
Properties of OptL, #L and UL and their relation with NL
class

A Report Submitted
in Partial Fulfillment of the Requirements

for the Degree of

Bachelor of Technology

by
Koushik Sen (95131)
Vivek Tandon (95338)

to the

Department of Computer Science & Engineering

Indian Institute of Technology Kanpur
October, 2003

Certificate

Certified that the work contained in the report entitled “Prop-

erties of OptL, #L and UL and their relation with NL class”,

by Koushik Sen (95131) and Vivek Tandon (95338), has been

carried out under my supervision and that this work has not

been submitted elsewhere for a degree.

Dr. Manindra Agarwal

October, 2003

ii

Preface

We show that the Opt function of an NL machine having a polynomial number of

distinct outputs can be computed by an FL(NL) function. A similar result for #L

class is also proved.Using similar technique we also prove that a restricted FewL

is contained in UL. It is also shown that, provided UL = co-UL, the computation

of an NL machine having a constant number of accepting outputs can be done

unambiguously.

iii

Acknowledgements

We would like to thank Dr. Manindra Agarwal for his invaluable guidance and

immense patience, without whose help, our proofs would have never seen the light

of the day.

iv

Contents

Preface iii

Acknowledgements iv

1 Introduction 1

2 Definitions and known results 3

2.1 Definitions . 3

2.2 Known Results . 5

3 Relation between FL(NL) and OptL 7

4 StrongFewL and UL 10

4.1 Relation between StrongFewL and UL 10

4.2 Relation between ConstL and UL . 12

5 Conclusions 14

5.1 Suggestion for future work . 14

A 16

A.1 Inductive double counting method 16

Bibliography 20

v

Chapter 1

Introduction

Nondeterministic and unambiguous logspace-bounded computation have been the

focus of much work in theoretical study in computer science. Of special interest in

this category are the NL and the UL classes.

The OptL class is an interesting counting variant of the class NL. The complexity

of the OptL class poses interesting questions, of particular interest is its relationship

with the FL(NL) class. Alvarez and Jenner [AJ93], have shown some interesting

results regarding the OptL class. They have shown that FL(NL) ⊆ OptL. An

important result “OptLp ⊆ FL(NL)”, is proved here. For proving the above result,

we use an interesting technique that allows us to distinguish the accepting paths for

FewL machine.

The technique is discussed in the following chapters. It is applied for making a

nondeterministic class unambiguous.

It is an open question whether NL and the unambiguous version of NL, i.e,

(UL), belong to the same complexity class. Reinhardt and Allender have shown

that NL ⊆ UL/poly [RA97] using randomization and the concept of min-unique

graphs. The technique developed in the earlier problem is used along with the

concept of min-uniqueness to show that UL = StrongFewL.

It is not known whether UL = co-UL. Assuming that this is true, it is shown

here that UL = NL with the restriction that there are at most a constant number

of accepting paths, i.e, UL = ConstL.

1

The paper is organized as follows:

• Chapter 2: This chapter consists of the definitions and the results already

known and relevant to this work.

• Chapter 3: This chapter talks about an important technique to distinguish

between the accepting paths of FewL machine and the relation between OptL

class and the FL(NL) class for a restricted case is proved.

• Chapter 4: This chapter gives unambiguous machines for NL machines under

certain restrictions.

• Chapter 5 : This chapter gives suggestions for future work.

The appendix consists of detailed proofs.

2

Chapter 2

Definitions and known results

2.1 Definitions

NL-transducer :A non-deterministic logarithmic space-bounded Turing ma-

chine with unbounded output tape and accepting and rejecting states. The output

y of a computation of a transducer T on input x is the contents of T ′s output tape

when T halts. An output is considered to be ”valid” if T halts in an accepting state.

FL(NL) : {f | f is computed by some L-transducer that has access to an oracle

from NL }

FNL : {f | f is computed by some single-valued NL-transducer }

fmaxDFA, fmaxNFA : Input : An encoding of a DFA(NFA) M and a string

x ∈ {0, 1}∗ .

Output : Lexicographically greatest word y ∈ L(M) with y ≤ x. (If no such word

exists, output is ⊥.)

OptM : For a transducer M, optM denotes the function from {0, 1}∗ to N such

that optM(x) is the maximum valid output value of M on input x with respect to

lexicographic order.

3

OptL : {f | f = optT for some NL transducer T }

OptLp : {f | f = optT for some NL transducer T having at most polynomial

number of valid outputs}.

accM : For an NL machine M, accM denotes the function from {0, 1}∗ to N

such that accM(x) is the number of accepting computations of M on x.

#L : {f | f = accM for some NL machine M }

#Lp : {f | f = accM for some NL machine M having at most polynomial num-

ber of accepting paths }.

UL : A language A is in UL if and only if there is a nondeterministic logspace

machine M accepting A such that, for every x, M has at most one accepting com-

putation on input x.

FewL : FewL is the class of languages accepted by an NL machine having poly-

nomial number of accepting paths.

C/poly : Given any complexity class C, C/poly is the class of languages A

for which there exists a sequence of ”advice strings” (α(n) | n ∈ N) and a language

B ∈ C such that x ∈ A if and only if (x, α(| x |)) ∈ B.

StrongFewL : StrongFewL is the class of languages accepted by an NL ma-

chine with the restriction that there are at most polynomial number of paths between

the starting configuration and any other configuration.

ConstL : ConstL is the class of languages accepted by an NL machine having

a constant number of accepting paths.

4

min-unique graphs : Graphs where the shortest distance between every pair

of nodes is achieved by a unique path.

Critical Node: A node v of a graph G1 (directed graph without any cycle and

having two distinct nodes s and t) is said to be a critical node if it is either s or

t, or if v lies on a path from s to t and if either

• v is connected to s and forks into two new paths leading to t, or

• v is connected to t and two paths from s meet at v.

Critical subgraph: A critical subgraph G’ of a graph G2 (directed graph

without any cycle and having two distinct nodes s and t) is a subgraph of G con-

sisting of only the critical nodes of G and satisfying the following properties:

• There is an edge from node v1 to v2 of G’ if and only if there is a path from

v1 to v2 in the graph G and no other critical node v lies on the path.

• If there are two paths from v1 to v2 in G containing no critical nodes, then

there are two edges from v1 to v2 in graph G’.

It is obvious from the definition that the number of paths from s to t in both the

graphs G and G’ are same.

2.2 Known Results

Alvarej and Jenner [AJ93] have studied the properties of the OptL and FL(NL)

classes and have obtained important results related to these two classes. The ques-

tion of how to make nondeterminism unambiguous has been studied by Allender and

Reinhardt [RA97]. Important results relevant to our work have been given below:

• It has been shown that fmaxNFA is log-space many-one complete for OptL while

fmaxDFA ∈ FL(NL). [AJ93]

1the out degree of any node is assumed to be at most two
2the out degree of any node is assumed to be at most two

5

• FL(NL) = FNL. [AJ93]

• FNL ⊆ OptL. [AJ93]

• NL = UL/poly . [RA97]

6

Chapter 3

Relation between FL(NL) and

OptL

Lemma 3.1 Given numbers, k1, k2, . . . , kt , where ∀i ki ≤ 2n and t ≤ p(n) and

ki 6= kj for all i 6= j , there exists a prime number p < p3(n)n2 such that for all i

and j and i 6= j , ki mod p 6= kj mod p.

Proof: Consider all primes p1, ..., pl upto p3(n)n2. By Prime number theorem,

there are at least p3(n)n2

3 log p(n)+2 log n
> p2(n)n primes. Suppose, for some fixed i and

j, i 6= j, there are more than n primes such that for each such prime p, ki ≡ kj

(modp). Then by Chinese Remaindering Theorem ki ≡ kj modulo the product of

all such primes. But the product of all such primes is greater than 2n. Since both

ki and kj are less than 2n, we get ki = kj which contradicts our assumption. Hence,

there can be at most n such primes. Let us call these primes as bad primes. Now,

for each pair ki, kj we have at most n bad primes. There are at most p2(n) pairs,

hence, at most p2(n)n bad primes. Hence, we can find a prime p in the range 2 -

p3(n)n2 such that for all i and j and i 6= j, ki mod p 6= kj mod p.

Theorem 3.2 OptLp ⊆ FL(NL).

Proof: Let M be an NL transducer having polynomial number of valid outputs

and let f be the OptM function. We show the construction of a FL(NL) machine

which compute the same function f .

7

The L-transducer first calculates l, the length of the maximum output of machine

M on input x. For this, we place repeated queries to an oracle Ac, where A is defined

as:

A = {< M,x, i >| machine M has an output of length ≥ i on input x}.
Clearly, A ⊆ NL and so is Ac. To calculate l, the L-transducer places repeated

queries (< M,x, 1 >,< M, x, 2 >, . . . , < M, x, i >, . . .) to the oracle Ac and finds

the first i for which < M, x, i > is in Ac. Hence, l = i− 1 and it can easily be seen

that l is polynomial in n where n =| x |.
Machine M has polynomial number of valid outputs, each having a length bounded

by a polynomial in n (say m). So, each output can be represented by m bits. By

Lemma 3.1 it can be shown that there exists a prime q ≤ m4 such that the integer

representations of all the valid outputs P1, P2, . . . , Pm taken mod q are all distinct,

i.e, Pi mod q = wi and all wi’s are distinct. The wi’s can be represented by O(log m)

bits. Thus, the representation of all the valid outputs can be hashed to O(log m)

and hence O(log n) bits without any collisions.

To find q, queries are sent to an oracle Bc, where B is defined as:

B = {< M, x, q >| on input x, there are at least two accepting

paths of M whose outputs are distinct but when taken mod q,

have the same value }.
B lies in NL. (The corresponding NL machine guesses two paths and computes

the mod q of their outputs in parallel and verifies whether the mods are equal and

the paths are accepting.)

Now, the machine does the following:

wmax = 1

for i := 1 to q − 1

begin

if < M, x, i, wmax >∈ C

wmax = i

end

output wmax

where C is defined as:

8

C = {< M,x, wi, wj >| wi and wj represent valid outputs

and the output represented by wi is greater than

that by wj}.
Here C lies in NL. The corresponding NL machine guesses two paths and verifies

in parallel that the mods of their outputs are wi and wj and at the end verifies that

both the paths are accepting and the output represented by wi is greater than that

by wj.

Once the L-transducer gets wmax, it queries another oracle D to produce the

final output. Here D is defined as follows:

D = {< M,x, wmax, i, b >| on input x, the i’th bit of the

valid output of M with representation wmax has value b }
It is not hard to see that D lies in NL. The L-transducer obtains every bit of

output by making l(the number of bits in the output is exactly l) queries to oracle

D.

Theorem 3.3 #Lp ⊆ FL(NL).

Proof: The proof of this theorem can easily be inferred by slight modification

of the proof of the earlier theorem 3.2. Let M be an NL machine with at most

polynomial number of accepting paths. It can easily be seen that each accepting path

of M can be represented in binary; the representations are bounded by a polynomial.

By Lemma 3.1, we can find a prime p such that the integer representation of each of

the path taken mod p gives a different residue. Once the prime number p is found,

we can cycle through the residues, i.e, the numbers till p and check for each residue

whether a corresponding accepting path exists or not; if it does, we should increment

the counter by 1 (since the number of accepting paths is bounded by a polynomial,

a counter can be maintained in logspace), else do nothing and move over to the

next residue. The value of the counter at the end (when the cycle is complete) gives

the value of the #Lp function for the machine M .

9

Chapter 4

StrongFewL and UL

4.1 Relation between StrongFewL and UL

The following lemma is proved in [RA97].

Lemma 4.1 There is a logspace computable function f and a sequence of “advice

strings” α(n) | n ∈ N (where | α(n) | is bounded by a polynomial in n) with the

following properties:

• For any graph G on n vertices, f(G,α(n)) = 〈G1, . . . , Gn2〉.

• For each i, the graph Gi has an s-t path if and only if G has an s-t path.

• If G has a s-t path then there is some i such that Gi is a min-unique graph.

It is also shown that there is a nondeterministic logspace machine M that takes

as input a sequence of digraphs 〈G1, . . . , 〉, and processes each Gi in sequence, with

following properties:

• If Gi is not min-unique, M has a unique path that determines this fact and

goes onto process Gi+1; all other paths are rejecting.

• If Gi is a min-unique graph with an s-t path, then M has a unique accepting

path.

• If Gi is a min-unique graph with no s-t path, then M has no accepting path.

10

This routine gives us the following lemma:

Lemma 4.2 Given a sequence of graphs 〈G1, . . . , Gk〉, satisfying the properties of

Lemma 4.4 , there exists a UL algorithm to determine s-t connectivity.

The proof of Lemma 4.2 is given in the appendix.

Combining the construction of Lemma 4.1 and Lemma 4.2 we get the following

theorem:

Theorem 4.3 NL ⊆ UL/poly

However, the need of “advice strings” in the Lemma 4.1 can be removed in the

case of the directed, layered graphs having at most polynomial number of paths

from s to any vertex in the graph. Such graphs represent the configuration graphs

of StrongFewL machines. We will call such graphs strong few graphs for conve-

nience. Our next lemma precisely does this derandomization.

Lemma 4.4 There is a logspace computable function f with the following properties:

• For any strong few graph G on n vertices, f(G) = 〈G1, . . . , Gp(n)〉.

• For each i, the graph Gi has an s-t path if and only if G has an s-t path.

• If G has a s-t path then there is some i such that Gi is a min-unique graph.

Proof: As the graph G is layered there can only be edges directed from vertices

at layer i to the vertices at layer i+1. We assume that the out degree of any vertex

in the graph G is at most 2. Given the graph G our logspace computable function

f returns a sequence of weighted graphs 〈G1, . . . , Gp(n)〉; the weights are assigned to

the edges of graph Gq in the following way:

• The edge from a vertex v at layer i is assigned weight 0 if the out degree of

the vertex v is 1.

• If the out degree of a vertex v at layer i is 2 then the left edge is assigned

weight 0 and the right edge is assigned a weight of 2i mod q (the distinction

between left and right edges can be done by considering the ordering of the

vertices).

11

It is obvious that graph Gq has an s-t path if and only if G has an s-t path (we

are not adding or removing any edge). Combining the result of Lemma 3.1 and the

fact that graph G has only polynomial number of paths from s to any other vertex,

we can see that there exists a prime p such that the weight of any path from s to

any other vertex of graph Gp is distinct. The value p(n) can be chosen as in Lemma

3.1. Thus there exists a min-unique graph in the sequence output by the function

f .

Combining this Lemma 4.4 and the construction of Lemma 4.2 we get the fol-

lowing theorem:

Theorem 4.5 StrongFewL ⊆ UL

4.2 Relation between ConstL and UL

Theorem 4.6 If UL = co-UL then ConstL ⊆ UL.

Proof: First of all we show that there is a UL machine M which when given

input 〈G, c〉, where G is a digraph with the assurance that it has at most c paths

from s to t, it will accept if and only if G has exactly c paths from s to t. For this

we consider the critical subgraph G’ of G. This graph G’ has either a constant

number of paths or no path from s to t. So G’ has constant number of nodes and

hence can be represented using logspace. The UL machine M guesses this critical

subgraph and verifies in logspace that it is the critical subgraph of G and that

it has c number of paths from s to t. If M wrongly guesses the critical subgraph

then M will obviously reject. It will also reject in the following two cases:

• M guesses the critical subgraph correctly but the number of paths from s

to t is less than c.

• M guesses a subgraph of G′ (in this case, the verification that it has c paths

from s to t will fail).

Hence the machine M will accept unambiguously if and only if G has c paths from

s to t.

12

Now if UL = co-UL then there exist another UL machine M c which will accept

if and only if M rejects and vice versa.

Input (G)

for c′ := c to 1 do (* where c is a large constant *)

begin

guess if M accepts 〈G, c′〉
if guess is yes then

begin

Run M on 〈G, c′〉
if M accepts 〈G, c′〉 then

Accept and halt

else reject

end

else (* guess is no *)

begin

Run M c on 〈G, c′〉
if M c accepts 〈G, c′〉 then

continue forloop

else reject

end

end

endfor

if c′ = 1 then reject.

We run the above routine. It can be easily seen that the routine accepts unam-

biguously if and only if there exists a s-t path in G and rejects otherwise.

13

Chapter 5

Conclusions

We have studied the counting and the optimization version of nondeterministic

logspace machine and also the unambiguous version of the NL class. We derived

important results for the NL machines with the restriction that the number of ac-

cepting paths of the machine is at most polynomial; the OptL and the #L functions

have been shown to be contained in the FL(NL) class for this machine.

Allender and Reinhardt [RA97] have used randomization to show that the NL

machine may be made unambiguous. We worked to derandomize the algorithm and

have shown that the NL machine under certain restrictions, i.e, the StrongFewL

machine can be made unambiguous. Also under the assumption that UL = co−UL,

it is shown that the NL machine with at most a constant number of accepting paths

can also be made unambiguous. This gives rise to the natural question whether UL

= NL.

5.1 Suggestion for future work

A lot of interesting open questions still remain to be answered and should be delved

into in the future.

• It has been shown that OptL class is contained in the FL(NL) class for the

NL machine having at most polynomial number of accepting paths. Alvarez

and Jenner [AJ93] have shown FL(NL) to be contained in OptL. Thus it is

14

a natural question whether OptL = FL(NL).

• It is a natural question is whether the randomized aspect of the construction

given by Allender and Reinhardt [RA97] can be removed to obtain UL = NL.

In fact there are other related questions like is UL = FewL and UL = co−UL.

15

Appendix A

A.1 Inductive double counting method

This method is given by Reinhardt and Allender, [RA97]; it is given in this appendix

for the sake of completeness.

Lemma A.1 Given a sequence of graphs 〈G1, . . . , Gk〉, satisfying the properties of

Lemma 4.4 , there exists a UL algorithm to determine s-t connectivity.

Proof:

The UL machine M processes each graph Gi in sequence, uniquely determines

whether Gi is min-unique with a s-t path or not; if Gi is not min-unique, it moves

on to Gi+1, if Gi is a min-unique with a s-t path, it accepts it unambiguously while,

if Gi has no s-t path, M has no accepting path.

The technique used here is known as the double counting method since in each

stage, we count not only the number of vertices having distance at most k from the

start vertex, but also the sum of the lengths of the shortest path to each such vertex.

In the following description, these numbers are denoted by ck and
∑

k respectively.

Let us use the notation d(v) to denote the length of the shortest path in the graph

G from the start vertex to v. (If no such path exists, then d(v) = n+1.)Thus using

this notation,
∑

k =
∑
{x|d(x)≤k} d(x).

A useful observation is that if the subgraph of G having a distance at most k from

the start vertex is min-unique (and if the correct values of ck and
∑

k are provided

), then an unambiguous logspace machine can on input (G, k, ck,
∑

k, v) compute the

16

boolean predicate ”d(v) ≤ k”. This is achieved by the routine shown below.

Input (G, k, ck,
∑

k, v)

count := 0; num := 0; path.to.v := false ;

for each x ∈ V do

Guess nondeterministically if d(x) ≤ k.

if the guess is d(x) ≤ k then

begin

Guess a path of length l ≤ k from s to x

(if this fails, then halt and reject).

count := count + 1; sum := sum + l;

if x = v then path.to.v := true;

end

endfor

if count = ck and sum =
∑

k

then return the Boolean value of path.to.v

else halt and reject

end.procedure

To see that the routine is unambiguous, note the following :

• if the routine ever guesses incorrectly for some vertex x that d(x) > k, then the

variable count will never reach ck and the routine will reject. Thus the only

paths that run to completion guess correctly exactly the set {x | d(x) ≤ k}.

• If the routine ever guesses incorrectly the length l of the shortest path to x,

then if d(x) > l no path of length l will be found, and if d(x) < l, then the

variable sum will be incremented by a value greater than d(x). In the latter

case, at the end of the routine, sum will be greater then
∑

k, and the routine

will reject.

Clearly, the subgraph having distance at most 0 from the start vertex is min-

unique, and c0 = 1 and
∑

0 = 0. A key part of the construction involves computing

17

ck and
∑

k from ck−1 and
∑

k−1, at the same time checking that the subgraph having

distance at most k from the start vertex is min-unique. It is easy to see that ck is

equal to ck−1 plus the number of vertices having d(v) = k. Note that d(v) = k if

and only if it is not the case that d(v) ≤ k − 1 and there is some edge (x, v) such

that d(x) ≤ k − 1. The graph fails to be min-unique if and only if there exist some

v and x as above, as well as some other x′ 6= x such that d(x′) ≤ k − 1 and there is

an edge (x′, v). The formal code is given below :

Input (G, k, ck−1,
∑

k−1)

Output (ck,
∑

k), and also the flag BAD.GRAPH

ck := ck−1;
∑

k :=
∑

k−1;

for each vertex v do

if ¬(d(v) ≤ k − 1) then

for each x such that (x, v) is an edge do

if d(x) ≤ k − 1 then

begin

ck := ck + 1;
∑

k :=
∑

k +k;

for x′ 6= x do

if (x, v) is an edge and d(x′) ≤ k − 1

then BAD.GRAPH := true

endfor

end

endfor

endfor At this point, the values of ck and
∑

k are correct.

Given the sequence 〈G1, . . . , Gr〉, the routine processes each Gi in turn. If Gi

is not min-unique (or more precisely, if the subgraph of Gi that is reachable from

the start vertex is not a min-unique graph), then one unique computation path of

the routine returns the value BAD.GRAPH and goes on to process Gi+1; all other

computation paths halt and reject. Otherwise, if Gi is min-unique, the routine has

18

a unique accepting path if Gi has an s-t path, and if this is not the case the routine

halts with no accepting computation paths.

Input (G)

BAD.GRAPH := false; c0 := 1;
∑

0 := 0; k := 0

repeat

k := k + 1

compute ck and
∑

k from (ck−1,
∑

k−1)

until ck−1 = ck or BAD.GRAPH = true. If BAD.GRAPH = false then there is

an s-t path in G if and only if d(t) ≤ k.

19

Bibliography

[AJ93] Alvarez and Jenner, A very hard log-space counting class Theoretical

Computer Science 107 (1993)3-30

[AJ95] Alvarez and Jenner, A Note on Logspace Optimization Computational

Complexity 5 (1995), 155-166

[RA97] K. Reinhardt and E. Allender, Making Nondeterminism Unambigu-

ous. In 38th IEEE Symposium on Foundations of Computer Science

(FOCS), page 244-253, 1997.

[BJLR] G. Buntrock, B Jenner, K, J Lange, Rossmanith, Unambiguity and

fewness for logarithmic space, vol 529 of Lecture Notes in Computer

Science,168 - 179.

[Pap] Papadimitrou’, Computational complexity.

20

