence of the PTIME-hardness of (classical) DTMC model checking [6].

The logic PCTL [9], which extends computation tree logic (CTL) with proba-
bilities, does not allow arbitrarily nested path formulas. Therefore, PCTL cannot
express properties that depend on the set of states that appears infinitely often,
e.g., liveness properties cannot be expressed in PCTL. In order to address this
limitation of PCTL, we introduce ω-PCTL. In ω-PCTL, we allow Büchi condi-
tions, that require a set of states to be visited infinitely often, its dual coBüchi
conditions, and their boolean combinations. Since we allow Büchi conditions,
liveness (or weak-fairness) conditions can be expressed in ω-PCTL. Moreover,
since we allow boolean combinations of Büchi and coBüchi conditions, strong
fairness conditions can also be expressed in ω-PCTL. The logic ω-PCTL can
express all ω-regular conditions, and thus forms a robust specification language
to specify properties that commonly arise in verification of probabilistic systems.

In addition to the UMC interpretation, we also consider the sub-class of UMC
interpretation that restricts the DTMCs obtained from an IDTMC as follows: if
the upper bound of a transition probability is positive, then the actual transition
probability is also positive. In many situations the upper bound on a transition
probability is positive if the transition is observed (i.e., the actual transition
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probability is positive, though no positive lower bound may be known). We call
this sub-class as PUMCs (Positive UMCs).

In this paper, we study the problem of model checking ω-PCTL specifica-
tions for DTMCs and IDTMCs. We first show that the ω-PCTL model checking
problem for DTMCs can be solved in polynomial time. We then show that the ω-
PCTL model checking problem for PUMC and UMC interpretations is decidable
in PSPACE and for IMDP interpretations is decidable in coNP. These results ex-
tend and improve the best known PSPACE bound for PCTL model checking to
a much richer logic that can express ω-regular properties. We also show that the
qualitative fragment of the logic (called ω-QPCTL) can be solved in polynomial
time for the PUMCs and in coNP for the UMCs. The results of PCTL model
checking algorithm do not extend straightforwardly to ω-PCTL model check-
ing. We first present the model checking algorithm for PUMC semantics using
results on Markov chains, and then reduction to a formula in the existential the-
ory of reals. The result for UMC semantics is then obtained by partitioning the
UMCs in equivalence classes of PUMCs. The IMDP model checking algorithm
requires a precise characterization of optimal strategies in MDPs with Müller
objectives. We also prove lower bounds for these model checking problems: we
show that the PCTL model checking problem is both NP-hard and coNP-hard
for PUMCs, and the NP and coNP-hardness for PCTL model checking for UMCs
follows from [18]. We also present model checking algorithms for IDTMCs with
LTL path formulas for PUMC, UMC, and IMDP interpretations, and the result
is obtained by reduction to ω-PCTL formulas. Table 1 summarizes the complex-
ity of model checking of the various classes of Markov chains under uncertainty
with respect the various fragments of ω-PCTL.

PCTL ω-QPCTL ω-PCTL
Models Lower Upper Lower Upper Lower Upper

Bound Bound Bound Bound Bound Bound
DTMC PTIME PTIME PTIME PTIME PTIME
PUMC NP and coNP PSPACE PTIME NP and coNP PSPACE
UMC NP and coNP PSPACE coNP NP and coNP PSPACE
IMDP PTIME coNP coNP PTIME coNP

Table 1. Complexity of DTMC and IDTMC model checking

2 Formal Models

In this section, we recall the definitions of IDTMC, UMC, and IMDP from [18]
and introduce the definition of PUMC.

Definition 1. A discrete-time Markov chain (DTMC) is a 3-tuple M =
(S,P, L), where (1) S is a finite set of states; (2) P : S ×S → [0, 1] is a transi-
tion probability matrix, such that

∑
s′∈S P(s, s′) = 1; and (3) L : S → 2AP is a

labeling function that maps states to sets of atomic propositions from a set AP.
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A non-empty sequence π = s0s1s2 · · · is called a path of M, if each si ∈ S
and P(si, si+1) > 0 for all i ≥ 0. We denote the ith state in a path π by π[i] = si.
We let Path(s) be the set of paths starting at state s. A probability measure on
paths is induced by the matrix P as follows.

Let s0, s1, . . . , sk ∈ S with P(si, si+1) > 0 for all 0 ≤ i < k. Then
C(s0s1 . . . sk) denotes a cylinder set consisting of all paths π ∈ Path(s0)
such that π[i] = si (for 0 ≤ i ≤ k). Let B be the smallest σ-algebra on
Path(s0) which contains all the cylinders C(s0s1 . . . sk). The measure µ on cylin-
der sets can be defined as follows: µ(C(s0s1 . . . sk)) = 1 if k = 0; otherwise
µ(C(s0s1 . . . sk)) = P(s0, s1) · · ·P(sk−1, sk). The probability measure on B is
then defined as the unique measure that agrees with µ (as defined above) on the
cylinder sets.

Definition 2. An Interval-valued Discrete-time Markov chain (IDTMC) is a 4-
tuple I = (S, P̌, P̂, L), where (1) S is a finite set of states; (2) P̌ : S×S → [0, 1]
is a transition probability matrix, where each P̌(s, s′) gives the lower bound of
the transition probability from the state s to the state s′; (3) P̂ : S × S → [0, 1]
is a transition probability matrix, where each P̂(s, s′) gives the upper bound of
the transition probability from the state s to the state s′; and (4) L : S → 2AP

is a labeling function that maps states to sets of atomic propositions from a set
AP.

We consider two semantic interpretations of an IDTMC model, namely Un-
certain Markov Chains (UMC) and Interval Markov Decision Processes (IMDP).
Uncertain Markov Chains (UMCs). An IDTMC I may represent an infinite
set of DTMCs, denoted by [I], where for each DTMC (S,P, L) ∈ [I] the following
is true: P̌(s, s′) ≤ P(s, s′) ≤ P̂(s, s′) for all pairs of states s and s′ in S. In the
Uncertain Markov Chains semantics, or simply, in the UMCs, we assume that
the external environment non-deterministically picks a DTMC from the set [I]
at the beginning and then all the transitions take place according to the chosen
DTMC. Note that in this semantics, the external environment makes only one
non-deterministic choice. Henceforth, we will use the term UMC to denote an
IDTMC interpreted according to the Uncertain Markov Chains semantics.
Positive Uncertain Markov Chains (PUMCs). We consider Positive Un-
certain Markov Chains (PUMCs) semantics, for which we will obtain more effi-
cient model checking algorithms for the qualitative fragment of the logic that we
will consider, and the results will also be useful in the analysis of UMCs. Given
an IDTMC I, we denote by [I]P ⊆ [I] the infinite set of DTMCs (S,P, L) such
that the following conditions hold: (1) P̌(s, s′) ≤ P(s, s′) ≤ P̂(s, s′) for all pairs
of states s and s′ in S; (2) if P̂(s, s′) > 0, then P(s, s′) > 0, for all s, s′ ∈ S. In
the semantics for Positive Uncertain Markov Chains (PUMCs), we assume that
the external environment non-deterministically picks a DTMC from [I]P .
Interval Markov Decision Processes. In the Interval Markov Decision Pro-
cesses semantics, or simply, in the IMDPs, we assume that before every transition
the external environment non-deterministically picks a DTMC from the set [I]

4



and then takes a one-step transition according to the probability distribution of
the chosen DTMC. Note that in this semantics, the external environment makes
a non-deterministic choice before every transition. Henceforth, we will use the
term IMDP to denote an IDTMC interpreted according to the Interval Markov
Decision Processes semantics. We now formally define this semantics.

Let Steps(s) be the set of probability density functions over S defined as
follows: Steps(s) = {µ : S → R≥0 |

∑
s′∈S µ(s′) = 1 and P̌(s, s′) ≤ µ(s′) ≤

P̂(s, s′) for all s′ ∈ S}. In an IMDP, at every state s ∈ S, a probability density
function µ is chosen non-deterministically from the set Steps(s). A successor
state s′ is then chosen according to the probability distribution µ over S.

A path π in an IMDP I = (S, P̌, P̂, L) is a non-empty sequence of the form
s0

µ1→ s1
µ2→ . . ., where si ∈ S, µi+1 ∈ Steps(si), and µi+1(si+1) > 0 for all i ≥ 0.

A path can be either finite or infinite. We use πfin to denote a finite path. Let
last(πfin) be the last state in the finite path πfin. As in DTMC, we denote the
ith state in a path π by π[i] = si. We let Path(s) and Pathfin(s) be the set
of all infinite and finite paths, respectively, starting at state s. To associate a
probability measure with the paths, we resolve the non-deterministic choices by
an adversary, which is defined as follows:

Definition 3. An adversary A of an IMDP I is a function mapping every finite
path πfin of I onto an element of the set Steps(last(πfin)). Let AI denote the set
of all possible adversaries of the IMDP I. Let PathA(s) denote the subset of
Path(s) which corresponds to A.

The behavior of an IMDP I = (S, P̌, P̂, L) under a given adversary A is
purely probabilistic. The behavior of a IMDP I from a state s can be described
by an infinite-state DTMC MA = (SA,PA, LA) where (a) SA = Pathfin(s);

(b) PA(πfin,π′fin) = A(πfin)(s′) if π′fin is of the form πfin
A(πfin)→ s′; and 0 otherwise.

There is a one-to-one correspondence between the paths of MA and PathA(s)
of I. Therefore, we can define a probability measure ProbA

s over the set of paths
PathA(s) using the probability measure of the DTMC MA.

3 ω-Probabilistic Computation Tree Logic (ω-PCTL)

In this paper, we consider an extension of PCTL that can express ω-regular
properties. We call the logic ω-PCTL. The formal syntax and semantics of this
logic is as follows.
ω-PCTL Syntax. We define the syntax of ω-PCTL and its qualitative fragment
as follows:

φ ::= true | a | ¬φ | φ ∧ φ | P"#p(ψ)
ψ ::= φ U φ | Xφ | ψω

ψω ::= Buchi(φ) | coBuchi(φ) | ψω ∧ ψω | ψω ∨ ψω

where a ∈ AP is an atomic proposition, and $%∈ {<,≤, >,≥}, p ∈ [0, 1]. Here φ
represents a state formula, ψ represents a path formula, and ψω represents path
formulas that depend on the set of states that appear infinitely often in a path
(we call them infinitary path formulas). The qualitative fragment of the logic,
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denoted as ω-QPCTL, consists of formulas φQ such that in all sub-formulas
P#$p(ψ) of φQ we have p ∈ {0, 1}, i.e., the comparison of the probability of
satisfying a path formula is only made with 1 and 0 only. The logic PCTL is
obtained from ω-PCTL where only path formulas of the form φ U φ and Xφ
are considered, i.e., formulas obtained as ψω are not allowed. The canonical
Rabin and Streett conditions (strong fairness conditions) can be expressed as
conjunction and disjunction of Büchi and coBüchi conditions. Hence ω-PCTL
can express Rabin and Streett conditions. Since Rabin and Streett conditions
are canonical forms to express ω-regular properties [19], ω-PCTL can express
ω-regular properties.
ω-PCTL Semantics for DTMC. The notion that a state s (or a path π)
satisfies a formula φ in a DTMC M is denoted by s |=M φ (or π |=M φ), and is
defined inductively as follows:

s |=M true
s |=M a iff a ∈ L(s)
s |=M ¬φ iff s $|=M φ
s |=M φ1 ∧ φ2 iff s |=M φ1 and s |=M φ2

s |=M P"#p(ψ) iff Prob{π ∈ Path(s) | π |=M ψ} %& p
π |=M Xφ iff π[1] |=M φ
π |=M φ1 U φ2 iff ∃i ≥ 0 (π[i] |=M φ2 and ∀j < i. π[j] |=M φ1)
π |=M Buchi(φ) iff ∀i ≥ 0.∃j ≥ i. (π[j] |=M φ)
π |=M coBuchi(φ) iff ∃i ≥ 0.∀j ≥ i. (π[j] |=M φ)
π |=M ψω

1 ∧ ψω
2 iff π |=M ψω

1 and π |=M ψω
2

π |=M ψω
1 ∨ ψω

2 iff π |=M ψω
1 or π |=M ψω

2 .

It can shown that for any path formula ψ and any state s, the set {π ∈ Path(s) |
π |=M ψ} is measurable [21]. For a path formula ψ we denote by Probs(ψ) the
probability of satisfying ψ from s, i.e., Probs(ψ) = Prob[{π ∈ Path(s) | π |=M
ψ}]. A formula P#$p(ψ) is satisfied by a state s if Probs[ψ] $% p. The path formula
Xφ holds over a path if φ holds at the second state on the path. The formula
φ1 U φ2 is true over a path π if φ2 holds in some state along π, and φ holds along
all prior states along π. The formula Buchi(φ) is true over a path π if the path
infinitely often visits states that satisfy φ. The formula coBuchi(φ) is true over
a path π if after a finite prefix the path visits only states that satisfy φ. Given a
DTMC M and an ω-PCTL state formula φ, we denote by [[φ]]M = {s | s |=M φ}
the set of the states that satisfy φ. Given a DTMC M and an ω-PCTL path
formula ψ we denote by WM(ψ) = {s | Probs(ψ) = 1} the set of states that
satisfy ψ with probability 1.
ω-PCTL Semantics for UMC. Given an IDTMC I and an ω-PCTL state
formula φ, we denote by [[φ]]I =

⋂
M∈[I][[φ]]M. Note that s '∈ [[φ]]I does not imply

that s ∈ [[¬φ]]I . This is because there may exist M,M′ ∈ [I] such that s |=M φ
and s |=M′ ¬φ. The semantics of ω-PCTL for PUMCs are obtained similarly:
given an IDTMC I and an ω-PCTL state formula φ, we denote by [[φ]]IP =⋂

M∈[I]P
[[φ]]M.

ω-PCTL Semantics for IMDP. The interpretation of a state formula and a
path formula of PCTL for IMDPs is same as for DTMCs except for the state
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formulas of the form P#$p(ψ). The notion that a state s (or a path π) satisfies a
formula φ in an IMDP I is denoted by s |=I φ (or π |=I φ), and the semantics
is very similar to the one of DTMC other than path formulas with probabilistic
operator which is defined below:

s |=I P"#p(ψ) iff ProbA
s ({π ∈ PathA(s) | π |=I ψ}) %& p for all A ∈ A

The model checking of IDTMC with respect to the two semantics can give
different results. An example illustrating this fact for the PCTL logic can be
found in [18].

4 DTMC Model Checking

In this section we outline the basic model checking algorithm for (classical)
DTMCs for ω-PCTL. We start with a few notations.
Graph of a DTMC. Given a DTMC M = (S,P, L) we define a graph GM =
(SM, EM, LM) for M where SM = S, LM = L, and the set of edges EM =
{(s, s′) | P(s, s′) > 0} consists of state pairs (s, s′) such that the transition
probability from s to s′ is positive. Given two DTMCs M1 and M2, they are
graph equivalent, denoted by M1 ≡ M2, iff SM1 = SM2 , EM1 = EM2 , and
LM1 = LM2 , i.e., the set of states, the set of edges, and the labeling function
in M1 and M2 coincide. Observe that though the set of edges in M1 and M2

coincide, the exact transition probabilities in M1 and M2 can be different.
For a state formula φ (resp. a set U ⊆ S of states) we denote by ♦φ (resp.
♦U) eventually φ (resp. eventually U), i.e., the PCTL formula true U φ (resp.
true U U).

Lemma 1. Given a DTMC M and an infinitary path formula ψω, we have
Probs(ψω) = Probs

(
♦(WM(ψω))

)
.

Graph equivalence and ω-QPTCL. The truth of a qualitative PCTL formula
φ (i.e., a QPCTL formula) does not depend on the precise transition probabil-
ities of a DTMC, but depends only on the underlying graph structure of the
DTMC. Lemma 2 extends the result to ω-QPCTL formulas. Formally, we have
the following lemma.

Lemma 2. For all DTMCs M1 and M2, if M1 ≡ M2, then for all ω-QPCTL
state formulas φ we have [[φ]]M1 = [[φ]]M2 .

Model checking ω-PCTL for DTMCs. The model checking algorithm for
ω-PCTL for DTMCs is as follows. Given a DTMC M the set of closed recurrent
sets of states in M can be computed in linear time by computing the maximal
strongly connected components of GM [5]. From the proof of Lemma 1 it fol-
lows that once the set of closed recurrent set of states in M is computed, the
computation of an ω-PCTL formula can be reduced to a PCTL formula. The
model checking algorithm for QPCTL formulas on DTMCs is very similar to
CTL model checking on graphs, and the CTL like model checking algorithm is
applied on the graph of the DTMC. The model checking of PCTL for DTMCs
can be solved in polynomial time [6] by solving a set of linear constraints. Thus
we have the following result.
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Theorem 1. Given a DTMC M and an ω-PCTL state formula φ, the following
assertions hold: (1) the set [[φ]]M can be computed in time polynomial in |M|
times (; (2) if φ is an ω-QPCTL formula, then the set [[φ]]M can be computed in
O(|M| · () time; where |M| denotes the size of M and ( denotes the length of φ.

Reduction to existential theory of reals. We now present a reduction of the
model checking problem for DTMCs with ω-PCTL formulas to the existential
theory of reals, which is decidable in PSPACE [2]. The reduction will be later
useful for model checking algorithms for IDTMCs under the PUMC and UMC
semantics. Since the model checking of DTMCs for ω-PCTL formulas can be
done in polynomial time and the NP-complete SAT problem can be reduced
to the existential theory of reals, it follows that the model checking problem
of DTMCs with ω-PCTL formulas can be reduced to the existential theory of
reals. Formally, for all DTMCs M, for all ω-PCTL formulas φ, for all states s
of M, there is a formula Γ (M,φ, s) in the existential theory of reals such that
(a) Γ (M,φ, s) is true iff s |=M φ, (b) Γ (M,φ, s) is polynomial in size in M and
φ; (c) Γ (M,φ, s) can be constructed in polynomial time in size of M and φ.

Here we make an important observation. For two DTMCs M1 and M2, if
M1 ≡ M2, then Γ (M1,φ, s) and Γ (M2,φ, s) have the same structure in which
the transition probabilities only differ. However, the converse is not true. This
important observation makes the model checking algorithms for PUMC and
UMC different—the UMC model checking algorithm gets more complex.

5 PUMC Model Checking

We first present a polynomial time model checking algorithm for ω-QPCTL for
PUMC interpretation of IDTMCs. We then present a PSPACE model checking
algorithm for ω-PCTL for PUMC interpretation of IDTMCs, and show that the
problem is both NP-hard and coNP-hard. The algorithms exploit the fact that
for an IDTMC I and for all M1,M2 ∈ [I]P , we have M1 ≡ M2.

Model checking ω-QPCTL. Given an IDTMC I, all the DTMCs in the
PUMC interpretation of I are graph equivalent. Formally, for all M1,M2 ∈ [I]P
we have M1 ≡ M2. The above observation and Lemma 2 lead directly to the fol-
lowing model checking algorithm: given an IDTMC I, pick a DTMC M1 ∈ [I]P ,
then for all ω-QPCTL state formulas φ, we have [[φ]]M1 = [[φ]]IP . This is because
for all M2 ∈ [I]P we have [[φ]]M1 = [[φ]]M2 . Thus we obtain a polynomial time
model checking algorithm for PUMC semantics for ω-QPCTL, by just picking a
DTMC M1 from [I]P and model checking M1.

Theorem 2. Given an IDTMC I and an ω-QPCTL state formula φQ, the set
[[φQ]]IP can be computed in O(|I| · () time, where |I| denotes the size of I and (
denotes the length of the formula φQ.

Model checking ω-PCTL. We will now present a PSPACE model checking
algorithm for ω-PCTL. The result is obtained by reduction to the existential
theory of reals, and using the PSPACE decision procedure for the existential
theory of reals [2]. Recall that for a DTMC M, an ω-PCTL formula φ and a state
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s of M, there is a formula Γ (M,φ, s) in the existential theory of reals such that
s |=M φ if and only if Γ (M,φ, s) is true; moreover, Γ (M,φ, s) is polynomial in
the size of M and length of φ, and Γ (M,φ, s) can be constructed in polynomial
time. Given an IDTMC I = (S, P̌, P̂, L), consider values 0 ≤ ps,s′ ≤ 1 for
all s, s′ ∈ S such that (a) P̌(s, s′) ≤ ps,s′ ≤ P̂(s, s′), for all s, s′ ∈ S; and
(b)

∑
s′∈S ps,s′ = 1, for all s ∈ S. Let us denote p for all the values ps,s′ .

We denote by I(p) = (S,P, L) the DTMC obtained by assigning ps,s′ for the
transition probability P(s, s′). Given an IDTMC I, an ω-PCTL formula φ and
a state s of I, we first observe that s ∈ [[φ]]IP if and only if for all M ∈ [I]P
we have s ∈ [[φ]]M, i.e., in other words, s '∈ [[φ]]IP if and only if there is a DTMC
M ∈ [I]P such that s |= ¬φ. Thus for an IDTMC I = (S, P̌, P̂, L), an ω-PCTL
formula and a state s we obtain a formula Φ(I,φ, s) in the existential theory of
reals such that s '∈ [[φ]]IP if and only if Φ(I,φ, s) is true. The formula Φ(I,φ, s)
is as follows:

Φ(I,φ, s) = ∃p.
∧

s,s′∈S

(
P̌(s, s′) ≤ ps,s′ ≤ P̂(s, s′)

)
∧

∧
s∈S

( ∑
s′∈S ps,s′ = 1

)
∧

s,s′∈S

(
P̂(s, s′) > 0 ⇒ ps,s′ > 0

)
∧

∧
Γ (I(p),¬φ, s)

The first two sets of constraints specify the transition probability restriction
on p such that p represents a valid probability transition for M ∈ [I]. The
third set of constraints specify that if P̂(s, s′) > 0, then ps,s′ > 0, and thus
ensures that p represents a valid probability transition for M ∈ [I]P . The last
constraint specifies that the DTMC I(p) satisfies ¬φ at s. Note that the formula
Γ (I(p),¬φ, s) has the same form for all M ∈ [I]P , because for all M1,M2 ∈
[I]P , M1 ≡ M2. This is not the case if

∧
s,s′∈S

(
P̂(s, s′) > 0 ⇒ ps,s′ > 0

)
does

not hold as in UMC. Therefore, this model checking algorithm is not applicable
for UMCs. Since the existential theory of reals can be decided in PSPACE [2],
we have the following theorem.

Theorem 3. Given an IDTMC I and an ω-PCTL state formula φ, the set [[φ]]IP

can be computed in space polynomial in size of I times the length of φ.

Hardness of PCTL model checking. We next demonstrate the intractabil-
ity of the model checking problem for PUMC by reducing the satisfiability and
validity of propositional boolean formulas to the model checking problem. Con-
sider a propositional boolean formula ϕ over the propositions {p1, . . . , pm}. We
consider the UMC I = (S, P̌, P̂, L) where

– S = {sI , s1, . . . , sm, s⊥}
– L(sI) = L(s⊥) = {}, L(si) = {pi} for each 1 ≤ i ≤ m
– P̌(sI , si) = 1/m3 and P̂(sI , si) = 1/m for all 1 ≤ i ≤ m
– P̌(sI , s⊥) = 1/m3 and P̂(sI , s⊥) = 1
– P̌(si, si) = P̂(si, si) = 1 for all 1 ≤ i ≤ m
– P̌(si, sj) = P̂(si, sj) = 0 for all 1 ≤ i ≤ m and 1 ≤ j ≤ m and i '= j
– P̌(s⊥, s⊥) = P̂(s⊥, s⊥) = 1

We consider the PCTL formula φ′ obtained from φ by syntactically replacing
every occurrence of pi in φ by P> 1

2m
(Xpi) for 1 < i < m.
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Lemma 3. The following assertions hold: (a) ϕ is satisfiable iff sI ∈ [[¬φ]]IP ;
and (b) ϕ is valid iff sI ∈ [[φ]]IP .

Proof. Suppose ϕ is satisfiable and let a be the satisfying assignment. Consider
the DTMC Ma, where P(sI , si) = 1

2m if a(pi) = false and P(sI , si) = 1
m+1 if

a(pi) = true; P(sI , s⊥) is thus determined by this assignment. It is easy to see
that Ma ∈ [I] and Ma |= φ. Similarly, if M ∈ [I] such that M |= φ, then we
can construct a satisfying assignment for ϕ: a(pi) = false if P(sI , si) ≤ 1

2m and
a(pi) = true if P(sI , si) > 1

2m . These observations also imply that ϕ is valid iff
sI ∈ [[φ]]IP . ,-

Since the satisfiability of general propositional boolean formulas is NP-hard
and the validity of general propositional boolean formulas is coNP-hard [10], the
lower bounds follow immediately from Lemma 3.

Theorem 4. Given an IDTMC I, a PCTL formula φ, and a state s of I the
decision problem of whether s ∈ [[φ]]IP is NP-hard and coNP-hard.

6 UMC Model Checking

In this section we present a PSPACE model checking algorithm for UMC se-
mantics. The PSPACE algorithm is obtained by a reduction to PUMC model
checking. The basic reduction is obtained by partitioning the set of DTMCs [I]
of IDTMC I into several PUMCs.

Partitioning [I] of an IDTMC I. Given an IDTMC I = (S, P̌, P̂, L), let
B = {(s, s′) | s, s′ ∈ S, P̌(s, s′) = 0 and P̂(s, s′) > 0} be the set of transitions
that have a positive upper bound and the lower bound is 0. We consider the
following set of IDTMCs IB for B ⊆ B: we have IB = (S, P̌, P̂B , L) such that
P̂B(s, s′) = 0 if (s, s′) ∈ B; and P̂(s, s′) otherwise. In other words, in IB the
upper of the transition probabilities for the set B is set to 0, and otherwise it
behaves like I. The key partitioning property is as follows: [I] =

⋃
B⊆B[IB]P ,

i.e., the union of the DTMCs obtained from the PUMCs semantics of IB is the
set of DTMCs obtained from the UMC semantics of [I]. Thus we obtain that
for all ω-PCTL formulas φ we have [[φ]]I =

⋂
B⊆B[[φ]]IB

P
.

Model checking ω-QPCTL. The model checking problem for IDTMCs for
ω-QPCTL formulas under UMC semantics can be solved in coNP. Given an
IDTMC I, an ω-QPCTL formula φ, and a state s, to show that s '∈ [[φ]]I , it
suffices to guess B ⊆ B and prove that s '∈ [[φ]]IB

P
. Hence the guess (or the witness)

is B and Theorem 2 provides the polynomial time verification procedure. Hence
we obtain the following theorem.

Theorem 5. Given an IDTMC I, an ω-QPCTL state formula φQ, and a state
s of I whether s ∈ [[φQ]]I can be decided in coNP.

Model checking ω-PCTL. Similar to the model checking algorithm for the
ω-QPCTL, we can obtain a NPSPACE model checking algorithm, by guessing
B ⊆ B and then using the PSPACE model checking algorithm for ω-PCTL for
PUMC semantics.

10



Theorem 6. Given an IDTMC I and an ω-PCTL state formula φ, the set [[φ]]I
can be computed in space polynomial in size of I times the length of φ.

Hardness of PCTL model checking. The hardness result follows from the
result for PUMC. In the hardness proof for PUMC, the IDTMCs I considered
satisfied that [I] = [I]P ; and hence the UMC and PUMC semantics coincide for
I. This gives us the following result.

Theorem 7. Given an IDTMC I, a PCTL formula φ, and a state s of I the
decision problem of whether s ∈ [[φ]]I is NP-hard and coNP-hard.

7 IMDP Model Checking

We consider the problem of model checking IMDPs in this section. We will solve
the problem by showing that we can reduce IMDP model checking to model
checking (classical) a Markov Decision Process (MDP). Before presenting this
reduction we recall some basic properties of the feasible solutions of a linear
program and the definition of an MDP.
Linear programming. Consider an IMDP I = (S, P̌, P̂, L). For a given s ∈ S,
let IE(s) be the following set of inequalities over the variables {pss′ | s′ ∈ S}:∑

s′∈S pss′ = 1, where P̌(s, s′) ≤ pss′ ≤ P̂(s, s′) for all s′ ∈ S.

Definition 4. A map θs : S → [0, 1] is called a basic feasible solution (BFS) to
the above set of inequalities IE(s) iff {pss′ = θs(s′) | s′ ∈ S} is a solution of
IE(s) and there exists a set S′ ⊆ S such that |S′| ≥ |S| − 1 and for all s′ ∈ S′

either θs(s′) = P̌(s, s′) or θs(s′) = P̂(s, s′).

Let Θs be the set of all BFS of IE(s). The set of BFS of a linear program
has the special property that every other feasible solution can be expressed as
a linear combination of basic feasible solutions. This is the content of the next
proposition.

Proposition 1. Let {pss′ = p̄ss′ | s′ ∈ S} be some solution of IE(s). Then there
are 0 ≤ αθs ≤ 1 for all θs ∈ Θs, such that

p̄ss′ =
∑

θs∈Θs αθsθs(s′) for all s′ ∈ S and
∑

s∈S αθs = 1

Lemma 4. The number of basic feasible solutions of IE(s) in the worst case can
be O(|S|2|S|−1).

Markov Decision Processes (MDP). A Markov decision process (MDP)
is a Markov chain that has non-deterministic transitions, in addition to the
probabilistic ones. In this section we formally introduce this model along with
some well-known observations about them.

Definition 5. If S is the set of states of a system, a next-state probability
distribution is a function µ : S → [0, 1] such that

∑
s∈S µ(s) = 1.

11



Definition 6. A Markov decision process (MDP) is a 3-tuple D = (S, τ, L),
where (1) S is a finite set of states; (2) L : S → 2AP is a labeling function that
maps states to sets of atomic propositions from a set AP; and (3) τ is a function
which associates to each s ∈ S a finite set τ(s) = {µs

1, . . . , µ
s
ks
} of next-state

probability distributions for transitions from s.

A path π in an MDP D = (S, τ, L) is a non-empty sequence of the form
s0

µ1→ s1
µ2→ . . ., where si ∈ S, µi+1 ∈ τ(si), and µi+1(si+1) > 0 for all i ≥ 0.

A path can be either finite or infinite. We use πfin to denote a finite path. Let
last(πfin) be the last state in the finite path πfin. As in DTMC, we denote the
ith state in a path π by π[i] = si. We let Path(s) and Pathfin(s) be the set
of all infinite and finite paths, respectively, starting at state s. To associate a
probability measure with the paths, we resolve the non-deterministic choices by
a randomized adversary, which is defined as follows:

Definition 7. A randomized history dependent adversary A of an MDP
D is a function mapping every finite path πfin of D and an element of
the set τ(last(πfin)) to [0, 1], such that for a given finite path πfin of D,∑

µ∈τ(last(πfin)) A(πfin)(µ) = 1. Let AD denote the set of all possible random-
ized history dependent adversaries of the MDP D. An adversary is memoryless
if it is independent of the history and only depends on the current state. Let
PathA(s) denote the subset of Path(s) which corresponds to an adversary A.

The behavior of an MDP under a given randomized adversary is purely prob-
abilistic. If an MDP has evolved to the state s after starting from the state sI

and following the finite path πfin, then it chooses the next-state distribution
µs ∈ τ(s) with probability A(πfin, µs). Then it chooses the next state s′ with
probability µs(s′). Thus the probability that a direct transition to s′ takes place
is

∑
µs∈τ(s) A(πfin, µs)µs(s′). Thus as for IMDPs, one can define DTMC DA that

captures the probabilistic behavior of MDP D under adversary A and also asso-
ciate a probability measure on execution paths. Given an MDP D, an ω-PCTL
formula ϕ, and a state s we can define when s |=D ϕ in a way analogous to the
IMDPs.
The reduction. We are now ready to describe the model checking algorithm
for IMDPs. Consider an IMDP I = (S, P̌, P̂, L). Recall from the description of
linear programming that we can describe the transition probability distributions
from state s that satisfy the range constraints as the feasible solutions of the
linear program IE(s). Furthermore, we denote by Θs the set of all BFS of IE(s).
Define the following MDP D = (S′, τ, L′) where S′ = S, L′ = L, and for all
s ∈ S, τ(s) = Θs. Observe that D is exponentially sized in I, since τ(s) is
exponential (see Lemma 4). The main observation behind the reduction is that
the MDP D “captures” all the possible behaviors of the IMDP I. This is the
formal content of the next proposition. Theorem 8 follows from the following
proposition.

Proposition 2. For any adversary A for I, we can define a randomized adver-
sary A′ such that ProbI

A

s = ProbDA′

s for every s, where ProbXA

s is measure on
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paths from s defined by X under A. Similarly for every adversary A for D, there
is an adversary A′ for I that defines the same probability measure on paths.

Theorem 8. Given an IMDP I, for all ω-PCTL formulas ϕ and for all states
s, we have s |=I ϕ iff s |=D ϕ.

Thus, in order to model check IMDP I, we can model check the MDP D. The
model checking algorithm for MDPs requires the solution of MDPs with infini-
tary path formulas, and solution of MDPs with PCTL formulas. Algorithms that
run in polynomial time (and space) for MDPs with Büchi and coBüchi conditions
are known from [4, 7], and it is straightforward to extend the algorithms to in-
finitary path formulas that are obtained as conjunction and disjunction of Büchi
and coBüchi conditions. Algorithms that run in polynomial time (and space) for
MDPs with PCTL formulas are available in [1, 17]. Thus, if we directly model
check D we get an EXPTIME model checking algorithm for I. However, we can
improve this to get a coNP procedure. The reason for this is that it is known that
as far as model checking MDPs is concerned, we can restrict our attention to
certain special class of memoryless adversaries, i.e., adversaries that always pick
a fixed probability distribution over a set of non-deterministic choices whenever
a state is visited. It follows from the results of [3] that in MDPs with Müller
conditions (that subsumes the infinitary path formulas of ω-PCTL) an uniform
randomized memoryless optimal strategy exists such that the size of the support
of the memoryless optimal strategy is bounded by the size of the state space.
Formally, we have the following lemma.

Lemma 5. For an MDP D = (S, τ, L) and an infinitary path formula ψω, there
exists an randomized memoryless adversary A such that (1) (Support of size at
most |S|). for all s ∈ S we have |Supp(A(s))| ≤ |S|; (2) (Uniform). for all s ∈ S
and µ ∈ Supp(A(s)) we have A(s)(µ) = 1

|Supp(A(s))| ; and (3) (Optimal). for all

s ∈ S we have ProbD
A

s (ψω) = supA′∈A ProbDA′

s (ψω).

The existence of deterministic memoryless strategies for formulas in PCTL
(where the sub-formulas are already evaluated) for MDPs follows from the results
of [1, 17]. Thus we obtain the following theorem.

Proposition 3 ([1, 17, 3]). Let D = (S, τ, L) be an MDP. Let Aunf be the set
of uniform randomized memoryless adversaries with support of size at most |S|
for MDP D, i.e., for all A ∈ Aunf , A(s)(µ) = 1

|Supp(A(s))| for µ ∈ Supp(A(s))
and |Supp(A(s))| ≤ |S|. Consider an ω-PCTL formula ϕ = P#$p(ψ) such that the
truth or falsity of every subformula of ψ in every state of D is already determined.
Then D |= ϕ iff DA |= ϕ for all A ∈ Aunf .

For every subformula of the form ϕ = P#$p(ψ), if the formula ϕ is not true at
a state s, in the IMDP semantics, then we can guess A ∈ Aunf and then verify
that in DA the formula ϕ is not true at s. The witness A is the polynomial witness
and the polynomial time algorithm for Markov chains presents the polynomial
time verification procedure. In case of general formulas, the above procedure
needs to be applied in a bottom up fashion.
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Theorem 9. Given an IDTMC I and an ω-PCTL state formula φ, and a state
s, whether the state s |= φ under the IMDP semantics can be decided in coNP.

Lower bound. It follows from the results of [6] that the model checking problem
for DTMCs with PCTL formulas is PTIME-hard. Since DTMCs are a special
case of IMDPs, the PTIME-time lower bound follows for model checking IMDPs
with PCTL and ω-PCTL formulas.

8 Model Checking of Linear Time Formulas

Finally, we consider the model checking problem of IDTMCs with LTL formulas.
In other words, we consider LTL path formulas ψ, and formulas of the form
P#$p(ψ). For the model checking problem we apply the following procedure: we
first convert ψ to an equivalent non-deterministic Büchi automata [20], and then
determinize it to obtain an equivalent deterministic Rabin automata Q(ψ) [16].
The deterministic Rabin automata Q(ψ) has 22l

states, where l is the length
of the formula ψ, and has 2l Rabin pairs. Given a IDTMC I and a formula
ϕ = P#$p(ψ), the model checking problem for the UMC and IMDP semantics
are solved as follows. In both case we construct the Rabin automata Q(ψ).

1. For the IMDP semantics, we construct the product IDTMC of I and Q(ψ),
denoted as I × Q(ψ), and solve it under the IMDP semantics with respect
to a Rabin objective (applying the results of Section 7).

2. For the PUMC semantics, we construct the product IDTMC of I and Q(ψ),
denoted as I×Q(ψ). For the formula ϕ, we write a formula in the existential
theory of reals: the formula is similar to the formula of Section 5 with the
additional constraints that for two states in I×Q(ψ), if the state component
of I is the same, then the chosen distribution at the states must also be
same, i.e., for two states (s, q1) and (s, q2) we require that the probability
distribution chosen from the interval must be the same. The result for UMC
semantics is similar. We thus obtain the following result.

Theorem 10. Given an IDTMC I, an LTL path formula ψ, and a state formula
φ = P#$p(ψ), the following assertions hold: (1) the sets [[φ]]IP and [[φ]]I can be
computed in PSPACE in the size of I and 2EXPTIME in the length of the
formula ψ; and (2) given a state s, whether the state s |= φ under the IMDP
semantics can be decided in coNP in the size of I and 2EXPTIME in the length
of the formula ψ.

9 Conclusion

We have investigated the model checking problem of ω-PCTL and its qualitative
fragment for three semantic interpretations of IDTMCs, namely UMC, PUMC
and IMDP. We proved upper bounds and lower bounds on the complexity of the
model checking problem for these models. Some of our bounds however are not
tight. Finding tight lower and upper bounds for these model checking problems
is an interesting open problem. We also present model checking algorithm for
LTL formulas.
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