Formal Modeling and Analysis of DoS
Using Probabilistic Rewrite Theories

Gul Agha, Michael Greenwald, Carl A. Gunter, Sanjeev Khanna
Jose Meseguer, Koushik Sen, and Prasannaa'Thati

Abstract

Existing models for analyzing the integrity and confidelitiieof protocols need to be extended to enable
the analysis of availability. Prior work on such extensishews promising applications to the development of
new DoS countermeasures. Ideally, it should be possibleplydhese countermeasures systematically in a
way that preserves desirable properties already establidtis paper investigates a step toward achieving this
ideal by describing a way to expand term rewriting theorneimtlude probabilistic aspects that can be used to
show the effectiveness of DoS countermeasures. In patjoué consider the shared channel model, in which
adversaries and valid participants share communicatiowigth according to a probabilistic interleaving
model, and a countermeasure known as selective verificagiplied to the handshake steps of the TCP reliable
transport protocol. These concepts are formulated in aghibbtic extension of the Maude term rewriting
system, called PMuDE. Furthermore, we formally verified the desired propertiéshe countermeasures
through automatic statistical model-checking techniques

1 Introduction

There are well-understood models on which to base the analysis of integglibpafidentiality. The most common
approaches are algebraic techniques [6] based on idealized ciypiogprimitives and complexity-theoretic
techniques [5] based on assumptions about complexity. There has &ls@lmgyress on unified perspectives
that enable using the simpler algebraic techniques to prove properties lde ¢énsured by the more complete
cryptographic techniques. However, neither of these approachibeiomnifications are designed to approach
the problem of availability threats in the protocols they analyze. For examgdepse a protocol begins with a
sender sending a short message to a receiver, where the recéigestep is to verify a public key signature on
the message. A protocol like this is generally considered to be problemasiogeean adversarial sender can send
many packets with bad signatures at little cost to himself while the receiver veitl teework hard to (fail to)
verify these signatures. Algebraic and complexity-theoretic analysisitpesensure only that the recipient will
not be fooled by the bad packets and will not leak information as a restdteiving them. However, they do not
show that the receiver will be available to a valid sender in the presermeeair more attackers.

In [7] we began an effort to explore a formal model for the analysis @f Dased on a simple probabilistic
model called the “shared channel” model. This effort showed that thedldnannel model could be used to
prove properties of DoS countermeasures for authenticated brodklaasould be verified in experiments. We
have subsequently conducted a number of experiments to explore theatipplaf such countermeasures to other
classes of protocols. The aim of this paper is to explore the prospeatsifay the shared channel model as a

*This work was supported in part by ONR Contract NO0014-02-1-0715
fAddresses of the authors: K. Sen, G. Agha, C. A. Gunter, J. Meseguiversity of lllinois at Urbana-Champaign; Michael Green-
wald, Lucent Bell Labs; Sanjeev Khanna, University of Pennsylvdhiasannaa Thati, Carnegie-Mellon University,



foundation for extending term rewriting models of network protocols to c®@&S aspects of the protocols and
their modification with counter-measures. Our particular study is to investigatesthof a probabilistic extension

of the Maude rewrite system called PMDE and its application to understanding the effectiveness of a DoS
countermeasure known as “selective sequential verification” [7]. fEeisnique was explored for authenticated
broadcast in [7] but in the current paper we consider its applicationtadteake steps of the TCP reliable transport
protocol.

At a high level, our ultimate aim is to demonstrate techniques for showing hovimameprotocol can be
systematically “hardened” against DoS using probabilistic techniques wiedegving the underlying correctness
properties the protocol was previously meant to satisfy. SpecificallgngivprotocolP and a set of properties
T, we would like to expand to a theoryT™ that is able to express availability properties and show that a
transformationP* of P meets the constraints ifi* without needing to re-prove the propertighat P satisfied
in the restricted language. The shared channel model provides a mattefnatieework for this extension.

In this paper, we develop a key element of this program: a formal landnag@ch to express the properti#g
and show that availability implications hold fét*. We attempt to validate this effort by showing its effectiveness
on a selective verification for TCP. In particular, we show how we cacigpTCP/IP 3-way handshake protocol
in PMAUDE algebraically. First, we take a previously specified formal non-determimsiitel of the protocol.
We then replace all non-determinism by probabilities. The resulting model wahtified non-determinism (or
probabilities) is then analyzed for quantitative properties such as availaliiig/analysis is done by combining
Monte-Carlo simulation of the model with statistical reasoning. In this way, werdge the existing modelling
and reasoning technigues to quantified reasoning without interfering witimitherlying non-quantified properties
of the model.

The rest of the paper is organized as follows. In Section 2, we givertieninaries of DoS theory followed
by its application to TCP/IP 3-way handshaking protocol in Section 3. Themnefly describe PMUDE in
Section 4. In Section 5, we describe and discuss the algebraic probabjistification of DoS hardened TCP/IP
protocol in PMAUDE. We describe the results of our analysis of some desired properties wnttha query
language for the specification of TCP/IP protocol in Section 6.

2 DoS Theory

On the face of it, the conventional techniques for establishing confidentzaddyintegrity are inappropriate for
analyzing DoS, since they rely on very strong models of the adversamgtsol of the network. In particular, they
assume that the adversary is able to delete packets from the network atmd@tw&rsary with this ability has an
assured availability attack. Typical analysis technigues therefore tdapissumption in one of two ways. A first
form of availability analysis is to focus on the relationship between the semikthe attacker and ask whether
the attacker/sender is being forced to expend at least as much eftbet aalid receiver. In our example, this
is an extremely disproportionate level of effort, since forming a bad signagunuch easier than checking that
it is bad. Thus the protocol is vulnerable to the imposition of a disproporticefédet by the receiver. This is
a meaningful analysis, but it does not answer the question of whettadidasender will experience the desired
availability. A second form of availability analysis is to ask whether the receign handle a specified load. For
instance, a stock PC can check about 8000 RSA signatures eaclu sandrit can receive about 9000 packets
(1500 bytes per packet) each second over a 100Mbps link. Thusigeeis unable to check all of the signatures it
receives over such a channel. A protocol of the kind we have enegistherefore deemed to be vulnerable to a
signature floochttack based on cycle exhaustion. By contrast, a stock PC can chedastieston 77,000 packets
each second, so a receiver that authenticates with hashes can sdreicies bandwidth using a fraction of its
capacity. This sort of analysis leads one to conclude that a protocsdi lmespublic key signatures is vulnerable
to DoS while one based on hashes is not.



These techniques are sound but overly conservative, becausdatiney explicitly account for the significance
of valid packets that reach the receiver. Newer techniques for analyzinghBxxsemerged in the last year that
provide a fresh perspective by accounting for this issue. In esstras® new models are both more realistic for
the Internet and suggest new ideas for countermeasures. We refex basic version of this new approach as the
shared channel modeThe shared channel model is a four-tuple consisting of the minimum batidifiglof the
sender, the maximum bandwidii; of the sender (wherd, < W), the bandwidthn of the adversary, and the
loss ratep of the sender wheré < p < 1. The ratioR = «/W is theattack factorof the model. Wherk = 1,
this is aproportionateattack and, wherR > 1, it is a disproportionateattack. As in the algebraic model, the
adversary is assumed to be able to replay packets seen from valid padifésa the target with anything he can
form from these. But in the shared channel model he is not able to deletdis packets from the network. In
effect, he is able to interleave packets among the valid ones at a specifiedunarate. This interleaving may
contribute to the loss rajeof the sender, but the rate of loss is assumed to be boundediy randomly applied
to the packets of the sender.

The key insight that underlies the techniques in this paper arises fragmemng theasymmetrythe attacker
aims to exploit; his willingness to spend his entire bandwidth on an operatiomitagsenigh cost for the receiver
also offers opportunities to burden the attacker in disproportionate vetgts/e to the valid sender. This can be
seen in a simple strategy we caklective verification.The idea is to cause the receiver to treat the signature
packets she receives as arriving inatificially lossy channel. The sender compensates by sending extra copies
of his signature packets. If the recipient checks the signature padieteseives with a given probability, then
the number of copies and the probability of verification can be varied to magdiodl that the recipient is able
to check. For example, suppose a sender sends a 10Mbps streantéivarydut this is mixed with a 10Mbps
stream of DoS packets devoted entirely to bad signatures. To relievecthiene of the need to check all of these
bad signatures, the receiver can check signatures with a probability%f &nd, if the sender sends about 20
copies of each signature packet, the receiver will find a valid packetanpttobability of more than 99% even if
the network drops 40% of the sender’s packets. This technique is ingixpescales to severe DoS attacks, and is
adaptable to many different network characteristics.

3 SYN Floods as DoS for TCP/IP

TCP is an extremely common reliable bi-directional stream protocol that ubeseaway handshake to establish
connections. Glossing over many details, a sender initiates a connectiendigig a packet with the SYN flag set
and an initial sequence number. The receiver responds by ackrngdettie SYN flag, and sending back a SYN
with its own sequence number. When the original sender acknowledges theerc&VYN (this ACK is the 3rd
packet in a 3-way handshake), then the connection is ESTABLISHED.

Each established connection requires a TCB (Transmission Control)Blbelach end of the connection. The
TCB occupies a few hundred bytes of identification and control informasitatistics, as well as a much larger
allocation of packet buffers for received data and (re)transmissienes. In most operating system kernels, both
packet buffer space and the number of available TCBs are fixed #tilmay and they constitute a limited resource.
This opens a significant vulnerability to adversaries who aim to overwhasitthit by flooding a server with
SYN packets; this is typically called 8YN flood attack.This threat is mitigated in many systems by storing
connection information in a SYN cache (a lighter-weight data structurerdi only identity information and
sequence numbers for the connection) until the connection becomesBESAED, at which point the (more
expensive) full TCB is allocated. Normally, a legitimate connection occupéés & the SYN cache for only one
round trip time (RTT). If no ACK for the SYN+ACK arrives, then the saregentually removes the entry from
the SYN cache, but only after a much longer timeout intenval,

SYN flooding constitutes an easy denial of service attack because X eatries are relatively scarce, while
the bandwidth needed to send a single SYN packet is relatively cheapattBoker gains further leverage from



the disparity between the one RTT slot occupancy (often on the ordemilfisecond or less) for a legitimate
client, compared with a fraudulent SYN packet that typically holds a sghealot for a value af4 ranging from
30-120 seconds.

A SYN attack is simple to model; attackers merely send SYN packets at a cumukttvehich we denote
by 4. We can compute the effectiveness of the DoS attack by the probabilitycoéssi of a client’s attempt to
connect, and from that compute the number of legitimate connections peidsbed the server can support under
a given attack rate 4. If the server offers no defense, and if the order in which incoming S processed at
the server is adversarially chosen, then it is clear that an attack yaté O(B/t4) suffices to completely take
over a syn-cache of siz8. To see this, observe that in every secaBdi 4 of the attacker’s slots in the SYN cache
expire, andB/t 4 new ones arrive to take their places. Even in a more realistic model whemgctiraing SYN
requests are assumed to be ordered in accordance with a random piermiita easy to show that an attack rate
of O(B/t4) suffices.

It is clear from this analysis (as well as from abundant empirical evigletiat even a moderate rate of DoS
attack can totally disable a server. For a server with a SYN cache oBsizel 0, 000 and a timeout interval of
75 seconds a moderate attack rate of 200 to 300 SYNS per second ihi¢a@hgost completely overwhelm the
server! (An energetic attacker can generate SYN packets 1000 timaghkly @s this on a commodity 100Mbps
Fast Ethernet link.)

Selective verification can improve this performance significantlyet B denote the number of slots in the
SYN cache. Suppose we want to ensure that the attacker never blockghan a fractionf of the table, for
0 < f < 1. We ask the server to process each incoming SYN with probabiltherep satisfiegpt ar4 < B,
then we ensure that at leastia— f)-fraction of the SYN cache is available to legitimate users. We effectively
inflate the bandwidth cost of mounting an attack rate ofo ber 4 /p. Considering once again an attacker on 100
Mbps channel300,000 SYNs/sec), if we sep = 1073/6, we ensure that the attacker cannot occupy more than
half the table at any point in time. The attacker can still deny service, buwisr@guired to invest as much in
bandwidth resources as the collective investment of the clients that it isiatjack

If we increase the cache size by a factoBof we can get an identical guarantee witk= .005. The overhead
on a valid client to establish a connection then is dttly SYN packets, roughlgKB, for each request. These
overheads are not insignificant but they allow us to provide unconditgrraaantees on availability of resources
for valid clients. If we downloaded the PS version of this paper (500l blowup increases the transfer size
by 2%. Moreover, these overheads should be contrasted with thealtueative: the cache size would have to
be increased t6 x 107 to get the same guarantee.

4 Probabilistic Rewrite Theories

Rewriting logic is an expressive semantic framework to specify a wide rahgencurrent systems [11]. In prac-
tice, however, some systems may be probabilistic in nature, either becailstr @hvironment, or by involving
probabilistic algorithms by design, or both. This raises the question of whstbh systems can also be formally
specified by means of rewrite rules in some suitable probabilistic extensiewnfing logic. This would provide
a general formal specification framework for probabilistic systems aulil smpport different forms of symbolic
simulation and formal analysis. In particular, DoS-resistant communicatmogwis such as the DoS-hardened
TCP/IP protocol discussed in Section 3 could be formally specified argzaokthis way.

The notion of a probabilistic rewrite theory provides an example of sucimarstic framework. Usually, the
rewrite rules specifying a non-probabilistic system are of the form

Techniques such as SYN cookies are also effective against SYNrftpdibwever they do not preserve the underlying behavior of
TCP.



t=t if C
where the variables appearingtirare typically a subset of those appearing,iand whereC' is a condition. The
intended meaning of such a rule is that if a fragment of the system'’s statebst#ion instance of the pattetn
say with substitutio, and the conditio(C') holds, then our system can perform a local transition in that state

fragment changing it to a new local stdt@’). Instead, in the case of a probabilistic system, we will be using
rewrite rules of the form,

Hx)=t(2,y) if C(Z) with probability ¥ :=m.(7)

where the first thing to observe is that the tefinas new variableg’ disjoint from the variables” appearing irt.
Therefore, such a rule rson-deterministicthat is, the fact that we have a matching substituficuch that(C')
holds, does not uniquely determine the next state fragment: there can pealiffi@rent choices for the next state
depending on how we instantiate the extra variabjesin fact, we can denote the different such next states by
expressions of the formi(6(z), p(7')), wheref is fixed as the given matching substitution, puinges along all
the possible substitutions for the new variablgs The probabilistic nature of the rule is expressed by the notation
with probability ¥ :=n.(), wherer,.(Z) is a probability distributiorwhich depends on the matching
substitutiond, and we then choose the values 7@t that is the substitutiop, probabilistically according to the
distributionr,.(6(Z)).

We can illustrate these ideas with a very simple example, namely a digital batergteq clock that measures
time in seconds. The state of the clock is represented by adewmuak(t, c), wheret is the current time in
seconds, and is a rational number indicating the amount of charge in the battery. The cldckaarording to
the following probabilistic rewrite rule:

clock(t,c) = if Bthen clock(t + 1,c-155) else broken(t,c - %) fi
Wi th probability B := BERNOULLI ( 1&p)

Note that the rule’s righthand side has a new boolean varBHfeall goes well 8 = t r ue), then the clock
increments its time by one second and the charge is slightly decreasedBbat if al se, then the clock will go
into a broken statbr oken(t, ¢ - 1g55;) - Here the boolean variabkis distributed according to the Bernoulli
distribution with meanwcm. Thus, the value oB probabilistically depends on the amount of chalgt in the
battery: the lesser the charge level, the greater the chance that the dllobkeak; that is, we have different
probability distributions for different matching substitutiahef the rule’s variables (in particular, of the variable
c).

Of course, in this example the varialBés a discrete binary variable; but we could easily modify this example
to involve continuous variables. For example, we could have assumedzest a real number, and we could have
specified that the time is advanced to a new ttme- t’ , witht’ a new real-valued variable chosen according
to an exponential distribution. In general, the set of new variablesould contain both discrete and continuous
variables, ranging over different data types. In particular, bothelis@nd continuous time Markov chains can be
easily modeled, as well as a wide range of discrete or continuous probelsjistems, which may also involve
nondeterministic aspects [9]. Furthermore, theRIME extension of the Maude rewriting logic language allows
us to symbolically simulate probabilistic rewrite theories [10, 3], and we candlly analyze their properties
according to the methods described in [3]. Due to space constraints, ma dive the mathematical definition of
probabilistic rewrite theories. Readers are referred to [10, 9] fdn details.

In general, a probabilistic rewrite theofi involves both probabilities and non-determinisnThe non-
determinism is due to the fact that, in genedifferent rules, possibly with different subterm positions and sub-
stitutionscould be applied to rewrite a given statethe choice of what rule to apply, and where, and with which
substitution isnon-deterministic It is only when such a choice has been made that probabilities come into the
picture, namely for choosing the substitutiprior the new variableg; . In particular, for the kind of statistical



attacker send rate
~—X
" hared ch I
shared channel
hones@gptAl\ serve
r
A [ | | | B
A — 7 p
T\ messages droprate
for packets receive
A/ send rate

Figure 1: An instance of the TCP’s 3-way handshake protocol.

model checking discussed in [13, 14] that will be used to formally analyzeboS-resistant TCP/IP protocoal,
we need to assume thall non-determinism has been eliminatiedm our specification; that is, that at most one
single rule, position, and substitution are possible to rewrite any given state.
What this amounts to, in the specification of a concurrent system sucleasark protocol, is thguantification
of all non-determinism due to concurrency using probabilitisis is natural for simulation purposes and can be
accomplished by requiring the probabilistic rewrite theory to satisfy some simglerements described in [3].
We will consider rewrite theories specifying concurrent actor-like dbj¢2] and communication by asyn-
chronous message passing; this is particularly appropriate for communipatitocols. In rewriting logic, such
systems (see [12] for a detailed exposition) have a distributed state thia¢ capresented asaultisetof objects
and messages, where we can assume that objects have a genedalikea@presentation of the form{nane:
ol aj:wvy,...a1 : v1), whereo is the object’s name and thg : v; its corresponding attribute-value pairs in a
given state. Itis also easy to model in this wagl-time concurrent object systenme very simple way to model
them is to include a global clock as a special object in the multiset of objectmasshges. Rewrite rules in such
a system will involve an object, a message, and the global time and will consemetsage, change the object’s
state, and send messages to other objects. To deal with message deltnaramdbabilistic treatment, we can
represent messagesstheduled objecthat are inactive until their associated delay has elapsed.

5 Probabilistic Rewrite Specification of DoS resistant TCP 3-way Handshakg

We now present an executable specification of TCP’s 3-way handgirakocol in probabilistic rewriting logic.
We consider a protocol instance composedvofionest clients’, . .., Cy trying to establish a TCP connection
with the serverS, and a single attacket that launches a SYN-flood attack &h(see Figure 1). The clients;
transmit SYN requests t8 at the rate ¢, while the attacker floods spurious SYN requests at the raje These
rates are assumed to be parameters of an exponential distribution fromtivaitme for sending the next packet
is sampled. The servef drops each packet it receives, independently, with probahilityle assume that each
message across the network is subject to a constant transmissior d€lhgourse, these assumptions about the
various distributions can be easily changed in the implementation that follows.

Each clientC; is modeled as an object with four attributes as follows.

<nane: C(i) | isn:N, repcnt:s(CNT), sendto: SN, connected: fal se>

The attributel sn specifies the sequence number that is to be used for the TCP conneeiuit, 0 specifies

the name of serves, r epcnt specifies the number of times the SYN request is to be (re)transmitted in order to
account for random dropping of packetsSatandconnect ed specifies if the connection has been successfully
established as yet. The attacker is modeled as an object with a single attribnlteves



<name: AN | sendto: SN >
The servelS is modeled as an object with two attributes.
<nane: SN | isn: M, synlist: SC >

The attributel sn specifies the sequence number tRatises for the next connection request it receives, while
synli st is the SYN cache thaf maintains for the pending connection requests.
Following is the probabilistic rewrite rule that models the cli€hisending a SYN request.

<name: C(i) | isn:N, repcnt:s(CNT), sendto: SN, connected:false> (C(i)«poll) T
= <nanme: C(i) | isn:N, repcnt:CNT, sendto: SN, connected:fal se>
[ d+ T, (SN~SYN(C(i),N) ] [ t+T, ((i)<poll) ] T

with probability t := EXPONENTI AL(7¢)

We use special poll messages to control the rate at whjctetransmits the SYN requests. Specifically,
repeatedly sends itself a poll message, and each time it receives a papgeéssends out a SYN request$o
The poll messages are subject to a random detlagt is sampled from the exponential distribution with parameter
rc. Specifically, the message is scheduled at timel’, whereT is the current global time. The net effect of this
is thatC; sends SYN requests 19 at raterc. Perhaps it is important to point out that the poll messages are not
regular messages that are transmitted across the network; they havatbegurced only for modeling purposes.
Further, note that the approach of simply freezif)dy scheduling it at tim& + ¢ does not work since that would
also preventC; from receiving any SYN+ACK messages that it may receive figrmeanwhile. Finally, note
that the replication count is decremented by one after the transmission ofrf®¥shge, and the message itself is
scheduled with a delay.

The rule for SYN flooding by the attacker is very similar, except that it wuaadomly generated sequence
numbers.

<name: AN | sendto: SN > (AN «— poll) T = <nane: AN | sendto: SN> T
[ d + T, (SN~ SYN(AN, random(counter))) 1 [ ¢t + T, (AN—poll) ]
with probability ¢ := EXPONENTI AL(74)

The following rule models the processing of SYN requests by the sérver

<nane: SN | isn: M, synlist: SC > (SN— SYN(ANY,N)) T
= if(drop? or size(SC) > SYN-CACHE-SI ZE) then <nane: SN | isn: Msynlist: SC>T
el se <nanme: SN | isn:s(M, synlist:add(SC entry(ANY,M)>
[ d+T, (ANY+ SYN+ACK(SN, N, M )] [TI MEQUT+T, (SN—t nmout (entry(ANY,M))] T fi
with probability drop? := BERNOULLI (p)

The random dropping of incoming messages is modeled by sampling from theuedistribution with the
appropriate parameter An incoming request can also be dropped if the SYN cache is full. If tbhec& not

full, for each request that is not dropped, the sevenakes an entry for the request in the cache, and sends out a
SYN+ACK message to the source of the request. A cache entry is of thesfor r y( N, M whereNis the name

of the source which has requested a connectionMisdhe sequence number for the connection. Timing out of
entries in the cache is modeled by locally sending a message to self that iglechegfter an interval of time equal

to the timeout period. Here is the rule for removing timed out entries.

<nane: SNJisn: N,synlist: [s(SZ), (L1 entry(ANY,M L2)]> (SN «
tmout (entry(ANY, M))
= <name: SN | isn: N, synlist: [ SZ, (L1 L2) ] >

The first argument in the value of tleynl i st attribute above is the number of entries in the list, while the
second argument is the actual list of entries. The rule for processirg¥tNe-ACK message at the clients is as
follows.



<name: C(i)]isn: N, repcnt: CNT, sendt o: SN, connect ed: fal se> (C(i)« SYN+ACK(SN,N M) T
= <name: C(i)|isn:N, repcnt: CNT, sendto: SN, connected: true> [ d+T, ( SN—
ACK(C(i),M)] T

The rule is self-explanatory; the only significant point to be noted is thadtthibuteconnect ed is set to true
after processing the SYN+ACK message. Since the clients replicate thegstsdqo account for random dropping
of packets at the server, it is possible for them to receive a SYN+ACKagesfor a connection that has already
been established. Such SYN+ACK messages are simply ignored as follows.

<name: C(i)]isn:N, repcnt: CNT, sendto: SN, connected: true> (C(i)+« SYNFACK(SN, N, M)
= <nanme: C(i)]|isn:N repcnt: CNT, sendto: SN, connect ed: true> .

In contrast to the honest clients, the attacker ignores all the SYN+ACKagesshat it receives from the senfer
<nane: AN sendto: SN > (AN— SYN+ACK(SN, N, M) = <nane: AN sendto: SN >

Finally, the initial configuration of the system is

< nane: AN| ... > [ t1, <name: C(1) | ... >]1 [ t2, <name: C(2) | ... >]
[t, , <name: C(N | ... >] <nanme: SN| ... >
wheret, ..., t, are all distinct and positive. Note that, since all the clients are schedulitfeatent times, it

follows [3] that the system does not contain any un-quantified non+detm, which is essential for statistical
analysis to be possible.

6 Analysis

We have successfully used the statistical model-checking tasinX [13, 14] to verify various desired properties
of the probabilistic model in Section 5. In the following, we first describe tlwd WESTA and its integration
with PMAUDE. We then elaborate on the verification of one important property of they3ramdshake protocol
presented in the previous section.

The integration of PMUDE and VESTA is described in detail in [3]. In the integrated tool, we assume that
VESTA is provided with a set of sample execution paths generated through thetdisvent simulation of a
PMAUDE specification with no non-determinism. We assume that an execution path gegtragn our sample

is a sequence = sg Lo, $1 2N S9 2 -+, wheresy is the unique initial state of the system),is the state of the
system after thé!" computation step (rewrite), artdis the difference of global time between the statgs and
s;. We also assume that there is a labelling funcfiaihat assigns to each statea set of atomic propositions that
hold in that state; the set of atomic propositions are all those that appear progherty of interest (see below).
Thus,L : S — 247, where AP is a set of relevant atomic propositions afids the set of system states. In
PMAUDE, this labelling function is defined as an operator that maps terms represstaiag to sets of atomic
propositions.

In VESTA, we assume that the properties are expressed in a sublogic of CorgtiStmehastic Logic — CSL
(without stationary state operators). CSL was introduced in [1] as a logégxpcess probabilistic properties.
The syntax and the semantics of the logic and the statistical model-checkinghagéor CSL are described
in [13, 14]. In our experiments, we model checked the following propexpressed in CSL for different values
of the attacker ratey4.

P<0.01 (O (successfubttack)))

wheresuccessfulttack) is true in a state if the SYN cache 8fis full, i.e., the attacker has succeeded in launching
the SYN flood attack. The property states that the probability that eventuellgtthckerd successfully fills up
the SYN cache of is less than 0.01.

The results of model-checking are shown in the following table for two cageshe absence of DoS
counter-measure and in the presence of DoS counter-measure witlrdhngeparp set t00.9. In all experiments,



we used scaled down parameters so that our experiments could be coniplatessonable amount of time.
Specifically, we used a SYN cache size of 10,000, cache timeout of b@d®@nd 100 clients. The experiments
were carried out on 1.8 GHz Xeon Server with 2 GB RAM and running MakelLinux 9.2.

Model-checking X’s attack rate (SYNs per second)
P<0.01(O(successfubttack))) 1| 5| 64| 100| 200| 400 800 | 1000| 1200
result F| F F T T T T T T
p = 0.0 (No counter-measure) . 42 sec)| 47 | 87 | 280 | 605 | 183| 183| 182| 182| 181
result FI| F| F| F| F F F T T

p = 0.9 (With counter-measure

time (102 sec)| 68 | 75 | 217 | 328 | 896 | 3102| 11727| 2281 | 1781

The results show that in the presence of DoS counter-measure witld).9, .S can sustain an attack fronh
with attack rate 10 times larger than that in the case of no counter-measweefdre, the results validate our
hypothesis thagelective verificatioman be used as an effective counter-measure for DoS attacks.

To gain more insight into the probabilistic model, we realized that model-chekimgy sufficient. Specifically,
we found therue (T) andfalse(F) answers given by the model-checker is not sufficient to undetstevarious
guantitative aspects of the probabilistic model. For example, we wanted to tkieogxpected number of clients
that get connected in the presence of SYN flood attack. Therefordditian to model-checking, we used a query
language calleQuantitative Temporal Expressiofmr QUATEX in short). The language is mainly motivated by
probabilistic computation tree logic (PCTL) [8] anh&LE [4]. In QUATEX, some example queries that can be
encoded are as follows:

1. What is the expected number of clients that successfully conn&abtiv of 100 clients?
2. What is the probability that a client connecte@®twithin 10 seconds after it initiated the connection request?

A detailed discussion of the @ATEX is beyond the scope of this paper. However, we provide a brief inttmofuc
of QUATEX in the Appendix.
We evaluated the following QATEX expression with different values of the attacker rate

CountConnected() = if completed() thencount() else O (CountConnected()) fi;
evalE[CountConnected()]

In this expressiongompleted() is true in a state if all the clientS’; have either sent all of their SYN packets
or have managed to connect with The expressiorount() in a state returns the number of clients that have
successfully connected . The expression queries the expected number of clients that eventuatigatavith
S in the presence of DoS attack by the attacker

The results of evaluating the above expression for different valuagtaxtker rate 4 are plotted in Figure 2.
The results show that most of the clients get connected as long as the atlaekaot manage to fill up the SYN
cache buffer. However, as soon as the attacker’s SYN rate becaghesrtough to fill the SYN cache buffer, none
of the clients gets connected. The plot also illustrates that selthctive verificatiothe server can withstand an
order of magnitude higher SYN flood rates than without.

7 Conclusions

We have presented a general framework for verification of DoS ptiepeof communication protocols. We are
able to express and prove key properties, but performance limitation® cfutomated system in our current
formulation require us to use scaled down version of parameters thatrapissctice. Addressing these efficiency
limitations and verifying the properties for general systems remain futurk elgectives.



Number of Connected Client

0 Il L J
10 10? 10°
Attacker’s rate (SYN/sec)

Figure 2: Expected number of clients out of 100 clients that get connedtiedhe server under DoS attack

References

[1] A. Aziz, K. Sanwal, V. Singhal, and R. K. Brayton. Verifyg continuous-time Markov chains. Rroceedings of the

(2]
(3]

(4]

(5]
(6]
(7]
(8]
9]

[10]

[11]
[12]
[13]

[14]

8th International Conference on Computer Aided VerifiaaiGAV’96) volume 1102, pages 269—-276.
G. Agha. Actors: A Model of Concurrent Computation in Distributedstns MIT Press, 1986.

G. Agha, J. Meseguer, and K. Sen. PMaude: Rewrite-bgsedfcation language for probabilistic object systems. In
3rd Workshop on Quantitative Aspects of Programming LaggadQAPL’'05)2005.

H. Barringer, A. Goldberg, K. Havelund, and K. Sen. Rbksed runtime verification. IRroceedings of 5th Interna-
tional Conference on Verification, Model Checking and Adostinterpretation (VMCAI'04)volume 2937 ofLNCS
pages 44-57. Springer, January 2004.

R. Cramer and V. Shoup. A practical public key cryptosysiprovably secure against adaptive chosen ciphertegkatta
Lecture Notes in Computer Sciendd62, 1998.

D. Dolev and A. C. Yao. On the security of public-key protts. IEEE Transactions on Information Theg(29):198—
208, 1983.

C. A. Gunter, S. Khanna, K. Tan, and S. Venkatesh. Dosegtan for reliably authenticated broadcast. Natwork
and Distributed System Security (NDSS Q4jernet Society, 2004.

H. Hansson and B. Jonsson. A logic for reasoning about timd reliability. Formal Aspects of Computing(5):512—
535, 1994.

N. Kumar, K. Sen, J. Meseguer, and G. Agha. Probabiligtierite theories: Unifying models, logics and tools.
Technical Report UIUCDCS-R-2003-2347, Univ.of lllinoisldrbana-Champaign, 2003.

N. Kumar, K. Sen, J. Meseguer, and G. Agha. A rewritingdthmodel for probabilistic distributed object systems.
In Proceedings of 6th IFIP International Conference on Forivithods for Open Object-based Distributed Systems
(FMOODS’03) volume 2884 ot NCS pages 32-46, 2003.

N. Marti-Oliet and J. Meseguer. Rewriting logic: roadmap and bidriaphy.Theoretical Computer Scienc285:121—
154, 2002.

J. Meseguer. A logical theory of concurrent objects amdealization in the Maude language. Research Directions
in Concurrent Object-Oriented Programmingages 314-390. MIT Press, 1993.

K. Sen, M. Viswanathan, and G. Agha. Statistical modedaking of black-box probabilistic systems. 16th confer-
ence on Computer Aided Verification (CAV’'0ddlume 3114 of NCS pages 202-215, 2004.

K. Sen, M. Viswanathan, and G. Agha. On statistical nhathecking of stochastic systems. 17th Conference on
Computer Aided Verification (CAV'05)NCS (To Appear). Springer, 2005.

10



A QUATEX

We introduce the notation that describes the syntax and the semantics\@EQ followed by a few motivating
examples. Then we describe the language formally, along with an exampletijgewe have used to investigate
if the DoS free 3-way TCP/IP handshaking protocol model meets ouiregzgents. The results of our query on
various parameters are given in Section 6.

We assume that an execution path is an infinite sequence

T=28)— 8 — 89 — -
wheres is the unique initial state of the system, typically a term of €mf i g representing the initial global
state,s; is the state of the system after #i& computation step. If thet! state of this sequence cannot be rewritten
any further (i.e. is absorbing), then= s; for all i > k.

We denote theé'" state in an execution pathby 7[i] = s;. Also, denote the suffix of a pathstarting at the
ith state byr() = s; — si+1 — Si+2 — ---. We let Path(s) be the set of execution paths starting at state
s. Note that, because the samples are generated through discrete-evettatian of a PMauDE model with
no non-determinismPath(s) is @ measurable set and has an associated probability measure. Thisimkesse
compute the expected value of a path expression from a given state.

A.1 QUATEX through Examples

The language QATEX, which is designed to query various quantitative aspects of a probabilistielyradlows

us to write temporal query expressions like temporal formulas in a tempotal Itigsupports a framework for
parameterized recursive temporal operator definitions using a few pemiin-temporal operators and a temporal
operator (). For example, suppose we want to knttwe probability that along a random path from a given
state, the clientd(0) gets connected witB within 100 time units” This can be written as the following query

IfConnectedInTime(t) = if ¢ > time() thenO elseif connected() then1
else O (IfConnectedInTime(?)) fi fi;
evalE[IfConnectedInTime(time() + 100)];

The first four lines of the query define the operatdConnectedInTime(t), which returns 1, if along an execution
path A(0) gets connected t& within time ¢t and returns O otherwise. The state functimne() returns the global
time associated with the state; the state functionnected) returns true, if in the state}(0) gets connected with
B and returns false otherwise. Then the state query at the fifth line retwerexpected number of time$(0)
gets connected t8 within 100 time units along a random path from a given state. This number lj@slinsince
along a random path eithe¥(0) gets connected t& within 100 time units otA(0) does not get connected
within 100 time units. In fact, this expected value is equal to the probability thagaaandom path from the
given state, the cliend(0) gets connected with within 100 time units.

A further rich query that is interesting to our probabilistic model is as follows

NumConnectedInTime(t, count) = if ¢ > time() thencount
elseif anyConnected() then O (NumConnectedInTime(, 1 + count))
else O (NumConnectedInTime(t, count)) fi fi;
evalE[NumConnectedInTime(time() + 100,0)]

In this query, the state functiomnyConnected() returns true if any clienfi(:) gets connected t& in the state.
We assume that in a given execution path, at any state, at most one cteenbgeected td@3, which is true with
our probabilistic model. We use a simpler variant of this query in our expetgnen

A.2 Syntax of QUATEX

The syntax of @ATEX is given in Fig. 3. A query in QATEX consists of a set of definition® followed
by a query of the expected value of a path expresgidhp. In QUATEX, we distinguish between two kinds

11



@ == D evalE[PFEuxp]; SExp == c|f|F(SEzp,...,SExpy) | x;
D := setofDefn PEzp == SEzp| ON(SEzp1,...,SEzp,)
Defn = N(x1,...,2my) = PEzp; | if SExp then PExp, else PExp, fi

Figure 3: Syntax of QATEX

(s)lclp

(s)[f1p

(s)[F(SExpy, ..., SErpy)]p
(s)[E[PEzp]]p

(m)[if SEzp then PEzp, else PEzp, fi] p
(M [ON(SExp, ..., SExpm)]p

f(s)

F((s)[SEzpi]p,-- -, (s)[SExpr] D)

E[(m)[PEzp]p | m € Paths(s)]

if (w[0])[SEzp]p = true then(w)[PEzp,]p else(n)[PEzp2]p

W) [Blz1 = (x[0D[SEapi]p, - .., zm = (7[0])[SEzpm] p]lp
(1,...,zm) =B €D

zg |

where

Figure 4: Semantics of QATEX

of expressions, namelgtate expression@enoted bySFEzp) and path expressiongdenoted byPFEzp); a path
expression is interpreted over an execution path and a state expressitarpseted over a state. A definition
Defn € D consists of a definition of eemporal operator A temporal operator definition consists of a naiie
and a set of formal parameters on the left-hand side, and a path egpreasthe right-hand side. The formal
parameters denote tlfrweze formal parameter§Vhen using a temporal operator in a path expression, the formal
parameters are replaced by state expressions. A state expressi@eceonstant, a functionf that maps a state

to a concrete value, k-ary function mapping: state expressions to a state expression, or a formal parameter. A
path expression can be a state expression, a next operator follovmadipylication of a temporal operator already
defined inD, or a conditional expression iSEzp then PFExp, else PEzp, fi. We assume that expressions
are properly typed. Typically, these types wouldi e eger , r eal , bool ean etc. The conditior6Ezp in the
expression if SExp then PFExp; else PExps fi must have the typbool ean. The temporal expressiaREzp

in the expressioit[ PEzp] must be of typea eal . We also assume that expressions of type eger can be
coerced to the eal type.

A.3 Semantics of QATEX

Next, we give the semantics of a subset of query expressions thaecaritten in QUATEX. In this subclass,
we put the restriction that the value of a path expressgtéiap that appears in any expressiBfiPExzp] can be
determined from a finite prefix of an execution path. We call such temprpakssionsoundedpath expres-
sions. The semantics is given in Fig. 4r)[PEzp]p is the value of the path expressidttzp over the path
w. Similarly, (s)[SEzp]p is the value of the state expressiSfzp in the states. Note that if the value of a
bounded path expression can be computed from a finite prgfixof an execution path, then the evaluations
of the path expression over all execution paths having the common pigfixre the same. Since a finite prefix
of a path defines a basic cylinder set (i.e. a set containing all paths heimpmmon prefix) having an associ-
ated probability measure, we can compute the expected value of a bousttiegkpression over a random path
from a given state. In our analysis tool, we estimate the expected valugkthsouulation instead of calculating
it exactly based on the underlying probability distributions of the model. Tlaetegrocedure can be found at
http://osl.cs.uiuc.edu/ ~ksen/vesta2/.

12



