
Formal Modeling and Analysis of DoS
Using Probabilistic Rewrite Theories∗

Gul Agha, Michael Greenwald, Carl A. Gunter, Sanjeev Khanna
Jose Meseguer, Koushik Sen, and Prasannaa Thati†

Abstract

Existing models for analyzing the integrity and confidentiality of protocols need to be extended to enable
the analysis of availability. Prior work on such extensionsshows promising applications to the development of
new DoS countermeasures. Ideally, it should be possible to apply these countermeasures systematically in a
way that preserves desirable properties already established. This paper investigates a step toward achieving this
ideal by describing a way to expand term rewriting theories to include probabilistic aspects that can be used to
show the effectiveness of DoS countermeasures. In particular, we consider the shared channel model, in which
adversaries and valid participants share communication bandwidth according to a probabilistic interleaving
model, and a countermeasure known as selective verificationapplied to the handshake steps of the TCP reliable
transport protocol. These concepts are formulated in a probabilistic extension of the Maude term rewriting
system, called PMAUDE. Furthermore, we formally verified the desired properties of the countermeasures
through automatic statistical model-checking techniques.

1 Introduction

There are well-understood models on which to base the analysis of integrity and confidentiality. The most common
approaches are algebraic techniques [6] based on idealized cryptographic primitives and complexity-theoretic
techniques [5] based on assumptions about complexity. There has also been progress on unified perspectives
that enable using the simpler algebraic techniques to prove properties like those ensured by the more complete
cryptographic techniques. However, neither of these approaches ortheir unifications are designed to approach
the problem of availability threats in the protocols they analyze. For example, suppose a protocol begins with a
sender sending a short message to a receiver, where the receiver’s first step is to verify a public key signature on
the message. A protocol like this is generally considered to be problematic because an adversarial sender can send
many packets with bad signatures at little cost to himself while the receiver will need to work hard to (fail to)
verify these signatures. Algebraic and complexity-theoretic analysis techniques ensure only that the recipient will
not be fooled by the bad packets and will not leak information as a result ofreceiving them. However, they do not
show that the receiver will be available to a valid sender in the presence ofone or more attackers.

In [7] we began an effort to explore a formal model for the analysis of DoS based on a simple probabilistic
model called the “shared channel” model. This effort showed that the shared channel model could be used to
prove properties of DoS countermeasures for authenticated broadcast that could be verified in experiments. We
have subsequently conducted a number of experiments to explore the application of such countermeasures to other
classes of protocols. The aim of this paper is to explore the prospects forusing the shared channel model as a

∗This work was supported in part by ONR Contract N00014-02-1-0715.
†Addresses of the authors: K. Sen, G. Agha, C. A. Gunter, J. Meseguer, University of Illinois at Urbana-Champaign; Michael Green-

wald, Lucent Bell Labs; Sanjeev Khanna, University of Pennsylvania; Prasannaa Thati, Carnegie-Mellon University,

1

foundation for extending term rewriting models of network protocols to cover DoS aspects of the protocols and
their modification with counter-measures. Our particular study is to investigate the use of a probabilistic extension
of the Maude rewrite system called PMAUDE and its application to understanding the effectiveness of a DoS
countermeasure known as “selective sequential verification” [7]. Thistechnique was explored for authenticated
broadcast in [7] but in the current paper we consider its application to handshake steps of the TCP reliable transport
protocol.

At a high level, our ultimate aim is to demonstrate techniques for showing how a network protocol can be
systematically “hardened” against DoS using probabilistic techniques while preserving the underlying correctness
properties the protocol was previously meant to satisfy. Specifically, given a protocolP and a set of properties
T , we would like to expandT to a theoryT ∗ that is able to express availability properties and show that a
transformationP ∗ of P meets the constraints inT ∗ without needing to re-prove the propertiesT thatP satisfied
in the restricted language. The shared channel model provides a mathematical framework for this extension.

In this paper, we develop a key element of this program: a formal languagein which to express the propertiesT ∗

and show that availability implications hold forP ∗. We attempt to validate this effort by showing its effectiveness
on a selective verification for TCP. In particular, we show how we can specify TCP/IP 3-way handshake protocol
in PMAUDE algebraically. First, we take a previously specified formal non-deterministicmodel of the protocol.
We then replace all non-determinism by probabilities. The resulting model with quantified non-determinism (or
probabilities) is then analyzed for quantitative properties such as availability. The analysis is done by combining
Monte-Carlo simulation of the model with statistical reasoning. In this way, we leverage the existing modelling
and reasoning techniques to quantified reasoning without interfering with the underlying non-quantified properties
of the model.

The rest of the paper is organized as follows. In Section 2, we give the preliminaries of DoS theory followed
by its application to TCP/IP 3-way handshaking protocol in Section 3. Then we briefly describe PMAUDE in
Section 4. In Section 5, we describe and discuss the algebraic probabilisticspecification of DoS hardened TCP/IP
protocol in PMAUDE. We describe the results of our analysis of some desired properties writtenin the query
language for the specification of TCP/IP protocol in Section 6.

2 DoS Theory

On the face of it, the conventional techniques for establishing confidentialityand integrity are inappropriate for
analyzing DoS, since they rely on very strong models of the adversary’scontrol of the network. In particular, they
assume that the adversary is able to delete packets from the network at will. An adversary with this ability has an
assured availability attack. Typical analysis techniques therefore adaptthis assumption in one of two ways. A first
form of availability analysis is to focus on the relationship between the senderand the attacker and ask whether
the attacker/sender is being forced to expend at least as much effort asthe valid receiver. In our example, this
is an extremely disproportionate level of effort, since forming a bad signature is much easier than checking that
it is bad. Thus the protocol is vulnerable to the imposition of a disproportionateeffort by the receiver. This is
a meaningful analysis, but it does not answer the question of whether a valid sender will experience the desired
availability. A second form of availability analysis is to ask whether the receiver can handle a specified load. For
instance, a stock PC can check about 8000 RSA signatures each second, and it can receive about 9000 packets
(1500 bytes per packet) each second over a 100Mbps link. Thus a receiver is unable to check all of the signatures it
receives over such a channel. A protocol of the kind we have envisioned is therefore deemed to be vulnerable to a
signature floodattack based on cycle exhaustion. By contrast, a stock PC can check the hashes on 77,000 packets
each second, so a receiver that authenticates with hashes can serviceall of its bandwidth using a fraction of its
capacity. This sort of analysis leads one to conclude that a protocol based on public key signatures is vulnerable
to DoS while one based on hashes is not.

2

These techniques are sound but overly conservative, because theydo not explicitly account for the significance
of valid packets that reach the receiver. Newer techniques for analyzing DoShave emerged in the last year that
provide a fresh perspective by accounting for this issue. In essence, these new models are both more realistic for
the Internet and suggest new ideas for countermeasures. We refer toone basic version of this new approach as the
shared channel model. The shared channel model is a four-tuple consisting of the minimum bandwidth W0 of the
sender, the maximum bandwidthW1 of the sender (whereW0 ≤ W1), the bandwidthα of the adversary, and the
loss ratep of the sender where0 ≤ p < 1. The ratioR = α/W1 is theattack factorof the model. WhenR = 1,
this is aproportionateattack and, whenR > 1, it is a disproportionateattack. As in the algebraic model, the
adversary is assumed to be able to replay packets seen from valid parties and flood the target with anything he can
form from these. But in the shared channel model he is not able to delete specific packets from the network. In
effect, he is able to interleave packets among the valid ones at a specified maximum rate. This interleaving may
contribute to the loss ratep of the sender, but the rate of loss is assumed to be bounded byp and randomly applied
to the packets of the sender.

The key insight that underlies the techniques in this paper arises from recognizing theasymmetrythe attacker
aims to exploit; his willingness to spend his entire bandwidth on an operation that entails high cost for the receiver
also offers opportunities to burden the attacker in disproportionate ways relative to the valid sender. This can be
seen in a simple strategy we callselective verification.The idea is to cause the receiver to treat the signature
packets she receives as arriving in anartificially lossy channel. The sender compensates by sending extra copies
of his signature packets. If the recipient checks the signature packets she receives with a given probability, then
the number of copies and the probability of verification can be varied to match the load that the recipient is able
to check. For example, suppose a sender sends a 10Mbps stream to a receiver, but this is mixed with a 10Mbps
stream of DoS packets devoted entirely to bad signatures. To relieve the recipient of the need to check all of these
bad signatures, the receiver can check signatures with a probability of 25%, and, if the sender sends about 20
copies of each signature packet, the receiver will find a valid packet witha probability of more than 99% even if
the network drops 40% of the sender’s packets. This technique is inexpensive, scales to severe DoS attacks, and is
adaptable to many different network characteristics.

3 SYN Floods as DoS for TCP/IP

TCP is an extremely common reliable bi-directional stream protocol that uses athree-way handshake to establish
connections. Glossing over many details, a sender initiates a connection by sending a packet with the SYN flag set
and an initial sequence number. The receiver responds by acknowledging the SYN flag, and sending back a SYN
with its ownsequence number. When the original sender acknowledges the receiver’s SYN (this ACK is the 3rd
packet in a 3-way handshake), then the connection is ESTABLISHED.

Each established connection requires a TCB (Transmission Control Block) at each end of the connection. The
TCB occupies a few hundred bytes of identification and control information, statistics, as well as a much larger
allocation of packet buffers for received data and (re)transmission queues. In most operating system kernels, both
packet buffer space and the number of available TCBs are fixed at boot time, and they constitute a limited resource.
This opens a significant vulnerability to adversaries who aim to overwhelm this limit by flooding a server with
SYN packets; this is typically called aSYN flood attack.This threat is mitigated in many systems by storing
connection information in a SYN cache (a lighter-weight data structure, recording only identity information and
sequence numbers for the connection) until the connection becomes ESTABLISHED, at which point the (more
expensive) full TCB is allocated. Normally, a legitimate connection occupies aslot in the SYN cache for only one
round trip time (RTT). If no ACK for the SYN+ACK arrives, then the server eventually removes the entry from
the SYN cache, but only after a much longer timeout interval,tA.

SYN flooding constitutes an easy denial of service attack because SYN cache entries are relatively scarce, while
the bandwidth needed to send a single SYN packet is relatively cheap. Theattacker gains further leverage from

3

the disparity between the one RTT slot occupancy (often on the order of amillisecond or less) for a legitimate
client, compared with a fraudulent SYN packet that typically holds a syn-cache slot for a value oftA ranging from
30-120 seconds.

A SYN attack is simple to model; attackers merely send SYN packets at a cumulativerate which we denote
by rA. We can compute the effectiveness of the DoS attack by the probability of success of a client’s attempt to
connect, and from that compute the number of legitimate connections per second that the server can support under
a given attack raterA. If the server offers no defense, and if the order in which incoming SYNs are processed at
the server is adversarially chosen, then it is clear that an attack raterA of O(B/tA) suffices to completely take
over a syn-cache of sizeB. To see this, observe that in every second,B/tA of the attacker’s slots in the SYN cache
expire, andB/tA new ones arrive to take their places. Even in a more realistic model where theincoming SYN
requests are assumed to be ordered in accordance with a random permutation, it is easy to show that an attack rate
of O(B/tA) suffices.

It is clear from this analysis (as well as from abundant empirical evidence) that even a moderate rate of DoS
attack can totally disable a server. For a server with a SYN cache of sizeB = 10, 000 and a timeout interval of
75 seconds a moderate attack rate of 200 to 300 SYNS per second is enough to almost completely overwhelm the
server! (An energetic attacker can generate SYN packets 1000 times as quickly as this on a commodity 100Mbps
Fast Ethernet link.)

Selective verification can improve this performance significantly1. Let B denote the number of slots in the
SYN cache. Suppose we want to ensure that the attacker never blocks more than a fractionf of the table, for
0 < f < 1. We ask the server to process each incoming SYN with probabilityp wherep satisfiesptArA ≤ fB,
then we ensure that at least a(1 − f)-fraction of the SYN cache is available to legitimate users. We effectively
inflate the bandwidth cost of mounting an attack rate ofrA to berA/p. Considering once again an attacker on 100
Mbps channel (300, 000 SYNs/sec), if we setp = 10−3/6, we ensure that the attacker cannot occupy more than
half the table at any point in time. The attacker can still deny service, but is now required to invest as much in
bandwidth resources as the collective investment of the clients that it is attacking.

If we increase the cache size by a factor of30, we can get an identical guarantee withp = .005. The overhead
on a valid client to establish a connection then is only200 SYN packets, roughly8KB, for each request. These
overheads are not insignificant but they allow us to provide unconditional guarantees on availability of resources
for valid clients. If we downloaded the PS version of this paper (500KB),the blowup increases the transfer size
by 2%. Moreover, these overheads should be contrasted with the naivealternative: the cache size would have to
be increased to6 × 107 to get the same guarantee.

4 Probabilistic Rewrite Theories

Rewriting logic is an expressive semantic framework to specify a wide rangeof concurrent systems [11]. In prac-
tice, however, some systems may be probabilistic in nature, either because oftheir environment, or by involving
probabilistic algorithms by design, or both. This raises the question of whether such systems can also be formally
specified by means of rewrite rules in some suitable probabilistic extension of rewriting logic. This would provide
a general formal specification framework for probabilistic systems and could support different forms of symbolic
simulation and formal analysis. In particular, DoS-resistant communication protocols such as the DoS-hardened
TCP/IP protocol discussed in Section 3 could be formally specified and analyzed this way.

The notion of a probabilistic rewrite theory provides an example of such a semantic framework. Usually, the
rewrite rules specifying a non-probabilistic system are of the form

1Techniques such as SYN cookies are also effective against SYN flooding; however they do not preserve the underlying behavior of
TCP.

4

t ⇒ t′ if C

where the variables appearing int′ are typically a subset of those appearing int, and whereC is a condition. The
intended meaning of such a rule is that if a fragment of the system’s state is a substitution instance of the patternt,
say with substitutionθ, and the conditionθ(C) holds, then our system can perform a local transition in that state
fragment changing it to a new local stateθ(t′). Instead, in the case of a probabilistic system, we will be using
rewrite rules of the form,

t(−→x) ⇒ t′(−→x ,−→y) if C(−→x) with probability −→y := πr(
−→x)

where the first thing to observe is that the termt′ has new variables−→y disjoint from the variables−→x appearing int.
Therefore, such a rule isnon-deterministic; that is, the fact that we have a matching substitutionθ such thatθ(C)
holds, does not uniquely determine the next state fragment: there can be many different choices for the next state
depending on how we instantiate the extra variables−→y . In fact, we can denote the different such next states by
expressions of the formt′(θ(−→x), ρ(−→y)), whereθ is fixed as the given matching substitution, butρ ranges along all
the possible substitutions for the new variables−→y . The probabilistic nature of the rule is expressed by the notation
with probability −→y := πr(

−→x), whereπr(
−→x) is a probability distributionwhich depends on the matching

substitutionθ, and we then choose the values for−→y , that is the substitutionρ, probabilistically according to the
distributionπr(θ(

−→x)).
We can illustrate these ideas with a very simple example, namely a digital battery-operated clock that measures

time in seconds. The state of the clock is represented by a termclock(t,c), wheret is the current time in
seconds, andc is a rational number indicating the amount of charge in the battery. The clock ticks according to
the following probabilistic rewrite rule:

clock(t,c) ⇒ if B then clock(t + 1,c- c

1000) else broken(t,c - c

1000) fi
with probability B := BERNOULLI(c

1000) .

Note that the rule’s righthand side has a new boolean variableB. If all goes well (B = true), then the clock
increments its time by one second and the charge is slightly decreased; but ifB = false, then the clock will go
into a broken statebroken(t,c - c

1000). Here the boolean variableB is distributed according to the Bernoulli
distribution with mean C

1000 . Thus, the value ofB probabilistically depends on the amount of chargeleft in the
battery: the lesser the charge level, the greater the chance that the clock will break; that is, we have different
probability distributions for different matching substitutionsθ of the rule’s variables (in particular, of the variable
c).

Of course, in this example the variableB is a discrete binary variable; but we could easily modify this example
to involve continuous variables. For example, we could have assumed thatt was a real number, and we could have
specified that the time is advanced to a new timet + t’, with t’ a new real-valued variable chosen according
to an exponential distribution. In general, the set of new variables−→y could contain both discrete and continuous
variables, ranging over different data types. In particular, both discrete and continuous time Markov chains can be
easily modeled, as well as a wide range of discrete or continuous probabilistic systems, which may also involve
nondeterministic aspects [9]. Furthermore, the PMAUDE extension of the Maude rewriting logic language allows
us to symbolically simulate probabilistic rewrite theories [10, 3], and we can formally analyze their properties
according to the methods described in [3]. Due to space constraints, we donot give the mathematical definition of
probabilistic rewrite theories. Readers are referred to [10, 9] for such details.

In general, a probabilistic rewrite theoryR involves both probabilities and non-determinism. The non-
determinism is due to the fact that, in general,different rules, possibly with different subterm positions and sub-
stitutionscould be applied to rewrite a given stateu: the choice of what rule to apply, and where, and with which
substitution isnon-deterministic. It is only when such a choice has been made that probabilities come into the
picture, namely for choosing the substitutionρ for the new variables−→y . In particular, for the kind of statistical

5

for packets received

1

A2

An

r
A

r
A

r
X

B

X

p

honest client

attacker send rate

send rate

messages

shared channel server

drop rate

A

Figure 1: An instance of the TCP’s 3-way handshake protocol.

model checking discussed in [13, 14] that will be used to formally analyze our DoS-resistant TCP/IP protocol,
we need to assume thatall non-determinism has been eliminatedfrom our specification; that is, that at most one
single rule, position, and substitution are possible to rewrite any given state.

What this amounts to, in the specification of a concurrent system such as a network protocol, is thequantification
of all non-determinism due to concurrency using probabilities. This is natural for simulation purposes and can be
accomplished by requiring the probabilistic rewrite theory to satisfy some simple requirements described in [3].

We will consider rewrite theories specifying concurrent actor-like objects [2] and communication by asyn-
chronous message passing; this is particularly appropriate for communication protocols. In rewriting logic, such
systems (see [12] for a detailed exposition) have a distributed state that canbe represented as amultisetof objects
and messages, where we can assume that objects have a general record-like representation of the form:〈name:
o | a1 : v1, . . . a1 : v1〉, whereo is the object’s name and theai : vi its corresponding attribute-value pairs in a
given state. It is also easy to model in this wayreal-time concurrent object systems: one very simple way to model
them is to include a global clock as a special object in the multiset of objects andmessages. Rewrite rules in such
a system will involve an object, a message, and the global time and will consume the message, change the object’s
state, and send messages to other objects. To deal with message delays andtheir probabilistic treatment, we can
represent messages asscheduled objectsthat are inactive until their associated delay has elapsed.

5 Probabilistic Rewrite Specification of DoS resistant TCP 3-way Handshaking

We now present an executable specification of TCP’s 3-way handshake protocol in probabilistic rewriting logic.
We consider a protocol instance composed ofN honest clientsC1, . . . , CN trying to establish a TCP connection
with the serverS, and a single attackerA that launches a SYN-flood attack onS (see Figure 1). The clientsCi

transmit SYN requests toS at the raterC , while the attackerA floods spurious SYN requests at the raterA. These
rates are assumed to be parameters of an exponential distribution from which the time for sending the next packet
is sampled. The serverS drops each packet it receives, independently, with probabilityp. We assume that each
message across the network is subject to a constant transmission delayd. Of course, these assumptions about the
various distributions can be easily changed in the implementation that follows.

Each clientCi is modeled as an object with four attributes as follows.

<name: C(i) | isn:N, repcnt:s(CNT), sendto:SN, connected:false>

The attributeisn specifies the sequence number that is to be used for the TCP connection,sendto specifies
the name of serverS, repcnt specifies the number of times the SYN request is to be (re)transmitted in order to
account for random dropping of packets atS, andconnected specifies if the connection has been successfully
established as yet. The attacker is modeled as an object with a single attribute asfollows.

6

<name: AN | sendto: SN >

The serverS is modeled as an object with two attributes.

<name: SN | isn: M , synlist: SC >

The attributeisn specifies the sequence number thatS uses for the next connection request it receives, while
synlist is the SYN cache thatS maintains for the pending connection requests.

Following is the probabilistic rewrite rule that models the clientCi sending a SYN request.

<name:C(i) | isn:N, repcnt:s(CNT), sendto:SN, connected:false> (C(i)← poll) T
⇒ <name: C(i) | isn:N, repcnt:CNT, sendto:SN, connected:false>
[d + T , (SN← SYN(C(i),N))] [t + T , (C(i)← poll)] T

with probability t := EXPONENTIAL(rC) .

We use special poll messages to control the rate at whichCi retransmits the SYN requests. Specifically,Ci

repeatedly sends itself a poll message, and each time it receives a poll message it sends out a SYN request toS.
The poll messages are subject to a random delayt that is sampled from the exponential distribution with parameter
rC . Specifically, the message is scheduled at timet + T , whereT is the current global time. The net effect of this
is thatCi sends SYN requests toS at raterC . Perhaps it is important to point out that the poll messages are not
regular messages that are transmitted across the network; they have beenintroduced only for modeling purposes.
Further, note that the approach of simply freezingCi by scheduling it at timeT + t does not work since that would
also preventCi from receiving any SYN+ACK messages that it may receive fromS meanwhile. Finally, note
that the replication count is decremented by one after the transmission of SYNmessage, and the message itself is
scheduled with a delayd.

The rule for SYN flooding by the attacker is very similar, except that it usesrandomly generated sequence
numbers.

<name: AN | sendto: SN > (AN ← poll) T ⇒ <name: AN | sendto: SN > T
[d + T , (SN← SYN(AN,random(counter)))] [t + T , (AN← poll)]

with probability t := EXPONENTIAL(rA) .

The following rule models the processing of SYN requests by the serverS.

<name: SN | isn: M , synlist: SC > (SN← SYN(ANY,N)) T
⇒ if(drop? or size(SC) > SYN-CACHE-SIZE) then <name: SN | isn: M,synlist: SC > T

else <name: SN | isn:s(M), synlist:add(SC,entry(ANY,M))>
[d+T,(ANY← SYN+ACK(SN,N,M))] [TIMEOUT+T,(SN← tmout(entry(ANY,M)))] T fi

with probability drop? := BERNOULLI(p) .

The random dropping of incoming messages is modeled by sampling from the Bernoulli distribution with the
appropriate parameterp. An incoming request can also be dropped if the SYN cache is full. If the cache is not
full, for each request that is not dropped, the serverS makes an entry for the request in the cache, and sends out a
SYN+ACK message to the source of the request. A cache entry is of the formentry(N,M) whereN is the name
of the source which has requested a connection, andM is the sequence number for the connection. Timing out of
entries in the cache is modeled by locally sending a message to self that is scheduled after an interval of time equal
to the timeout period. Here is the rule for removing timed out entries.

<name: SN|isn: N,synlist: [s(SZ),(L1 entry(ANY,M) L2)]> (SN ←
tmout(entry(ANY,M)))

⇒ <name: SN | isn: N , synlist: [SZ , (L1 L2)] > .

The first argument in the value of thesynlist attribute above is the number of entries in the list, while the
second argument is the actual list of entries. The rule for processing theSYN+ACK message at the clients is as
follows.

7

<name: C(i)|isn:N,repcnt:CNT,sendto:SN,connected:false> (C(i)← SYN+ACK(SN,N,M)) T
⇒ <name: C(i)|isn:N,repcnt:CNT,sendto:SN,connected:true> [d+T,(SN←
ACK(C(i),M))] T .

The rule is self-explanatory; the only significant point to be noted is that theattributeconnected is set to true
after processing the SYN+ACK message. Since the clients replicate their requests to account for random dropping
of packets at the server, it is possible for them to receive a SYN+ACK message for a connection that has already
been established. Such SYN+ACK messages are simply ignored as follows.

<name: C(i)|isn:N,repcnt:CNT,sendto:SN,connected:true> (C(i)← SYN+ACK(SN,N,M))
⇒ <name: C(i)|isn:N,repcnt:CNT,sendto:SN,connected:true> .

In contrast to the honest clients, the attacker ignores all the SYN+ACK messages that it receives from the serverS.

<name: AN|sendto:SN > (AN← SYN+ACK(SN,N,M)) ⇒ <name: AN|sendto:SN > .

Finally, the initial configuration of the system is

< name: AN | ... > [t1 , < name: C(1) | ... >] [t2 , < name: C(2) | ... >] ...
[tn , < name: C(N) | ... >] < name: SN | ... >

wheret1, . . . , tn are all distinct and positive. Note that, since all the clients are scheduled atdifferent times, it
follows [3] that the system does not contain any un-quantified non-determinism, which is essential for statistical
analysis to be possible.

6 Analysis

We have successfully used the statistical model-checking tool VESTA [13, 14] to verify various desired properties
of the probabilistic model in Section 5. In the following, we first describe the tool VESTA and its integration
with PMAUDE. We then elaborate on the verification of one important property of the 3-way handshake protocol
presented in the previous section.

The integration of PMAUDE and VESTA is described in detail in [3]. In the integrated tool, we assume that
VESTA is provided with a set of sample execution paths generated through the discrete-event simulation of a
PMAUDE specification with no non-determinism. We assume that an execution path that appears in our sample

is a sequenceπ = s0
t0→ s1

t1→ s2
t2→ · · · , wheres0 is the unique initial state of the system,si is the state of the

system after theith computation step (rewrite), andti is the difference of global time between the statessi+1 and
si. We also assume that there is a labelling functionL that assigns to each statesi a set of atomic propositions that
hold in that state; the set of atomic propositions are all those that appear in theproperty of interest (see below).
Thus,L : S → 2AP , whereAP is a set of relevant atomic propositions andS is the set of system states. In
PMAUDE, this labelling function is defined as an operator that maps terms representingstates to sets of atomic
propositions.

In VESTA, we assume that the properties are expressed in a sublogic of Continuous Stochastic Logic – CSL
(without stationary state operators). CSL was introduced in [1] as a logic toexpress probabilistic properties.
The syntax and the semantics of the logic and the statistical model-checking algorithm for CSL are described
in [13, 14]. In our experiments, we model checked the following propertyexpressed in CSL for different values
of the attacker raterA.

P≤0.01(♦(successfulattack()))

wheresuccessfulattack() is true in a state if the SYN cache ofS is full, i.e., the attacker has succeeded in launching
the SYN flood attack. The property states that the probability that eventually the attackerA successfully fills up
the SYN cache ofS is less than 0.01.

The results of model-checking are shown in the following table for two cases: in the absence of DoS
counter-measure and in the presence of DoS counter-measure with the parameterp set to0.9. In all experiments,

8

we used scaled down parameters so that our experiments could be completedin a reasonable amount of time.
Specifically, we used a SYN cache size of 10,000, cache timeout of 10 seconds, and 100 clients. The experiments
were carried out on 1.8 GHz Xeon Server with 2 GB RAM and running Mandrake Linux 9.2.

Model-checking X’s attack rate (SYNs per second)
P≤0.01(♦(successfulattack())) 1 5 64 100 200 400 800 1000 1200

p = 0.0 (No counter-measure)
result F F F T T T T T T

time (102 sec) 47 87 280 605 183 183 182 182 181

p = 0.9 (With counter-measure)
result F F F F F F F T T

time (102 sec) 68 75 217 328 896 3102 11727 2281 1781

The results show that in the presence of DoS counter-measure withp = 0.9, S can sustain an attack fromA
with attack rate 10 times larger than that in the case of no counter-measure. Therefore, the results validate our
hypothesis thatselective verificationcan be used as an effective counter-measure for DoS attacks.

To gain more insight into the probabilistic model, we realized that model-checkingis not sufficient. Specifically,
we found thetrue (T) andfalse(F) answers given by the model-checker is not sufficient to understand the various
quantitative aspects of the probabilistic model. For example, we wanted to knowthe expected number of clients
that get connected in the presence of SYN flood attack. Therefore, in addition to model-checking, we used a query
language calledQuantitative Temporal Expressions(or QUATEX in short). The language is mainly motivated by
probabilistic computation tree logic (PCTL) [8] and EAGLE [4]. In QUATEX, some example queries that can be
encoded are as follows:

1. What is the expected number of clients that successfully connect toS out of 100 clients?

2. What is the probability that a client connected toSwithin 10 seconds after it initiated the connection request?

A detailed discussion of the QUATEX is beyond the scope of this paper. However, we provide a brief introduction
of QUATEX in the Appendix.

We evaluated the following QUATEX expression with different values of the attacker raterA.

CountConnected() = if completed() thencount() else© (CountConnected()) fi;
evalE[CountConnected()]

In this expression,completed() is true in a state if all the clientsCi have either sent all of their SYN packets
or have managed to connect withS. The expressioncount() in a state returns the number of clients that have
successfully connected toS. The expression queries the expected number of clients that eventually connect with
S in the presence of DoS attack by the attackerA.

The results of evaluating the above expression for different values ofattacker raterA are plotted in Figure 2.
The results show that most of the clients get connected as long as the attacker does not manage to fill up the SYN
cache buffer. However, as soon as the attacker’s SYN rate becomes high enough to fill the SYN cache buffer, none
of the clients gets connected. The plot also illustrates that withselective verificationthe server can withstand an
order of magnitude higher SYN flood rates than without.

7 Conclusions

We have presented a general framework for verification of DoS properties of communication protocols. We are
able to express and prove key properties, but performance limitations of the automated system in our current
formulation require us to use scaled down version of parameters that arisein practice. Addressing these efficiency
limitations and verifying the properties for general systems remain future work objectives.

9

 0

 20

 40

 60

 80

 100

100 101 102 103 104

N
um

be
r

of
 C

on
ne

ct
ed

 C
lie

nt

Attacker’s rate (SYN/sec)

p=0.9
p=0.0

Figure 2: Expected number of clients out of 100 clients that get connectedwith the server under DoS attack

References

[1] A. Aziz, K. Sanwal, V. Singhal, and R. K. Brayton. Verifying continuous-time Markov chains. InProceedings of the
8th International Conference on Computer Aided Verification (CAV’96), volume 1102, pages 269–276.

[2] G. Agha.Actors: A Model of Concurrent Computation in Distributed Systems. MIT Press, 1986.

[3] G. Agha, J. Meseguer, and K. Sen. PMaude: Rewrite-based specification language for probabilistic object systems. In
3rd Workshop on Quantitative Aspects of Programming Languages (QAPL’05), 2005.

[4] H. Barringer, A. Goldberg, K. Havelund, and K. Sen. Rule-based runtime verification. InProceedings of 5th Interna-
tional Conference on Verification, Model Checking and Abstract Interpretation (VMCAI’04), volume 2937 ofLNCS,
pages 44–57. Springer, January 2004.

[5] R. Cramer and V. Shoup. A practical public key cryptosystem provably secure against adaptive chosen ciphertext attack.
Lecture Notes in Computer Science, 1462, 1998.

[6] D. Dolev and A. C. Yao. On the security of public-key protocols.IEEE Transactions on Information Theory, 2(29):198–
208, 1983.

[7] C. A. Gunter, S. Khanna, K. Tan, and S. Venkatesh. Dos protection for reliably authenticated broadcast. InNetwork
and Distributed System Security (NDSS ’04). Internet Society, 2004.

[8] H. Hansson and B. Jonsson. A logic for reasoning about time and reliability.Formal Aspects of Computing, 6(5):512–
535, 1994.

[9] N. Kumar, K. Sen, J. Meseguer, and G. Agha. Probabilisticrewrite theories: Unifying models, logics and tools.
Technical Report UIUCDCS-R-2003-2347, Univ.of Illinois at Urbana-Champaign, 2003.

[10] N. Kumar, K. Sen, J. Meseguer, and G. Agha. A rewriting based model for probabilistic distributed object systems.
In Proceedings of 6th IFIP International Conference on FormalMethods for Open Object-based Distributed Systems
(FMOODS’03), volume 2884 ofLNCS, pages 32–46, 2003.

[11] N. Mart́ı-Oliet and J. Meseguer. Rewriting logic: roadmap and bibliography.Theoretical Computer Science, 285:121–
154, 2002.

[12] J. Meseguer. A logical theory of concurrent objects andits realization in the Maude language. InResearch Directions
in Concurrent Object-Oriented Programming, pages 314–390. MIT Press, 1993.

[13] K. Sen, M. Viswanathan, and G. Agha. Statistical model checking of black-box probabilistic systems. In16th confer-
ence on Computer Aided Verification (CAV’04), volume 3114 ofLNCS, pages 202–215, 2004.

[14] K. Sen, M. Viswanathan, and G. Agha. On statistical model checking of stochastic systems. In17th Conference on
Computer Aided Verification (CAV’05), LNCS (To Appear). Springer, 2005.

10

A QUATEX
We introduce the notation that describes the syntax and the semantics of QUATEX followed by a few motivating
examples. Then we describe the language formally, along with an example query that we have used to investigate
if the DoS free 3-way TCP/IP handshaking protocol model meets our requirements. The results of our query on
various parameters are given in Section 6.

We assume that an execution path is an infinite sequence
π = s0 → s1 → s2 → · · ·

wheres0 is the unique initial state of the system, typically a term of sortConfig representing the initial global
state,si is the state of the system after theith computation step. If thekth state of this sequence cannot be rewritten
any further (i.e. is absorbing), thensi = sk for all i ≥ k.

We denote theith state in an execution pathπ by π[i] = si. Also, denote the suffix of a pathπ starting at the
ith state byπ(i) = si → si+1 → si+2 → · · · . We letPath(s) be the set of execution paths starting at state
s. Note that, because the samples are generated through discrete-events simulation of a PMAUDE model with
no non-determinism,Path(s) is a measurable set and has an associated probability measure. This is essential to
compute the expected value of a path expression from a given state.

A.1 QUATEX through Examples
The language QUATEX, which is designed to query various quantitative aspects of a probabilistic model, allows
us to write temporal query expressions like temporal formulas in a temporal logic. It supports a framework for
parameterized recursive temporal operator definitions using a few primitive non-temporal operators and a temporal
operator (©). For example, suppose we want to know”the probability that along a random path from a given
state, the clientA(0) gets connected withB within 100 time units.”This can be written as the following query

IfConnectedInTime(t) = if t > time() then0 elseif connected() then1
else© (IfConnectedInTime(t)) fi fi;

evalE[IfConnectedInTime(time() + 100)];

The first four lines of the query define the operatorIfConnectedInTime(t), which returns 1, if along an execution
pathA(0) gets connected toB within time t and returns 0 otherwise. The state functiontime() returns the global
time associated with the state; the state functionconnected() returns true, if in the state,A(0) gets connected with
B and returns false otherwise. Then the state query at the fifth line returns the expected number of timesA(0)
gets connected toB within 100 time units along a random path from a given state. This number lies in[0, 1] since
along a random path eitherA(0) gets connected toB within 100 time units orA(0) does not get connected toB
within 100 time units. In fact, this expected value is equal to the probability that along a random path from the
given state, the clientA(0) gets connected withB within 100 time units.

A further rich query that is interesting to our probabilistic model is as follows

NumConnectedInTime(t, count) = if t > time() thencount

elseif anyConnected() then © (NumConnectedInTime(t, 1 + count))
else© (NumConnectedInTime(t, count)) fi fi;

evalE[NumConnectedInTime(time() + 100, 0)]

In this query, the state functionanyConnected() returns true if any clientA(i) gets connected toB in the state.
We assume that in a given execution path, at any state, at most one client gets connected toB, which is true with
our probabilistic model. We use a simpler variant of this query in our experiments.

A.2 Syntax of QUATEX

The syntax of QUATEX is given in Fig. 3. A query in QUATEX consists of a set of definitionsD followed
by a query of the expected value of a path expressionPExp. In QUATEX, we distinguish between two kinds

11

Q ::= D evalE[PExp]; SExp ::= c | f | F (SExp1, . . . ,SExpk) | xi

D ::= set ofDefn PExp ::= SExp | ©N(SExp1, . . . ,SExpn)
Defn ::= N(x1, . . . , xm) = PExp; | if SExp then PExp1 else PExp2 fi

Figure 3: Syntax of QUATEX

(s)[[c]]D = c
(s)[[f]]D = f(s)

(s)[[F (SExp1, . . . ,SExpk)]]D = F ((s)[[SExp1]]D , . . . , (s)[[SExpk]]D)
(s)[[E[PExp]]]D = E[(π)[[PExp]]D | π ∈ Paths(s)]

(π)[[if SExp thenPExp1 elsePExp2 fi]]D = if (π[0])[[SExp]]D = true then(π)[[PExp1]]D else(π)[[PExp2]]D
(π)[[©N(SExp1, . . . ,SExpm)]]D =

(π(1))[[B[x1 7→ (π[0])[[SExp1]]D , . . . , xm 7→ (π[0])[[SExpm]]D]]]D
where N(x1, . . . , xm) = B ∈ D

Figure 4: Semantics of QUATEX

of expressions, namely,state expressions(denoted bySExp) andpath expressions(denoted byPExp); a path
expression is interpreted over an execution path and a state expression isinterpreted over a state. A definition
Defn ∈ D consists of a definition of atemporal operator. A temporal operator definition consists of a nameN
and a set of formal parameters on the left-hand side, and a path expression on the right-hand side. The formal
parameters denote thefreeze formal parameters. When using a temporal operator in a path expression, the formal
parameters are replaced by state expressions. A state expression can be a constantc, a functionf that maps a state
to a concrete value, ak-ary function mappingk state expressions to a state expression, or a formal parameter. A
path expression can be a state expression, a next operator followed byan application of a temporal operator already
defined inD , or a conditional expression ifSExp then PExp1 else PExp2 fi. We assume that expressions
are properly typed. Typically, these types would beinteger, real, boolean etc. The conditionSExp in the
expression ifSExp then PExp1 else PExp2 fi must have the typeboolean. The temporal expressionPExp

in the expressionE[PExp] must be of typereal. We also assume that expressions of typeinteger can be
coerced to thereal type.

A.3 Semantics of QUATEX

Next, we give the semantics of a subset of query expressions that can be written in QUATEX. In this subclass,
we put the restriction that the value of a path expressionPExp that appears in any expressionE[PExp] can be
determined from a finite prefix of an execution path. We call such temporal expressionsboundedpath expres-
sions. The semantics is given in Fig. 4.(π)[[PExp]]D is the value of the path expressionPExp over the path
π. Similarly, (s)[[SExp]]D is the value of the state expressionSExp in the states. Note that if the value of a
bounded path expression can be computed from a finite prefixπfin of an execution pathπ, then the evaluations
of the path expression over all execution paths having the common prefixπfin are the same. Since a finite prefix
of a path defines a basic cylinder set (i.e. a set containing all paths havingthe common prefix) having an associ-
ated probability measure, we can compute the expected value of a bounded path expression over a random path
from a given state. In our analysis tool, we estimate the expected value through simulation instead of calculating
it exactly based on the underlying probability distributions of the model. The exact procedure can be found at
http://osl.cs.uiuc.edu/∼ksen/vesta2/.

12

