
Generating Succinct Test Cases
using Don’t Care Analysis

Cuong Nguyen∗, Hiroaki Yoshida†, Mukul Prasad†, Indradeep Ghosh† and Koushik Sen∗
∗Department of Computer Science, University of California, Berkeley, CA, USA

Email: {nacuong, ksen}@cs.berkeley.edu
†Fujitsu Laboratories of America, Inc., Sunnyvale, CA, USA

Email: {hyoshida, mukul, ighosh}@us.fujitsu.com

Abstract—We study the problem of reducing test cases gen-
erated by bit vector based symbolic execution test generators.
In particular, we first consider a guileless test case generation
approach that generates assignment statements for each symbolic
scalars, array and structure elements and object fields. We show
that test cases generated by this approach can be significantly
verbose. We then propose a method for making the generated
test cases more succinct using a novel analysis entitled don’t care
analysis. Don’t care analysis identifies assignment statements that
can be safely removed from the test cases without affecting the
overall code coverage. Our algorithm is based on binary and
delta-debugging search. Because it exploits the knowledge of the
internal SAT solver, it is effective and efficient in practice. To our
knowledge, this is the first fully automatic approach that reduces
the sizes of test cases generated using symbolic execution.

We implement our test case reduction technique for the KLEE
test generation tool and evaluate on 295 programs and functions.
Our results are encouraging: in average, the reduced test cases
are 50 times smaller than the test cases generated by the guileless
test case generator. In addition, since our don’t care analysis is
tightly integrated into the test case generation tool, its overhead
to the overall test generation process is negligible.

I. INTRODUCTION

Our growing dependence on computing systems in many
aspects of life has shown the significant reliance of society in
software functionality. The universal and omnipresent charac-
ter of computing systems has made not only their performance
but also their reliability important. Traditionally, software
quality has been assured through manual testing, which is
tedious, time consuming, and provides poor code coverage.
Recent work in the literature has found success in employing
symbolic execution to automate the test generation process,
with high structural coverage, for the programs under test
[17], [26], [12], [8], [21]. At a high level, symbolic execution
symbolically explores all paths in a function or programs under
test while collecting path constraints along the way. They then
employ a constraint solver to generate test inputs that satisfy
the constraints, thus providing test cases to concretely traverse
through the associated execution paths.

While many recent work in the literature have focused on
the ability to find bugs using symbolic execution [11], [28],
[22], less is known about the quality and usability of test
cases generated using symbolic execution. In particular, we
desire to generate test cases that are human friendly, easy
to maintain and debug. The practice of making test cases as

small as possible is well recognized in practice as a mean
of supporting of these goals. For example, as quoted in the
GNU bug reporting instructions, “smaller test cases make
debugging easier”, “GCC developers prefer bug reports with
small, portable test cases” and “minimized test cases can be
added to the GCC test suites” [1]. Aside from the GNU
website, minimizing test cases are also recommended in the
guidelines of other code bases, such as LLVM [2], Mozilla [3]
or Webkit [4]1.

Nevertheless, a common issue pertaining to symbolic ex-
ecution engines is that their generated input assignments are
not easy to be interpreted by human. In particular, in bit vector
based symbolic execution engines [12], [21], the memory
model is represented as a bit vector array, and thus the
input assignments are produced as a sequence of bytes. The
natural approach for generating test cases from the generated
test inputs is to interpret these sequences of bytes as values
depending on the type of the symbolic variables. For aggregate
types, scalar values are generated first and then aggregated
to form the whole object value. However, we find that this
approach generates verbose test cases. In particular, we studied
this approach using 100 programs from the GNU COREUTILS
and 195 functions from SQLITE3 and found that the generated
test cases can be made in average 50 times smaller (Section
IV).

How can we effectively reduce the sizes of test cases
generated using symbolic execution without affecting the
overall code coverage? In this paper, we propose a method for
reducing test cases using a novel analysis entitled don’t care
analysis. Essentially, don’t care analysis infers a set of don’t
care symbolic variables: variables that can be assigned to any
values, within the context of a specific satisfying assignment,
without affecting the overall code coverage. Using don’t care
analysis, symbolic execution engines can remove assignment
statements for don’t care variables from the generated test
cases, thus make the test cases more succinct while achieving
the same code coverage. Concretely, we reduce the problem
of reducing test cases generated by symbolic execution based
test generators to the problem of inferring don’t care variables
in a constraint formula, i.e., variables that, within the context

1We note that this problem is different from test suite reduction, in which
the goal is to reduce, from a large set of test cases, a smaller subset that likely
reveals faults in the program under test.

of a satisfiable assignment, do not affect the satisfiability of
the constraint. The analysis is performed at two levels: SMT
level and SAT level. At the SMT level, during the constraint
formula simplification phase [15], we infer a set of don’t care
SMT variables that do not appear in the simplified formula. At
the SAT level, we attempt to find a locally maximal set of SAT
variables that can be assigned to undefined such that the
SAT formula is still satisfiable. The notion of undefined
will be formally defined in Section III. Our algorithm exploits
the solution trail generated by the SAT solver algorithm, which
ranks the variables in the order of their importance using the
variable state independent decaying sum (VSIDS) heuristic
[24]. We then apply binary search to find a cut that is closest
to the beginning of the trail such that all variables after the cut
are don’t care variables. Finally, we apply an optional post-
processing step based on delta-debugging search to tune the
set of care variables into a local maximum set.

We implemented our test reduction method for the KLEE
test generation tool and evaluated it on a set of 295 programs
and functions, including 100 programs from the GNU CORE-
UTILS and 195 API functions from SQLITE3. Our experiment
showed encouraging results: the reduced test cases were 50
times smaller in average compared to the test cases generated
by the guileless test case generator. In addition, don’t care
analysis introduced negligible overhead to the overall test
generation process.

Our main contributions are as follows:
1) We study the problem of reducing test cases generated

using symbolic execution. We reduce this problem to
the problem of inferring don’t care variables in an SMT
constraint formula. To our knowledge, our paper is the
first work that looks into this issue.

2) We propose a novel analysis, entitled don’t care analysis,
for determining don’t care variables from a constraint
formula. We use this analysis to reduce the generated
test cases. The resulting test case sizes are smaller, yet
the test cases achieve the same code coverage as the
original test cases.

3) We demonstrate the effectiveness of our analysis on a
large number of programs and functions, thus reducing
the chance of per-dataset bias.

The outline of the paper is as follows: In Section II, we
study a concrete example to motivate how a test case generated
by symbolic execution can be verbose. We then provide a
background on symbolic execution and constraint solver in
Section II-A, II-B and II-C. This is followed by a detailed
description of our don’t care analysis approach (Section III),
an evaluation of its effectiveness (Section IV) and discussion
(Section V). Finally, we discuss related works in Section VI
before concluding in Section VII.

II. BACKGROUND

A. Symbolic Execution

We begin with a brief overview on how a symbolic ex-
ecution test generator can generate test cases automatically

given a function under test (FUT). Consider the following code
snippet.

1 // assume c has 100 elements
2 int foo(unsigned char i, char c[]) {
3 if (c[i] == i)
4 return 0;
5 else if (c[i] == i+1)
6 return 1;
7
8 return 2;
9 }

Listing 1: Example of a function under test.

First, the symbolic execution test generator can automat-
ically extract the test harness, which is the interface of the
function under test together with its external environment. In
this example, the test harness includes two variables that will
be made symbolic: variable i of type unsigned char and
variable c of type char[]. The test harness will also include
information about the size and the type for each symbolic
variable. Aggregate type variables can be initialized with a
random size, e.g. variable c of array type has length 100.

Second, the symbolic execution test generator invokes an
executor that symbolically explores all paths in the function
under test. The executor accumulates the constraints appeared
at each control statement it encounters along each path and
report them at the end of the symbolic execution of that path.
The resulting constraint is called the path condition (PC).
A path condition is a constraint on the symbolic variables,
which, when solved, produces an assignment that follows the
associated path. Figure 1 shows the execution tree of the FUT
in Listing 1 along with the generated path conditions. Finally,
the path conditions are fed into a constraint solver [15], to
generate satisfying assignments for the symbolic variables
if they exist. Figure 2 depicts the overall architecture of a
symbolic execution test generator.

In bit vector based symbolic execution engines, the memory
model is naturally represented as a sequence of bytes. Thus the
test inputs are also produced in the format of byte sequences.
To make this output more human readable, the test generator
typically includes a script rendering component that renders
the values nicely and makes the test cases executable. Con-
cretely, the test script renderer generates values for symbolic
variables based on their types. For aggregate types, it first
generates values for each scalar element and then aggregates

[return 0] 4

[return 1] 6

[return 2] 8

[c[i]==i] 3

[c[i]==i+1] 5

TRUE

PC: c[i]!=i && c[i]!=i+1

TRUE

FALSE

FALSE

PC: c[i]!=i &&�

c[i]==i+1

PC: c[i]==i

Fig. 1: Execution tree of the function under test.

Test Harness�

Generator

Symbolic�

Executor

Path�

ConditionsValue

Assignments Constraint�

Solver

Test Script�

Renderer

Test�

Scripts

Program/�

FUT

Fig. 2: Architecture of a symbolic execution based test gener-
ator.

them to form the whole object value. Finally, it sets up
the test harness if necessary, and invokes the FUT with the
generated input. The test cases in Listings 2, 3 and 4 are
examples of generated test cases for the FUT in Listing 1.
The corresponding path condition is annotated as a comment
in each test case.

1 // PC: c[i] == i
2 char c[100];
3 unsigned char i = 0;
4 c[0] = 0;
5 c[1] = 0; // don’t care
6 ... // don’t care
7 c[99] = 0; // don’t care
8 foo(i, c);

Listing 2: Generated Test Case 01.

1 // PC: c[i] != i && c[i] == i+1
2 char c[100];
3 unsigned char i = 1;
4 c[0] = 0; // don’t care
5 c[1] = 2;
6 ... // don’t care
7 c[99] = 0; // don’t care
8 foo(i, c);

Listing 3: Generated Test Case 02.

1 // PC: c[i] != i && c[i] != i+1
2 char c[100];
3 unsigned char i = 0;
4 c[0] = 2;
5 c[1] = 0; // don’t care
6 ... // don’t care
7 c[99] = 0; // don’t care
8 foo(i, c);

Listing 4: Generated Test Case 03.

As noted in the test case code, in each test case, 99 of the
103 lines of code are irrelevant to the path condition (noted as
“don’t care”) and can be safely removed without affecting the
code coverage or integrity of the test case. When the don’t care
assignment statements are removed, the reduced test cases are
25 times smaller. The problem is rooted in the SMT constraint
solver phase, where the variable c is represented as an array
of 100 bytes. The solver generates a satisfying assignment

Substitution

Array�

Read/Write�

Elimination

Linear�

Solving

Bit Blasting SAT Solver

Input formula

Simplified formula

SAT UNSAT/�

Counterexample

Fig. 3: Architecture of a bit-vector and array SMT solver.

for each byte without knowing which bytes are irrelevant to
the path condition. To address this problem, in this paper,
we propose a novel analysis entitled don’t care analysis to
infer don’t care variables from a constraint formula, and as a
consequence, help the test script generator remove irrelevant
assignment statements from the generated test scripts.

For the remainder of this section, we will give an overview
of the constraint solving algorithm for theory of bit vectors and
arrays (Section II-B). We then review the algorithm used in
typical SAT solvers (Section II-C). These backgrounds serve
as a foundation for our don’t care analysis, which will be
presented in Section III.

B. Bit-Vector and Array SMT Solver

In this section, we will give an overview of a decision
procedure for satisfiability of quantifier-free formulas in the
theory of bit-vectors and arrays. A detailed discussion of
this algorithm can be found at [15]. A bit-vector and array
constraint solver is typically used in test case generation
because it can naturally represent the program memory model
as an array of bytes. A typical implementation consists of
two core components: the formula simplification component
and the SAT solver component. We depict this architecture in
Figure 3.

The formula simplification component employs several
high-level structure simplification strategies to reduce the
number of symbolic variables and the complexity of the
constraint. These strategies include substitution, linear solving,
and array optimizations. In particular, the substitution phase
represents the formula using only a subset of the symbolic
variables. Linear solving partially solves the constraints using
arithmetic and Boolean simplification. Finally, array opti-
mization eliminates the array read and write operations, and
simplifies the transformed formula. The simplified formula is
then transformed into a conjunctive normal form (CNF) using
a bit-blasting algorithm and solved by a SAT solver [14].
During the transformation process, the SMT solver maintains
a substitution map, which can later be used to re-construct a

a

b b

c c

0 1

1 10

0 1

UNSAT

0

SAT

Fig. 4: An example of DPLL solution.

high-level structural representation from the SAT solution.

C. SAT Solver

Many modern SAT solvers are instances of a CHAFF-like
SAT solver, which employs a two-literal watching scheme for
fast Boolean constraint propagation (BCP) and clause learning
by conflict analysis [14], [24]. At the core of these SAT solvers
is the basic DPLL backtracking-based search algorithm. In this
section, we will first review the classic DPLL algorithm. We
then learn how the modern implementation of DPLL differs
from the classic implementation.

At a high level, DPLL is a search and backtracking algo-
rithm. The set of Boolean literals in the formula are ordered
in some chronological order and are sequentially assigned
in that order. If an assignment causes the formula to be
unsatisfiable, DPLL backtracks to a literal where an alternative
assignment can be made and continues from that assignment.
Figure 4 demonstrates the DPLL algorithm on a Boolean
satisfiability problem. In the first step, literal a is picked and
randomly assigned the value 0. DPLL then performs BCP,
which identifies and removes all clauses that become true
(which is clause 1 in this case). BCP also removes the literal a
from other clauses, including clauses 2, 3, 4, 5 and 6. At this
point, clause 6 only consists of one literal e which indicates
that e must be 1. We note here that the state in which a
variable is picked and assigned a random value is called a
decision level. At a decision level, other Boolean variables can
be influenced and several assignments can be determined, e.g.
values of a and e are determined at the same decision level
in this example. Similarly, b is chosen at the next decision
levels and randomly assigned the value 0. At this point, BCP
identifies that c must be 0 at clause 3 but finds a conflict at
clauses 4 and 5 because they both imply that d needs to be
both 0 and 1. The algorithm then backtracks to a decision
level that has not been tried both ways and continues from
that point. The algorithm stops when all clauses have become
true (satisfied), otherwise when all literals have been tried both
ways (unsatisfiable). In this example, the formula is satisfied
when a and b are assigned to 1.

Modern SAT implementations of DPLL differ from the
classic implementation in the following significant ways.

• Modern SAT implementations use conflict-driven back-
tracking, rather than chronological backtracking, to back-
track to the proper decision level. The process of BCP

does not maintain a set of satisfied clauses, but employs
two literal watching scheme and clause learning by
conflict analysis for fast BCP. A detailed discussion on
these two schemes can be found in [15]. As a result,
in case of satisfiability, the algorithm does not terminate
when all clauses have become satisfied, but rather when
all Boolean literals have been assigned to some values.
In case of unsatisfiability, the algorithm terminates when
conflicts cannot be resolved.

• Variable ordering in modern SAT implementations is dy-
namic and is determined using the VSIDS heuristic [24].
At a high level, this ordering favors the variables actively
involved in a conflict, since it deems that these variables
are more important in determining the satisfiability of the
problem. Therefore, our don’t care analysis also utilizes
this order as a heuristic to identify the maximum set of
don’t care variables.

III. DON’T CARE ANALYSIS

We discuss our realization of don’t care analysis as a
practical and effective method to infer don’t care variables.
Generally, don’t care analysis can be implemented as a
plug-in to an SMT solver. Given a constraint formula, SMT
solver with don’t care analysis attempts to find an assignment
and a maximal set of don’t care variables within the context
of that assignment such that the formula is satisfiable. We
consider two definitions of maximum.

Finding a Global Maximum: Finding a global maximum
set of don’t care variables may require evaluation of an
exponential number of constraint formulas. To be precise,
we may be required to evaluate as many as 28n constraint
formulas, where n is the total number of bytes in the set of
symbolic variables. This naive approach evaluates all possible
variable assignments by changing the value of one byte at
a time. The shortcoming of this approach is that it does not
scale to constraints that have hundreds to thousands of bytes,
as typically observed in real-world applications.

Finding a Local Maximum: If we are interested in finding a
local maximal set of don’t care variables, we could find a set
of don’t care variables so that, if we add any other variable
into this set, the input formula will become unsatisfiable.
Such a set is a local 1-maximum. We have found that finding
a local 1-maximum don’t care set is efficient, and at the same
time, effective in making test cases more succinct. We target
this definition of maximum in this work.

Figure 5 illustrates our integration of don’t care analysis
into a bit-vector and array SMT solver. First, a set of don’t
care variables is inferred during the formula simplification
phase (Section III-A). Second, a 1-maximal set of don’t care
variables is inferred during the SAT solving phase (Section
III-B). The final set of don’t care variables is the combination
of these two sets, but is represented in the format of the input
symbolic variables.

Fig. 5: Overview of Don’t Care Analysis.

A. Don’t Care Analysis at the Simplification Phase
This section illustrates how the first set of don’t care

variables are inferred during the formula simplification phase.
Essentially, at the simplification phase, the original formula
is transformed into another simplified formula that is more
suitable for the SAT solver. During this process, several
new temporary variables are introduced into the formula. A
substitution map is created to represent the correspondence
of the original variables to the temporary variables. Variables
that do not have any substitutions and do not participate in the
simplified formula are determined to be don’t care. Indeed,
those variables neither need to have any values nor affect the
simplified formula in any way. As an example, consider the
following input formula. In this formula, x is an array of 3
bit-vectors of length 10, and y is a bit-vector of length 10.

x : ARRAY OF 3 BITVECTOR(10);
y : BITVECTOR(10);
ASSERT(y[1:3] = 011

AND y[4:5] = 11
AND x[1][2:5] = 1111
AND x[1][1:3] = y[1:3]

);

Listing 5: Example of a constraint input formula.

After the simplification process, the formula is transformed
into the formula given in Listing 6. The corresponding substi-
tution map is given in Listing 7.

array_x_1[2:5] = 1111
AND
array_x_1[1:3] = 110

Listing 6: The simplified constraint formula.

b -> 011
c -> 11
y -> a CONCAT b CONCAT c CONCAT d
x[1] -> array_x_1

Listing 7: The substitution map.

Five variables are newly introduced: a, b, c, d and
array_x_1. Variable array_x_1 is a substitution for
x[1] and is involved in the simplified formula. Variables a
and d do not have any substitutions and do not appear in the
simplified formula, thus are don’t care variables. They imply
that the first one bit and the last 4 bits of y are don’t care.
Likewise, x[0] and x[2] are don’t care variables.

B. Don’t Care Analysis at the SAT Solver Phase

In the SAT solver phase, the simplified formula is trans-
formed into a CNF formula of Boolean literals. This section
illustrates how a locally maximal set of don’t care Boolean
literals are inferred. A substitution map that maps each bit-
vector variable to a vector of Boolean literals is maintained,
and is used to infer which bit-vector variables are don’t care
given the set of don’t care Boolean literals. Listing 8 shows
the CNF formula and the substitution map corresponding to
the formula in Listing 6. Each Boolean literal is denoted as
an integer number. A negative number denotes the negation
of a Boolean literal. Each line in the CNF formula is a clause
of disjunction of Boolean literals. All clauses need to be true
in order for the formula to be satisfiable. Conceptually, each
Boolean literal can only be assigned to either true or false
value. For the purpose of don’t care analysis, we introduce a
third special value, called undef. Value undef is a special
value in which the evaluations of both undef and ¬undef
return the value false. As a consequence, undef literals can
be removed from the clauses without affecting the satisfiability
of the entire formula.

// CNF formula
2 -7 -8 -9 -3
-2 3
-2 7
-2 9
-2 8
3 5 -6
-3 -5
-3 6
14
2

// Bit-blasting map
array_x_1 -> 4 5 6 7 8 9 10 11 12 13

Listing 8: The bit-blasted CNF formula and the bit-blasting
map.

Given such a CNF formula, our goal is to find an assignment
that maximizes the number of undef Boolean variables. If
the DPLL algorithm maintains a set of satisfiable clauses at
each decision level, we can simply terminate the algorithm at
the decision level when all the clauses become satisfiable and
assign the rest of variables to the undef value. However, as
discussed earlier in Section II-C, the set of satisfiable clauses
are not maintained in modern DPLL implementations. Instead,
our algorithm starts with a satisfiable solution produced by the
SAT solver and attempts to switch as many variables to undef
as possible. In particular, the algorithm operates on the solution
trail returned by DPLL. It then uses binary search to find the

highest cut (the cut that is closest to the beginning of the trail)
such that all variables appeared after the cut are don’t care
variables. Recall that the solution trail orders variables based
on their degrees of involvements in conflicts, in other words,
their importance to the resolution of the formula. Therefore,
such a cut also attempts to maximize the number of variables
that may be irrelevant in the context of the given solution
trail. Concretely, our algorithm is effective and efficient for
the following two reasons.

• It utilizes the variable order inferred by the SAT solver.
This heuristic guides the search effectively to find a
maximum set of don’t care variables.

• In each iteration, it operates on a decision level as a whole
rather than on a single literal. Operating on decision levels
is effective because in practice the number of decision
levels can often be less than the number of literals by
several orders of magnitude. It is also accurate because
of the following reason: the cut can only been found at the
end of each decision level. Indeed, if the cut is found in
the middle of a decision level, it means that the decision
literal is a care literal, but some of its BCP propagation
literals are don’t cared literals. This is a contradiction
because the BCP literals’ values are deterministic based
on the decision literal value.

Figure 6 depicts our don’t care cut search algorithm, entitled
DCCSEARCH. The input to the algorithm is the solution trail
Σ produced by SAT solver, the set of clauses C and the number
of decision levels corresponding to the solution n. The solution
trail Σ is an array of n assignments. Each element in the array
is an assignment that maps the literals in the corresponding
level to their Boolean values. C is the set of clauses in the CNF
formula. The output of the algorithm is a smallest positive
integer c less than or equal to n such that all variables from
decision levels from c to n-1 are don’t care variables. In the
special case when c = n, all variables are care variables.
DCCSEARCH first initializes low and up to be the lower
bound and upper bound of the search space, and cut to be the
middle point (line 3-4). It then sets the values of all variables
in the decision levels from cut to up to undef (line 7-9).
DCCSEARCH then uses the predicate function findunsat(C)
to find a set of clauses that become unsatisfiable (line 10). This
function checks for the satisfiability of each clause using the
previously described semantic of undef value. If the set of
unsatisfiable clauses are empty, DCCSEARCH moves the cut
closer to the lower bound by assigning up to cut, reset Ctmp to
the original set of clauses and recurs the algorithm from line
4 (line 11-14). Otherwise, it moves the cut closer to the upper
bound by first resetting the variables from decision levels from
cut to up to their original values (line 12-14) and then setting
low to cut + 1 (line 15). It then performs an optimization
by reducing the set of clauses for the next iteration to be
Cunsat (line 19). Finally, it recurs from line 4. The algorithm
terminates when low == up and returns cut as the output
(line 20).

Procedure DCCSearch

Inputs
Σ : the solution trail
C : the set of clauses
n : the number of decision levels

Outputs
The smallest c : Σ[c..n-1] are don’t care variables

Algorithm
1 Σtmp = Σ
2 Ctmp = C
3 low , up = 0 , n
4 cut = f l o o r ((low+up) / 2)
5 while low < up :
6 cut = f l o o r ((low+up) / 2)
7 for i i n [cu t . . up−1]:
8 for v i n Σtmp [i] :
9 Σtmp [i] [v] = undef

10 Cunsat = f i ndunsa t (Ctmp)
11 i f empty (Cunsat)
12 up = cut
13 Ctmp = C
14 continue
15 for i i n [cu t . . up−1]:
16 for v i n Σtmp [i] :
17 Σtmp [i] [v] = Σ [i] [v]
18 low = cut+1
19 Ctmp = Cunsat

20 return cut

Fig. 6: Don’t Care Cut Search algorithm.

C. Finding a Local Maximum

To some extent, the DCCSEARCH algorithm finds the max-
imal set of don’t care variables in the context of the solution
trail when the VSIDS heuristic effectively ranks the variables
in the order of their importance. Nevertheless, to guarantee
that the analysis result is a 1-local maximum, optionally, we
employ a delta-debugging based search on the set of care
variables returned by DCCSEARCH. Delta-debugging is a
well-known algorithm to find local maximum solutions for
the test reduction problem [29]. Delta-debugging exhibits an
O(n2) worst-case complexity where n is the number of test
input elements. Essentially, given a test input and a predicate
function, delta-debugging finds a locally maximal set of test
elements that can be removed from the test input such that the
predicate function remains true. In our context, the test input
is a set of care variables and the predicate function is the
satisfiability of the constraint formula. Delta-debugging helps
switch as many care variables to don’t care as possible such
that the constraint formula is still satisfiable.

The algorithm starts by dividing the set of care variables
∆ into two subsets of equal or almost equal size ∆1 and
∆2. It is also creates the complement set of these subsets
∇1 = ∆ \ ∆1 and ∇2 = ∆ \ ∆2 (lines 3 and 8). For each of
these subsets, the algorithm verifies the satisfiability of the set
of clauses C, assuming all variables that do not belong to the
subset are don’t care variables (function satisfied(C,∆)). If

Procedure LMSearch

Inputs
C : the set of clauses
∆ : the set of care variables

Outputs
A minimal set of care variables

Algorithm
1 d iv = 2
2 for i i n [1 . . d i v] :
3 ∆i = ∆[

(i−1)|∆|
div

..
i|∆|
div

]
4 i f s a t i s f i e d (C , ∆i) :
5 ∆ , d i v = ∆i , 2
6 goto 2
7 for i i n [1 . . d i v] :
8 ∇i = ∆ \∆[

(i−1)|∆|
div

..
i|∆|
div

]
9 i f s a t i s f i e d (C , ∇i) :

10 ∆ , d i v = ∇i , d iv−1
11 goto 2
12 i f d iv > |∆ | :
13 return ∆
14 else
15 d iv = 2 ∗ d iv
16 goto 2

Fig. 7: Local Minimum Search algorithm.

a satisfiable subset of care variables exist, the algorithm recurs
with that smaller subset (lines 5-6 and 10-11); otherwise it
restarts the algorithm with a finer-grained partition (lines 15-
16). In the special case when the granularity can no longer
be increased, the algorithm returns the current ∆, which is
a locally minimal set of care variables (lines 12-13). The
complement of this set is the locally maximal set of don’t
care variables.

IV. EVALUATION

We have implemented the test case reduction technique
described in this paper as a plugin for the KLEE symbolic
executor. Don’t care analysis is integrated as a part of STP,
KLEE’s SMT solver. DCCSearch and LMSearch are imple-
mented for MINISAT, the SAT engine used by STP solver.
We evaluated our test reduction technique on a set of 295
programs and functions, including 100 programs from the
GNU COREUTILS and 195 API functions from SQLITE3.
The COREUTILS suite consists of 100 well-known command
line programs such as ls, pwd, chmod, etc. and is often
used as a benchmark for evaluating symbolic execution test
generation engines [12], [22], [9]. SQLITE3 is also one of the
most widely used SQL database engines in practice.

KLEE does not have test harness analysis component,
therefore we setup the test harnesses manually. For GNU
COREUTILS programs, we use the setting recommended in
[5], which was previously used by many symbolic execution
test generation work in the literature [12], [22], [9]. For
SQLITE3 API functions, we use the same setting as in [5],
but removing the symbolic standard input and output parts.

In addition, we make all function arguments symbolic. For
aggregate type objects, we make all of their scalar fields
symbolic. For pointer fields, we make the objects the pointers
point to symbolic, and make the addresses concrete. We also
concretize function pointers and set the addresses to point to
empty body functions. We ran our experiments on an Intel
Core i7-M620 2.67GHz machine with 8GB RAM running
Ubuntu 14.04. KLEE and programs under test were compiled
using LLVM 3.3. Unless otherwise noted, we run KLEE on
each program and function under test in the suite up to 1 hour.
Our evaluation addresses the following research questions:

1) How effective is don’t care analysis in reducing test
cases? We find that don’t care analysis reduce the sizes
of the test cases 50 times in average. (Section IV-A)

2) How efficient is don’t care analysis compared to the
overall test generation process? We find that DCC-
SEARCH in combination with LMSEARCH has an over-
head rate at 48.32%. However, DCCSEARCH alone
introduces negligible overhead. (Section IV-B)

3) How effective is LMSearch in finding more don’t care
variables (Section IV-C)? We find that DCCSearch is
often efficient enough that the use of LMSearch can be
optional.

A. Test Reduction Evaluation

GNU COREUTILS: Using the setting recommended in
[5], symbolic arguments to these programs are provided
through the following KLEE option --sym-args
0 1 10 --sym-args 0 2 2 --sym-files 1 8
--sym-stdout, which states that the first argument has
length 10, the next two arguments have length 2, the file
input and standard input, each consists of a string of length
8, and the standard output consists of a string of length 1024.
Since a test case for these programs typically consists of only
one line, it is natural for us to use the length of the generated
strings as a metric for test reduction. Indeed, for string inputs,
the developers need to actually scan through the content of
the string to locate defects. Thus the smaller the string input
is, the easier it is for debugging. Throughout this section, we
will also define test reduction rate to be the ratio of the test
case size and the reduced test case size.

Figure 8 shows the test reduction rate for 100 COREUTILS
programs using logarithmic scale. Reduction rate is based on
the length of the string inputs. On average, 24 test cases are
generated for each program. The lowest reduction rate is 48
for the program UNEXPAND, and in average the test reduction
rate is 72. The test reduction rate for the entire test suite for
all 100 programs is 72.78, as shown in Table I.
SQLITE3: The SQLITE3 API for C/C++ consists of 214
functions. After removing obsolete functions, functions that do
not have any arguments, and functions that use only function
pointers as inputs, we end up with 195 functions for evaluation.
We use the same settings as suggested in [5] but removing the
symbolic command line arguments from the input. Instead, we
make all function parameters symbolic. Figure 9 shows the test
reduction rate for these 195 functions using logarithmic scale.

Coreutils Programs

R
e

d
u

c
ti
o

n
 r

a
te

 i
n

 t
e

rm
s
 o

f

le
n

g
th

 o
f

s
tr

in
g

 i
n

p
u

ts

1

10

100

1000

Fig. 8: Test reduction rate for 100 COREUTILS programs.
Reduction metric is based on the length of the string inputs.

TABLE I: COREUTILS entire test suite size vs. reduced test
suite size. Size is measured in terms of length of string inputs.

Entire test suite size Reduced test suite size Reduction rate
2,540,105 34,897 72.78

Reduction rate is computed based on the number of lines of
code of the generated test cases. As mentioned earlier, for each
test case, we generate one assignment statement as one line
of code. On average, KLEE generates test cases that consist
of 207 lines, and generates 4 test cases for each function
within the 1-hour time limit. The average test reduction rate for
SQLITE3 API functions is 73 and can be as high as 190. The
test reduction rate for the entire test suite of all 195 functions
is 51.87, as shown in Table II.

B. Overhead Evaluation

We compare the analysis time of KLEE with don’t care
analysis and KLEE without don’t care analysis using 195
SQLITE3 API functions. We find that the GNU COREUTILS
programs involve too many I/O operations to have stable
running time. We configure KLEE to terminate after generating
4 test cases using the command --stop-after-n-tests
4 --dump-states-on-halt=0. Four is the average
number of test cases that KLEE generated for each SQLITE3
function in the 1-hour limit, as mentioned in Section IV-A.
We report the running time overhead for two configurations
of the don’t care analysis algorithm: one uses the combination
of DCCSEARCH and LMSEARCH as described in Section
III-B, and one uses only DCCSEARCH.

DCCSEARCH+LMSEARCH: Figure 10a shows the running
time overhead of DCCSEARCH+LMSEARCH compared to
the test generation process for 195 SQLITE3 API functions.
Per function, the average overhead is 26.5% and the median
overhead is 59.49%. The overhead for the entire test suite is
48.32% (Table III).

SQLite3 API FunctionsR
e
d
u
c
ti
o
n
 r

a
te

 i
n
 t
e
rm

s
 o

f

li
n
e
s
 o

f
c
o
d
e

1

10

100

1000

Fig. 9: Test reduction rate for 195 SQLITE3 API functions.
Reduction metric is based on the size of generated test scripts.

TABLE II: SQLITE3 entire test suite size vs. reduced test suite
size. Size is measured in term of number of lines of code.

Entire test suite size Reduced test suite size Reduction rate
152724 2944 51.87

DCCSEARCH: Figure 10b shows the overhead of don’t care
analysis using DCCSEARCH alone on 195 SQLITE3 API
functions. Per function, the average overhead is 0.34% and
median overhead is 0.0%. The overhead is only as high as
6.9% and is negligible (< 2.0%) in 89% of the functions. The
overhead for the entire test suite is 0.66% (Table III).

C. LMSEARCH Evaluation

The results of section IV-B show that don’t care analysis
using the combination of DCCSEARCH and LMSEARCH
incurs fairly high overhead to the whole test generation process
(48.32%), while using only DCCSEARCH incurs negligible
overhead (0.66%). The results reported in this section will
show however that DCCSEARCH is often efficient in finding
don’t care variables enough that LMSEARCH can be optional
in many cases. Indeed, Figure 11 shows the relative differ-
ences in percentage in the number of care character inputs
generated by DCCSEARCH+LMSEARCH and DCCSEARCH
for 100 GNU COREUTILS programs. In average, DCC-
SEARCH alone generates more 2.12% care characters than
DCCSEARCH+LMSEARCH. The highest difference is 9.88%
for the su program, which translates into 0.81 care characters
per test. Similarly for SQLITE3 benchmark, DCCSEARCH
alone generates test cases that have 0.42% more lines of code
than LMSEARCH (Figure 12). The highest difference is 10%,
which translates into 0.33 more lines of code per test.

V. DISCUSSION

Our experiments so far show that our test reduction tech-
nique is effective on the two selected benchmarks. In this
section, we discuss why it works well according to our
collected data.

We observe that in the GNU COREUTILS benchmark, the
standard input and input file are relevant parameters for
only 32 of the 100 GNU COREUTILS programs, while the
standard output does not impact test coverage at all. We
then remove the standard output from KLEE setting and
simply use --sym-args 0 1 10 --sym-args 0 2 2

SQLite3 API Functions

D
C

C
S

e
a

rc
h

 +
 L

M
S

a
e

rc
h

O
v
e

rh
e

a
d

 [
%

]

0

100

200

300

400

(a) Overhead of DCCSearch+LMSearch

SQLite3 API Functions

D
C

C
S

e
a
rc

h

O
v
e
rh

e
a
d
 [
%

]

-5

-3

-1

1

3

5

7

9

(b) Overhead of DCCSearch

Fig. 10: Overhead of different configurations of don’t care analysis algorithm to the overall test generation process for 195
SQLITE3 API functions.

TABLE III: Overhead of different don’t care analysis config-
urations on generating the entire SQLITE3 test suite.

DCCSEARCH+LMSEARCH LMSEARCH
48.32% 0.66%

--sym-files 1 8 as input. Figure 13 shows the test
reduction rate for this setting using logarithmic scale. On
average, don’t care analysis still can reduce the test cases a
factor of 2.25. We note however that removing standard output
from the setting requires domain-specific knowledge. Without
this knowledge, the developers can still use the original setting
and let our don’t care analysis infer this knowledge for free.

Regarding the SQLITE3 benchmark, we noticed that a
majority of SQLITE3 functions receive SQLITE3 objects
such as sqlite3 or sqlite3_stmt as parameters. Since
each of these objects has dozens of fields and only a
few fields are actually used in the functions, the test re-
duction is fairly high. Test reduction in this case is very
helpful as it helps to locate faster which fields might be
the source of the bugs. We also notice that several func-
tions do not have high test reduction rate, for example,
sqlite3_compileoption_used has the reduction rate
of 1.14 times smaller and sqlite3_complete has the
reduction rate of 1.81 times smaller. All of these functions
receive scalars as function parameters, thus the test reduction
rate is smaller. The size of the generated test scripts is also
smaller, which is 2 lines and 10 lines on average for the two
functions mentioned earlier.

VI. RELATED WORK

The topic of automated test case generation using symbolic
execution has attracted much interest from both academic
research and industrial studies in the last decade. An online
bibliography [7] currently lists more than 190 publications
related to symbolic execution and its applications. Notable
work that was pioneer in addressing the major limitations
of symbolic execution include DART [17], CUTE [26] and
KLEE [12]. DART and CUTE combined concrete execution
with symbolic execution to alleviate the limitations in con-
straint solving and uninterpreted functions, and allow unit test
case generation to be completely automated. KLEE introduced

Coreutils ProgramsD
C

C
S

e
a

rc
h

 +
 L

M
S

e
a

rc
h

a
n

d
 D

C
C

S
e

a
rc

h

D
if
fe

re
n

c
e

s
 [

%
]

Test reduction based on length of string input

0

2

4

6

8

10

Fig. 11: Relative differences in number of don’t care character
inputs generated by DCCSEARCH+LMSEARCH and DCC-
SEARCH alone on GNU COREUTILS benchmark.

D
C

C
S

e
a
rc

h
 +

 L
M

S
e
a
rc

h

a
n
d
 D

C
C

S
e
a
rc

h

D
if
fe

re
n
c
e
s
 [
%

]

Test reduction based on lines of code of the test case

SQLite3 API Functions

0

2

4

6

8

10

12

Fig. 12: Relative differences in number of lines of code
of test cases generated by DCCSEARCH+LMSEARCH and
DCCSEARCH alone on SQLITE3 benchmark.

the idea of system modeling and was the first tool to show that
symbolic execution can generate high structural coverage test
cases on real world programs. Industrial implementations of
symbolic execution include KLOVER [21] for C/C++, PEX
[27] for .NET, SAGE [10] and MAYHEM [9] for x86 code.
Recent work including those by SMART [16], TRACER [18]
and veritesting [9] has been devoted to addressing the problem
of path explosion. The approaches used are based on path
merging techniques using function summaries, interpolation,
and a combination of static and dynamic symbolic execution.
Finally, a different set of work that focus on heuristics for
efficient path traversal are those by CREST [11], T. Xie et al.
[28] and Y. Li et al. [22].

Coreutils Programs

Test reduction when pre-processed with domain knowledge

1

10

100

1000

R
e
d
u
c
ti
o
n
 r

a
te

 o
f

le
n
g
th

 o
f
s
tr

in
g
 i
n
p
u
t

Fig. 13: Test reduction rate for 100 GNU COREUTILS pro-
grams without symbolic standard output. Reduction metric is
based on length of string inputs.

Our work is also closely related to other work in test
case reduction. Zeller and Hildebrandt [29] developed delta
debugging, a well-known algorithm for general test case reduc-
tion problem and demonstrated it usefulness on string based
inputs. Subsequently, Misherghi and Su proposed hierarchical
delta debugging, which reduced tree-structural test cases [23].
Domain-specific test case reduction algorithms for compiler
bugs include those by BUGFIND [13], LLVM BUGPOINT [6]
and C-REDUCE [25]. These algorithms essentially look at the
program as a black box and use a predicate function to verify
the validity of the test cases. Our work differentiates in the
sense that our algorithm is based on analyzing the program
structure rather than merely the generated test inputs. Test
case reduction work for unit test cases generated from random
testing includes those by Lei and Andrews [19] and Leitner
et al. [20]. Our work is similar to those in the sense that
we also reduce generated test scripts. However, while in other
work, the test reduction is conducted after test case generation
process, our test reduction approach is integrated inside the test
generation process.

VII. CONCLUSION

In this paper, we have presented an automated method for
reducing test cases generated by bit vector based symbolic
execution test generators. The method is based on a novel
analysis entitled don’t care analysis, which infers a locally
maximal set of don’t care variables from a constraint formula.
We implemented don’t care analysis as an efficient and practi-
cal plugin for the KLEE symbolic executor. Initial evaluation
on a set of 284 programs and functions showed encouraging
result: we were able to generate test cases that are 50 time
smaller in size, compared to a guileless test case generation
algorithm.

In the future, we would like to apply our analysis to a wider
range of applications to gain better statistical results. We also
want to explore different techniques to make generated test
cases friendlier to human. Generated test cases in general need
to be easy to understand, maintain and locate defects.

REFERENCES

[1] https://gcc.gnu.org/bugs/minimize.html.
[2] http://llvm.org/docs/HowToSubmitABug.html.
[3] https://developer.mozilla.org/en-US/docs/Mozilla/QA/Reducing

testcases.
[4] https://www.webkit.org/quality/reduction.html.
[5] http://klee.github.io/klee/CoreutilsExperiments.html.
[6] http://llvm.org/docs/CommandGuide/bugpoint.html.
[7] A. Alipour and S. Bucur. A Bibliography of Papers on Symbolic

Execution Technique and its Applications. https://sites.google.com/site/
symexbib/, 2014.

[8] S. Anand, C. S. Păsăreanu, and W. Visser. JPF-SE: A symbolic execution
extension to Java PathFinder. In TACAS’07, pages 134–138, Berlin,
Heidelberg, 2007. Springer-Verlag.

[9] T. Avgerinos, A. Rebert, S. K. Cha, and D. Brumley. Enhancing
symbolic execution with Veritesting. In ICSE 2014, pages 1083–1094,
New York, NY, USA, 2014. ACM.

[10] E. Bounimova, P. Godefroid, and D. Molnar. Billions and billions of
constraints: Whitebox fuzz testing in production. In ICSE ’13, pages
122–131, Piscataway, NJ, USA, 2013. IEEE Press.

[11] J. Burnim and K. Sen. Heuristics for scalable dynamic test generation. In
ASE ’08, pages 443–446, Washington, DC, USA, 2008. IEEE Computer
Society.

[12] C. Cadar, D. Dunbar, and D. R. Engler. KLEE: Unassisted and automatic
generation of high-coverage tests for complex systems programs. In
OSDI, pages 209–224, 2008.

[13] J. M. Caron and P. A. Darnell. Bugfind: A tool for debugging optimizing
compilers. SIGSOFT Softw. Eng. Notes, 15(1):64–65, Jan. 1990.

[14] N. Eén and N. Sörensson. An extensible SAT-solver. In SAT, pages
502–518, 2003.

[15] V. Ganesh and D. L. Dill. A decision procedure for bit-vectors and
arrays. In CAV, pages 519–531, 2007.

[16] P. Godefroid. Compositional dynamic test generation. In POPL ’07,
pages 47–54, New York, NY, USA, 2007. ACM.

[17] P. Godefroid, N. Klarlund, and K. Sen. DART: directed automated
random testing. In PLDI, pages 213–223, 2005.

[18] J. Jaffar, V. Murali, J. A. Navas, and A. E. Santosa. TRACER: A
symbolic execution tool for verification. In CAV’12, pages 758–766,
Berlin, Heidelberg, 2012. Springer-Verlag.

[19] Y. Lei and J. H. Andrews. Minimization of randomized unit test cases.
In ISSRE ’05, pages 267–276, Washington, DC, USA, 2005. IEEE
Computer Society.

[20] A. Leitner, M. Oriol, A. Zeller, I. Ciupa, and B. Meyer. Efficient unit
test case minimization. In ASE ’07, pages 417–420, New York, NY,
USA, 2007. ACM.

[21] G. Li, I. Ghosh, and S. P. Rajan. KLOVER: A symbolic execution and
automatic test generation tool for C++ programs. In CAV’11, pages
609–615, Berlin, Heidelberg, 2011. Springer-Verlag.

[22] Y. Li, Z. Su, L. Wang, and X. Li. Steering symbolic execution to less
traveled paths. In OOPSLA ’13, pages 19–32, New York, NY, USA,
2013. ACM.

[23] G. Misherghi and Z. Su. HDD: Hierarchical delta debugging. In ICSE
’06, pages 142–151, New York, NY, USA, 2006. ACM.

[24] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik.
Chaff: Engineering an efficient SAT solver. In DAC, pages 530–535,
2001.

[25] J. Regehr, Y. Chen, P. Cuoq, E. Eide, C. Ellison, and X. Yang. Test-case
reduction for C compiler bugs. In PLDI ’12, pages 335–346, New York,
NY, USA, 2012. ACM.

[26] K. Sen, D. Marinov, and G. Agha. CUTE: a concolic unit testing engine
for C. In ESEC/SIGSOFT FSE, pages 263–272, 2005.

[27] N. Tillmann and J. de Halleux. White-box testing of behavioral web
service contracts with PEX. In ISSTA’08, pages 47–48, 2008.

[28] T. Xie, N. Tillmann, J. de Halleux, and W. Schulte. Fitness-guided path
exploration in dynamic symbolic execution. In DSN ’09, pages 359–368,
June 2009.

[29] A. Zeller and R. Hildebrandt. Simplifying and isolating failure-inducing
input. IEEE Trans. Softw. Eng., 28(2):183–200, Feb. 2002.

