
Automated Systematic Testing of

Open Distributed Programs
Koushik Sen and Gul Agha

Department of Computer Science
University of Illinois at Urbana-Champaign, USA.

{ksen,agha}@cs.uiuc.edu

Abstract. We present an algorithm for automatic testing of distributed
programs, such as Unix processes with inter-process communication and
Web services. Specifically, we assume that a program consists of a num-
ber of asynchronously executing concurrent processes or actors which
may take data inputs and communicate using asynchronous messages.
Because of the large numbers of possible data inputs as well as the asyn-
chrony in the execution and communication, distributed programs ex-
hibit very large numbers of potential behaviors. Our goal is two fold: to
execute all reachable statements of a program, and to detect deadlock
states. Specifically, our algorithm uses simultaneous concrete and sym-
bolic execution, or concolic execution, to explore all distinct behaviors
that may result from a program’s execution given different data inputs
and schedules. The key idea is as follows. We use the symbolic execu-
tion to generate data inputs that may lead to alternate behaviors. At
the same time, we use the concrete execution to determine, at runtime,
the partial order of events in the program’s execution. This enables us
to improve the efficiency of our algorithm by avoiding many tests which
would result in equivalent behaviors. We describe our experience with
a prototype tool that we have developed as a part of our Java program
testing tool jCUTE.

1 Introduction

Open distributed programs consist of asynchronous processes which communi-
cate with each other using asynchronous messages and which may also receive
data inputs from the environment. Unix process and web services are two ex-
amples of open distributed programs. The problem of testing such programs is
a difficult one because of the large number of potential behaviors that they may
exhibit, both because the number of possible inputs is unbounded and because
there are many possible orders of execution of distributed events.

In this paper, we focus on the problem of testing for reachability of state-
ments in distributed programs. Determining whether a statement is reachable
is, in some cases, undecidable. Our goal is to automatically and efficiently find
inputs and orderings which cover a large subset of the reachable statements in
a program. Note that our algorithm may also detect some deadlock states dur-
ing testing. Our testing algorithm builds on two ideas: concolic execution and
runtime partial order reduction.

Concolic testing extends symbolic execution based testing [15, 17, 25, 18, 24]
as follows. In symbolic execution, a program is executed using symbolic variables
in place of concrete values for inputs. Each conditional expression in the program
represents a constraint that determines an execution path. Observe that the
feasible executions of a program can be represented as a tree, where the branch
points in a program are internal nodes of the tree. The goal is to explore all
feasible execution paths of a program [17]. The classic approach is to use depth-
first exploration of the paths by backtracking [24]. Unfortunately, for large or
complex program, it is computationally intractable to precisely maintain and
solve the constraints required for test generation.

Concolic testing removes the limitations of symbolic execution based test-
ing [13, 21]. Specifically, the algorithm uses simultaneous concrete and symbolic
execution, or concolic execution, to explore distinct behaviors that may result
from a program’s execution given different data inputs. The key idea is as fol-
lows. We use the symbolic execution to generate data inputs that may lead to
alternate behaviors. At the same time, we use the concrete execution to guide
the symbolic execution along a distinct execution path. The concrete execution
is also used to simplify symbolic expression that cannot be handled by our con-
straint solver.

For the purpose of testing for reachability and deadlocks, the behavior of a
distributed program may be defined by the partial order of events at the pro-
cesses, where an event is defined as the execution of a statement by a process.
Testing must account for nondeterminism in the order of events, not just inde-
terminacy of data inputs. Moreover, the nondeterminism in the order of events
arises both from the asynchrony in scheduling of processes and the delay in mes-
sage delivery. Our testing algorithm forces the computation along an execution
schedule which represents a particular choice for both kinds of nondeterminism.

Two difficult problems have to be addressed by our algorithm. First, con-
colic testing has to incorporate efficient control of the execution schedules. We
use concrete executions to not only guide the symbolic execution, but also to
compute the happens before partial order relation [8] on the events. This relation
is used to determine a distinct schedule which, in general, corresponds to a differ-
ent partial order. Second, we have to track symbolic expressions and constraints
across process boundaries in a distributed setting.

Note that the runtime partial reduction technique we use is more involved
than the standard partial order reduction [23, 19, 11, 9]: we track both symbolic
constraints and the “happens-before” relation at runtime. Moreover, our partial
order reduction is dynamic as the partial order is computed at runtime. This
helps us to track the partial order accurately by eliminating some of the ap-
proximations required in a static analysis technique for standard partial order
reduction [12].

Because our algorithm is designed to explore execution paths of a distributed
program, we term our approach Explicit Path Model Checking. To the best of
our knowledge, our algorithm is the first to consider both inputs and schedules

for message-passing distributed programs. While other approaches [12, 14, 16, 9]

2

have considered testing for different schedules, they use either finite domains
or random values for the inputs. Moreover, our algorithm is always sound –
any bugs that it reports are real. Our algorithm is complete only under certain
assumptions – namely, when our constraint solver can handle all constraints that
are generated and every execution is finite. More importantly, it can significantly
increase coverage as compared to testing using random inputs.

In Section 3, we describe a simple model of distributed programs which we use
in Section 5 and 6 to describe our algorithm. Essentially, the model corresponds
to actors [1, 2]. This allows us to describe the algorithm independent of any
particular programming language. We have implemented our algorithm as a part
of the tool jCUTE [20], which we have developed to test general multithreaded
programs written in Java. Section 7 describes some preliminary experiments
using this tool. Note that the algorithm can also be used for C programs by
extending CUTE [21] with Unix processes and IPC libraries.

2 Other Related Work

A number of approaches [12, 14, 16, 9] for testing distributed programs explore
all possible distinct partial orders for fixed inputs. Specifically, the approaches
in [12, 14] use static partial order reduction to avoid exploring some of the differ-
ent executions that have the same partial order. A reason for redundant explo-
rations is that there are approximations associated with static analysis. One way
to address this problem is to use dynamic analysis to guarantee that exactly one
interleaving from each partial order is explored [16]. The approach involves stor-
ing partial orders that have already been explored; this can become a memory
bottleneck. Dynamic partial order reduction [9] removes the memory bottleneck
in [16] at the cost of possibly exploring more than one interleaving for each partial
order. The approach in [9] works for programs which have no data input and use
persistent sets. On the other hand, our dynamic partial order reduction approach
is based on the macro-step Actor semantics [2]. A clear distinction between the
two approaches would require a study of the adaptation of the approach in [9] to
asynchronous message-passing distributed systems. The adaptation of dynamic
partial order reduction to multithreaded programs is shown in [9]. In our recent
work [20] extending concolic testing to multithreaded programs, we develop a
new technique for dynamic partial order reduction. We believe the technique,
called race-flipping, can be more efficient than that in [9].

Model checking tools [6, 7, 22] based on static analysis have been developed
to detect bugs in shared memory concurrent programs. These tools employ par-
tial order reduction techniques to reduce search space. Testing shared memory
multi-threaded programs using symbolic execution [24] has been developed by
extending Java Pathfinder.

A number of approaches [5, 4, 10] have been developed to explore all possible
global states of program that can be inferred by observing a single execution of
a distributed program. These techniques are orthogonal to our algorithm and
may be combined with our testing tool to enable it to also explore all reachable
global states.

3

P ::= p1 : I∗ : Stmt∗ ‖ . . . ‖ pn : I∗ : Stmt∗

I ::= v ← input()
Stmt ::= l : S

S ::= v ← e | if (v ./ v′) goto l′ | HALT | ERROR | send(p, v) | receive(v)
where p is a process, v, v′ is a variable, ./∈ {=, 6=, <, >,≤,≥}

e ::= c | v op v′ where op ∈ {+,−, /, ∗, %, . . .}, c is a constant

Fig. 1. Syntax of MPIL

3 Programming Model

In order to simplify the description of our testing approach, we define a simple
asynchronous message-passing imperative concurrent language MPIL (Figure 1).
MPIL extends the simple language presented in [21] with message-passing prim-
itives. An MPIL program is a set of processes that are executed concurrently,
where each process executes a sequence of statements. Processes in a program
communicate by passing messages asynchronously. The semantics of the lan-
guage is closely related to the actor semantics–each process implements an ac-
tor [2]. However, we assume that all executions terminate or the program has
deadlocked. Note that although we describe our algorithm in terms of MPIL, the
algorithm can be used to test programs involving Unix processes and distributed
Java programs.

For brevity and simplicity, we assume that new processes are not created dur-
ing an execution of a program. The extension to handle these is fairly straight-
forward and, in fact, our implementation handles it. Moreover, an MPIL program
may receive data inputs from its environment. We assume that all such inputs
are available as needed; again this assumptions simplifies the description of our
algorithm: our Java programs can get data inputs at any time during an execu-
tion.1 To further simplify our exposition we assume that an MPIL program has
no pointers. However, as in [21], our algorithm can be extended to programs with
pointers and complex data structures, and this is done in the implementation.

3.1 Interleaving Semantics

We now informally describe the semantics of MPIL. Consider an MPIL program
P consisting of a set of processes P = {p1, . . . , pn}, where pi first gets a sequence
of inputs and then executes a sequence of statements, each of which is labeled.
If l is the label of a statement in some process, then l + 1 is the label of the
next statement in that process, unless the statement labeled by l is a HALT or an
ERROR. The label of the initial statement of a process p is given by l

p
0 . We assume

that the initial statement of each process is always of the form receive(v).
A program may only have variables of type integer. Variables are always local

to a process; they cannot be shared among processes. A process in a program can

1 The reason this assumption does not reduce the generality of our algorithm is easy
to see. Inputs are essentially unconstrained messages. Since we test for all potential
external behaviors, any values of the data inputs are possible in response to any
output of the program. Thus considering values as available from the beginning of
the execution does not constrain the contexts in which the program is tested.

4

communicate with another process by sending messages using the primitive send.
send(p, v) sends the content of the variable v to the process p. In the semantics of
MPIL, an execution of the statement send(p, v) by a process p′ adds the content
of v to the message queue of process p. The message queue of a process is a
list of values. We will use Qp to denote the message queue of process p, |Qp| to
denote the number of elements in the queue, and Qp[i] to denote the ith element
in the message queue. We assume that at the beginning of execution the message
queue of process p1 contains a message 0. A process can receive a message by
calling the primitive receive(v). On executing receive(v), a process waits if its
message queue is empty. Otherwise, the process non-deterministically picks a
message from its message queue, removes the message from the queue, assigns
the content of the message to v, and continues executing the next statement.
The non-determinism in picking the message models the asynchrony associated
with message passing.

Before executing any statement, an MPIL program gets input using the com-
mand v ←input(). This command assigns the input data to the variable v. Ob-
serve that input() captures the various functions through which a program may
receive data from its external environment. We assume that the execution of a
command of the form v ←input() is always non-blocking.

A process is said to be active if it has not already executed a HALT or an
ERROR statement. A process is said to be enabled if the following two conditions
hold:

– the process is active, and
– the processes’ message queue is non-empty if the next statement to be exe-

cuted by the process is receive.

The operational semantics of a program in MPIL is given using a (default)
scheduler which represents the choices made in a distributed execution of a
program (Figure 2). We use the term schedule to refer to the sequence of choices.

scheduler default(P)
pcp1

= l
p1

0
; . . . ; pcpn

= l
pn

0
;

Qp1
= [0]; Qp2

= []; . . . ; Qpn
= [];

for each p ∈ P initialize input variables
while (∃p ∈ P such that p is enabled)

non-deterministically pick a p from P
such that p is enabled

s =statement at(pcp);
if (s is of the form receive(v))
pick j non-deterministically from [1..|Qp|]

execute concrete(p, s, j);
if (∃p ∈ P such that p is active)

warning “Deadlock detected”;

Fig. 2. Default Scheduler for MPIL

execute concrete(p, s, j)
pcp = pcp + 1;
match(s):

case send(p′, v) :
Q

p′ = Sp(v) :: Q
p′ ;

case receive(v) :
Sp = Sp[v 7→ Qp[j]];
Qp = remove element(Qp, j);

case v ← v1 op v2 :
Sp = Sp[v 7→ (Sp(v1) op Sp(v2))];

case if (v1 ./ v2) goto l′ :
if (Sp(v1) ./ Sp(v2)) pcp = l′;

case HALT :
make p inactive

case ERROR :
exit program with error

Fig. 3. Concrete Execution

A variable pcp represents the program counter of the process p. For each
process p, pcp is initialized to the label of the first statement of the process p

5

(i.e. l
p
0) and Qp is initialized to the empty list (except for Q1). Inside the loop,

the scheduler non-deterministically chooses an enabled process p from the set
P. It executes the next statement of the process p, where the next statement is
obtained by calling statement at(pcp). During the execution of the statement the
program counter pcp of the process p is incremented by one, unless the statement
is of the form if p goto l′ and the predicate p in the statement evaluates to
true, in which case pcp is set to l′. The loop of the scheduler terminates when
there is no enabled process in P. The termination of the scheduler indicates either
the normal termination of a program execution, or a deadlock state (when at
least one process in P is active).

The concrete execution (or the normal execution) of a statement, which is
not of the form send or receive, takes place in the usual way. The execution of
the send and receive statements is described in Figure 3. We use Sp to denote
process p’s state, which maps each variable used by p to a concrete integer value.
Given any map S, we use S ′ = S[v 7→ c] to denote the map that is the same as
S except that S ′(v) = c. The list obtained by prepending the element c to the
list Qp is denoted by c :: Qp. remove element(Qp, i) returns the list obtained by
removing the ith element from the list Qp.

Note that at every step the default scheduler for an MPIL program may make
two non-deterministic choices: one choice to pick an enabled process p and the
other choice to pick a message from the message queue if the next statement to
be executed is receive(v).

3.2 Macro-step Semantics

As shown in [2], the semantics of MPIL presented in Figure 2 is equivalent to the
macro-step semantics given in the form of a macro-step scheduler in Figure 4.
In the macro-step scheduler, the execution of a process from a receive statement
up to the next receive statement takes place consecutively without interleaving
with any other process. The consecutive execution of all statements of a process
from a receive statement up to the next receive statement is called a macro-

step and an execution following the macro-step semantics is called a macro-step

execution. An execution of MPIL program can be seen as a sequence of macro-
steps, where at the beginning of each macro-step, using the function choice, the
scheduler non-deterministically picks an enabled process p to be executed next
and an index msg id indicating that the message Qp[msg id] must be consumed
by the next receive statement. The sequence of pairs of processes and message
indices chosen during a macro-step execution is called a macro-step schedule.

Observe that during a macro-step execution, whenever the macro-step sched-
uler invokes the function choice, a pair of process and message index is non-
deterministically picked from a set of possible choices. The set of possible choices
can be formally defined as follows:

Choices = {(p, j) | p is an enabled process in P and 1 ≤ j ≤ |Qp|}

The elements of this set can be lexicographically ordered as follows. We say
(p, j) < (p′, j′) iff one of the following holds:

6

scheduler macro step(P)
pcp1

= l
p1

0
; . . . ; pcpn

= l
pn

0
;

Qp1
= [0]; Qp2

= []; . . . ; Qpn
= [];

for each p ∈ P initialize input variables
while (∃p ∈ P such that p is enabled)

(p,msg id)=choose(P);
s =statement at(pcp);
execute concrete(p, s,msg id);
s =statement at(pcp);
while (p is active and s 6= receive(v))

execute concrete(p, s,msg id);
s =statement at(pcp);

if (∃p ∈ P such that p is active)
warning “Deadlock detected”;

choose(P)
pick non-deterministically a p from P

such that p is enabled
pick a j non-deterministically from [1..|Qp|]
return (p, j);

Fig. 4. Macro-step Scheduler for MPIL

– The index of p is less than that of p′, i.e., if i and i′ are such that p = pi and
p′ = pi′ , then i < i′.

– p = p′ and j < j′.

Definition 1 (next). Given the above ordering relation < over the elements of

the set Choices, we can define a function next : Choices ∪ {(⊥,⊥)} → Choices ∪
{(⊥,⊥)} as follows. The elements of the set Choices can be ordered using the

relation < to get a linear sequence. If (p, j) is an element of the sequence except

the last element, next(p, j) is defined as the element next to (p, j) in the sequence.

Otherwise, if (p, j) is the last element in the sequence, then next(p, j) is defined

as (⊥,⊥). next(⊥,⊥) is defined as the first element of the sequence.

3.3 Execution Model

We represent the execution of a statement labeled l in a process p as the event

(p, l), and use e, e′, e1, . . . to denote events. A macro-step execution of a dis-
tributed program can be seen as a sequence of events τ = e1e2 . . . em, such that
τ is the concatenation of a sequence of sub-sequences. Each such sub-sequence
has the following property. Only the first event in the sub-sequence is a receive
event and each event in the sub-sequence happens at the same process. Thus
each sub-sequence represents a macro-step in the execution. Let E be the set
of all macro-step executions that can be exhibited by a program on all possible
inputs and schedules. In the simple testing algorithm (Section 5), our goal will
be to systematically and automatically explore all executions in E exactly once.
Later, we will refine the algorithm to avoid exploring ’equivalent’ executions as
much as possible (Section 6).

We now formally define this equivalence, based on a “happens-before” rela-
tion [8]. Given an execution of a distributed program, let E be the set of events
that happened during the execution. We can define a relation 4 ⊆ E×E, called
“happens-before” relation, among the events of the execution as follows:

1. e 4 e,
2. e 4 e′ if e and e′ are events of the same process and e happens before e′ in

the execution,
3. e 4 e′ if e is the send event of a message and e′ is the receive event that

consumes the message sent during the event e, and

7

4. e 4 e′ if there is a e′′ such that e 4 e′′ and e′′ 4 e′.

Thus the “happens-before” relation is a partial order relation.
Given two executions τ and τ ′ in E , we say that τ and τ ′ are causally equiv-

alent, denoted by τ ≡4 τ ′, iff τ and τ ′ have the same set of events and they are
linearizations of the same “happens-before” relation. We use [τ]≡4

to denote the
set of all executions in E that are equivalent to τ .

We define the representative set of executions E≡ ⊆ E as the set that contains
exactly one candidate from each equivalence class [τ]≡4

for all τ ∈ E . Formally,
E≡ is the set such that following properties hold: E≡ ⊆ E , E =

⋃
τ∈E≡

[τ]≡4
, and

for all τ, τ ′ ∈ E≡, it is the case that τ 6 ≡4τ ′.
The following result shows that a systematic and automatic exploration of

each element in E≡ is sufficient for testing.

Proposition 1. If a statement is reachable in a program P for some input and

schedule, then there exists a τ ∈ E≡ such that the statement is executed in τ .

The proof of this proposition is straight-forward. If a statement is reachable
then there exists an execution τ in E such that the executionτ executes the state-
ment. By the definition of ≡4, any execution in [τ]≡4

executes the statement.
Hence, the execution in E≡ that is equivalent to τ executes the statement.

The “happens-before” relation among the events can be tracked efficiently
at runtime using vector clocks [8]. A vector clock V : P → N is a map from
processes to natural numbers (also known as logical time). For each process p,
let us associate a vector clock denoted by V Cp with p. Let V = max (V1, V2) iff for
all p ∈ P, V (p) =max (V1(p), V2(p)). Let V ≤ V ′ iff for all p ∈ P, V (p) ≤ V (p′).

At the beginning of an execution, for all p and p′ in P, let V Cp(p
′) = 0.

During the execution, at every event, the vector clock of a process is updated as
follows.

1. If e is a send event executed by process p, then V Cp(p) ← V Cp(p) + 1 and
attach V Cp with the message.

2. If e is a receive event executed by process p and if V is the vector clock at-
tached with the message received, then V Cp ←max (V, V Cp). This is followed
by V Cp(p)← V Cp(p) + 1.

We can associate a vector clock with every event e, denoted by V Ce as follows.
If e is executed by p and if V Cp is the vector clock of p just before the event e,
then V Ce = V Cp.

Given the above update rules for vector clocks during an execution, the fol-
lowing theorem [4] holds:

Theorem 1. For any two events e and e′, e 4 e′ iff V Ce ≤ V Ce′ .

We say that two events e and e′ are independent iff e 64 e′ and e′ 64 e.
Therefore, by Theorem 1, e and e′ independent iff V Ce 6≤ V Ce′ and V Ce′ 6≤ V Ce.

Since we are interested only in exploring macro-step executions, henceforth,
we will use the terms execution and schedule to refer to macro-step execution
and macro-step schedule, respectively.

8

4 An Illustrative Example
We now illustrate our testing methodology by means of the simple program
in Figure 5. In this program, for clarity, we omit the first receive statement
of process p1. Specifically, we perform testing on the program by generating
inputs and schedules one by one and executing the program both concretely
and symbolically on these inputs and schedules. We assume that a program
executes according to the macro-step semantics described above. We represent
an execution diagrammatically using a lifeline where each circle on the lifeline
represents a program state and each line segment between two circles represents
the execution of a statement by a process. We always label such a line segment
by a pair of the form (p, l) denoting the execution of the statement labeled l by
the process p. We assume that time increases from top to bottom in the diagram.

Figure 6.a shows the execution of the program on a random input and a
random schedule. In the execution there are three states s1, s2, s3 where the pro-
gram can possibly backtrack if we can generate a different schedule or different
input. For example, at the state s1, there are two other possible choices that
the scheduler may make – it may execute process p3 by receiving the value sent
by the second send statement of process p1 or by receiving the value sent by
the third send statement of process p1. Similarly, at state s2, the scheduler may
make another choice – it may execute process p3 by receiving the message sent
by the third send statement of process p1. At state s3, the program may take
the then branch of the program if the input is chosen such that it satisfies the
constraint 2 ∗ y + 1 == 4, which is generated during the simultaneous symbolic
execution.

p1 : p2 : p3 :
x← input() y ← input()
1: send(p2, 1) 1: receive(z) 1: receive(u)
2: send(p3, 4) 2: if (u! = 2 ∗ y + 1) goto 4
3: send(p3, x) 3: ERROR

4: receive(u)

Fig. 5. Simple Distributed Program Example

In our simple testing algorithm (described in Section 5), we generate the next
input or schedule by exploring other alternatives at these backtracking points
in a depth-first manner. We cannot generate an input such that, in the next
execution, the program takes the then branch at the state s3. This is because the
equation 2 ∗ y +1 == 4 is unsatisfiable assuming that y is an integer. Therefore,
in the next execution we execute the program by taking the alternative scheduler
choice at the state s2. The execution is shown in Figure 6.b. After this execution
we try to backtrack at state s3 and generate the input {x = 1, y = 0} by solving
the constraint x == 2∗y+1, which is generated during the simultaneous symbolic
execution. Figure 6.c gives the third execution.

In this way, our simple testing algorithm proceeds in a depth-first manner
either by generating an input by solving a constraint at a backtracking point
or by generating different schedule by making an alternative scheduler choice
at a backtracking point. The remaining executions of the program are shown

9

Fig. 6. Executions Generated during Testing

in Figure 6. Note that our simple algorithm, which considers all possible sched-
uler choices at a backtracking point, results in many redundant executions. We
can get rid of most of the redundant executions using our efficient testing algo-
rithm (described in Section 6) which performs runtime partial order reduction by
computing a “happens-before” relation (described in Section 3.3) among various
events in an execution.

Our efficient testing algorithm only generates the first three executions in
Figure 6. This is far less than the number of executions generated by our simple
testing algorithm. Our efficient testing algorithm avoided the redundant execu-
tions and yet was able to hit the error statement. In particular, at the back-
tracking point denoted by state s1 in Figure 6.c, our efficient algorithm does not
consider the other two possible alternative choices of executing the process p3.
This is because the execution of the first receive statement by p2 after state s1

does not effect the execution of any future statement. Therefore, delaying the
execution of the process p2 after state s1 will result in an execution that will
have the same “happens-before” relation as the current execution. Considering
two executions having the same “happens-before” relation is redundant since we
are concerned with statement reachability (see Theorem 1).

5 Simple Algorithm

We present a simple systematic search algorithm in which our goal is to ex-
plore all macro-step execution paths of a program P by generating inputs and
macro-step schedules. As in earlier work [13, 21], our algorithm uses concrete
values as well as symbolic values for the inputs, and executes the program both
concretely and symbolically. During the course of the execution, it collects the
constraints over the symbolic values over each branching point (i.e., the symbolic

constraints). At the end of the execution of a path, the algorithm has computed
a sequence of symbolic constraints corresponding to each branching point. We
call the conjunction of these constraints path constraint. Observe that all input
values that satisfy a given path constraint will explore the same execution path
given that we follow the same schedule.

10

// input: P is the program to test
run CUTE(P)

completed=false; I = path c = branch hist=[];
while not completed

scheduler(P);

Fig. 7. Testing Algorithm Calls Scheduler in a Loop

The algorithm first generates a random input and a macro-step schedule
which specifies the order of execution of processes. Then the algorithm does the
following in a loop: it executes the code with the generated input and the sched-
ule, and the same time records the process and message index pairs chosen by
the scheduler as well as the symbolic constraints. The algorithm backtracks and
alters these choices to systematically explore all possible macro-step execution
paths using a depth-first search strategy. Specifically, the algorithm does one of
the following to find the new data values or schedule for the next execution:

1. It picks a constraint from the symbolic constraints that were collected along
the execution path and negates the constraint to define a new path con-
straint. The algorithm then finds some concrete values, if such values exist,
that satisfy the new path constraint.

2. It generates a new schedule such that at some state where the scheduler
makes a choice, the next possible choice is picked instead of the current
choice.

The algorithm continues the loop until it sweeps all distinct feasible execution
paths.

There is one complication arising from the fact that for some symbolic con-
straints, our constraint solver may not be powerful enough to compute concrete
values that satisfy the constraints. To address this difficulty, such symbolic con-
straints are simplified by replacing some of the symbolic values with concrete
values. Because of this, our algorithm is sound but not complete.

We now provide the details of the algorithm. The algorithm is described using
a centralized interpreter for programs in MPIL. This is to simplify the descrip-
tion. In fact, jCUTE instruments distributed programs and uses a centralized
scheduler to control the distributed processes.

The pseudo-code for our algorithm is in Figure 7. Before starting the exe-
cution loop, the algorithm initializes the logical input map I (which maps each
input variable to a value) to an empty map [21], the sequences path c (which
maintains scheduler choices and symbolic constraints for a given execution), and
branch hist (which maintains the history of branches taken) to the empty se-
quences. Each element of the list path c has the following fields:

1. constraint : stores the constraint generated on the execution of a conditional
statement. At the end of an execution, the conjunction of all the constraints
stored in the elements of path c, for which the field hasConstraint is true,
gives the path constraint for the given execution path. (Note that in [21],
each element of path c was used to store only a constraint since in that work
we were not concerned about distributed events).

11

2. hasConstraint : set to true if the field constraint stores a constraint. It is set
to false if the field constraint contains a scheduler choice.

3. schedule: stores a pair of process and message index, which is the choice
made by the scheduler before executing a receive(v) statement.

4. next schedule: stores the scheduler choice next(schedule).

scheduler(P)
pcp1

= l
p1

0
; . . . ; pcpn

= l
pn

0
;

Qp1
= [0]; Qp2

= []; . . . ; Qpn
= [];

i = 0;
for each p ∈ P initialize

input variables using I
while (∃p ∈ P such that p is enabled)

(p,msg id)=choose simple systematic(P);
path c[i].hasConstraint = false;
i = i + 1;
s =statement at(pcp);
execute concolic(p, s,msg id);
s =statement at(pcp);
while (p is active and s 6= receive(v))

execute concolic(p, s,msg id);
s =statement at(pcp);

if (∃p ∈ P such that p is active)
warning “Deadlock detected”;

compute next input and schedule();

choose simple systematic(P)
if (i ≤ |path c|)

(p,msg id) =path c[i].schedule;
else

path c[i].schedule = (p,msg id)
= next(⊥,⊥);

path c[i].next schedule = next(p,msg id);
return (p,msg id);

Fig. 8. Simple Scheduler for Testing MPIL

execute concolic(p, s, j)
pcp = pcp + 1;
match(s)

case send(p′, v):
Q

p′ = (Sp(v),Ap(v)) :: Q
p′ ;

case receive(v):
(val, sval) = Qp[j];
Sp = Sp[v 7→ val]; Ap = Ap[v 7→ sval];
Qp = remove element(Qp, j);

case (v ← e):
val =evaluate concrete(e);
sval =evaluate symbolic(e);
Sp = Sp[v 7→ val]; Ap = Ap[v 7→ sval];

case (if (v1 ./ v2) goto l′):
b =evaluate concrete(v1 ./ v2);
c =evaluate symbolic(v1 ./ v2);
path c[i].hasConstraint = true;
cmp n set branch hist(b, i,branch hist);
if (b)

path c[i].constraint= c;
pcp = l′;

else

path c[i].constraint=neg(c);
i = i + 1;

case ERROR:
exit program with error

case HALT:
deactivate process p

Fig. 9. Concolic Execution.

The non-deterministic function choice given in Figure 2 is replaced by the
function choice simple systematic (see Figure 8). The simple scheduler, like the
default scheduler in Figure 2, first initializes the program counters pcp and Qp for
each process p ∈ P. In addition, the simple scheduler also initializes the global
counter variable i to 0. At any point of execution, i contains the sum of the num-
ber of choices made by the scheduler thus far, as well as the number of conditional
statements executed. The input variables of each process are also initialized us-
ing the logical input map I (cf. [21]). If I(v) is undefined for an input variable
v, then v is initialized randomly. In the function choose simple systematic, the
scheduler picks the same schedule as the previous execution as long as i is less
than the number of elements of path c. The list path c is truncated appropri-
ately at the end of the previous execution to perform a depth-first search of the
execution paths. Otherwise, the scheduler picks a pair of process and message
index such that the pair is the smallest pair in the set of possible choices.

5.1 Computing Next Schedule and Input

The function compute next input and schedule, described in Figure 10, computes
the schedule and the input that will direct the next program execution along

12

an alternative execution path. It first picks an element of path c from the end
such that if the element contains a constraint, then it is not negated before
(i.e. branch hist [j].done == false), else not all scheduler choices at the execu-
tion point denoted by the element have been exercised. In the former case, a
new input is generated by solving the path constraint neg last(path c[0 . . . j])),
where neg last(path c[0 . . . j]) denote the expression path c[0].constraint ∧ . . .∧
path c[j − 1].constraint ∧¬path c[j].constraint, where only the last predicate
is negated. The details of constraint solving can be found in [21]. In the
latter case, if the pair (p,m) is chosen at the execution point denoted by
path c[j].schedule, then next(p,m), which is stored in path c[j].next schedule,
is assigned to path c[j].schedule. In the next execution, at that particular execu-
tion point, the scheduler will pick next(p,m), a choice which was not exercised
before at that execution point. This ensures that in subsequent executions all
the choices are selected one by one.

5.2 Concolic Execution

Concolic execution [21, 13] performs both symbolic and concrete execution of
a program side by side in a cooperative way. The concolic execution technique
will be important for efficiently testing distributed programs: the availability
of concrete values for all memory locations in addition to the symbolic values
helps us to accurately determine the partial order of a distributed execution
(as described later in Section 6). Determining the partial order is important to
avoid exploring redundant executions. On the other hand, the symbolic execution
part of the concolic execution helps us perform symbolic execution as much as
possible. This symbolic execution combined with constraint solving is essential
to generate data inputs for the next execution.

The details of the procedure execute concolic can be found in [21]. A brief
pseudo-code of the procedure is given in Figure 9. At runtime, for each process
p concolic execution maintains a symbolic state Ap mapping memory locations
to symbolic expressions over symbolic input values in addition to the concrete
state Sp mapping memory locations to concrete values. During concolic execu-
tion, every statement is executed concretely using the function evaluate concrete

and symbolically using the function evaluate symbolic. In addition to perform-
ing symbolic execution, the function evaluate symbolic simplifies any complex
(e.g. non-linear) symbolic expressions in the symbolic state by replacing some
symbolic values in the expression by their corresponding concrete values.

Note that in concolic execution, to carry out the symbolic execution, we need
to track symbolic states and symbolic constraints across the process boundaries.
To achieve this, both the concrete value and the symbolic value of the variable v

are sent, when a process executes a statement of the form send(p, v). Moreover,
for each process p the message queue Qp is modified to a list of pairs of concrete
and symbolic values. An execution of the statement send(p, v) by a process p′

prepends a pair of the concrete and the symbolic value of the variable v to the
message queue of process p.

13

compute next input and schedule()
j = i− 1;
while j ≥ 0

if path c[j].hasConstraint

if (branch hist[j].done == false)
branch hist[j].branch=¬branch hist[j].branch;
if (∃I′ that satisfies neg last(path c[0 . . . j]))

path c = path c[0 . . . j];
branch hist=branch hist[0 . . . j];
I = I′;
return;

else if path c.next schedule 6= (⊥,⊥)
path c.schedule=path c.next schedule;
path c = path c[0 . . . j];
branch hist=branch hist[0 . . . j];
return;

j = j − 1;
if (j < 0) completed=true;

Fig. 10. Compute Next Schedule or Input

cmp n set branch hist(branch)
if (i < |branch hist|)

if (branch hist[i].branch 6=branch)
print “Prediction Failed”;
restart run CUTE

else if (i == |branch hist| − 1)
branch hist[i].done =true;

else branch hist[i].branch = branch;
branch hist[i].done = false;

Fig. 11. Check and Set Branch History

6 Efficient Algorithm

We now provide an efficient algorithm which explores a much smaller superset
of the execution paths in E≡. The efficient algorithm is based on the following
observation. At a point where the scheduler makes a choice, often it is sufficient
to consider all messages for a particular process only as possible choices by
the scheduler, instead of considering all messages for all processes as possible
scheduler choices. This is because, considering all messages for all processes
would result in many equivalent executions.

We now characterize the case where the scheduler has to choose between
messages for different processes. Consider a prefix τ = e1e2 . . . ek of the sequence
of events in an execution, such that the scheduler makes a choice after the
sequence τ . Let e be the event from process p, which happens immediately after
τ when the scheduler only chooses all messages for the particular process p after
τ . Now if there exists an execution τ ′ with prefix τe such that there is a send
event e′ to process p, e′ appears after τe in τ ′, and e is independent of e′, then we
need to delay the execution of process p after τ such that the receive event e of
process p after τ consumes the message sent by the event e′. This would result in
a different non-equivalent execution. Thus in such situations, it is not sufficient if
the scheduler only chooses all messages of process p after τ . Rather, immediately
after τ , we need to consider all messages of at least one more process other than
p.

Based on the above observation, we refine the simple scheduler described
in Figure 8 by one (see Figure 12) that uses the “happens-before” relation to
avoid exploring equivalent executions as much as possible. We assume that the
scheduler maintains vector clocks with each process and that the vector clocks
are updated using the procedure described in Section 3.3. We omit the vector
clock update procedure from Figure 12 to keep the description simple.

In the efficient scheduler, we keep track of the vector clocks of each receive

event. For every send event we check if the send event can synchronize with
an already executed receive event in some alternative execution. This is done

14

scheduler(P)
pcp1

= l
p1

0
; . . . ; pcpn

= l
pn

0
;

Qp1
= [0]; Qp2

= []; . . . ; Qpn
= [];

i = 0;
for each p ∈ P initialize

input variables using I
while (∃p ∈ P such that p is enabled)

(p,msg id)=choose simple systematic(P);
path c[i].hasConstraint = false;
path c[i].vclock = (p, V Cp);
i = i + 1;
s =statement at(pcp);
execute concolic(p, s,msg id);
s =statement at(pcp);
while (p is active and s 6= receive(v))

if s is send(p′, v)
for all k ≤ i

such that (p′′, V) = path c[k].vclock
and p′′ = p′ and V 6≤ V Cp and V Cp 6≤ V

path c[k].needs delay=true;
execute concolic(p, s,msg id);
s =statement at(pcp);

if (∃p ∈ P such that p is active)
warning “Deadlock detected”;

compute next input and schedule();

compute next input and schedule()
j = i− 1;
while j ≥ 0

if path c[j].hasConstraint

if (branch hist[j].done == false)
branch hist[j].branch=¬branch hist[j].branch;
if (∃I′ that satisfies neg last(path c[0 . . . j]))

path c = path c[0 . . . j];
branch hist=branch hist[0 . . . j];
I = I′;
return;

else if path c[j].next schedule 6= (⊥,⊥)
(p, m) =path c[j].schedule;
(p′, m′) =path c[j].next schedule;
if p = p′ or path c[j].needs delay

path c[j].schedule=path c[j].next schedule;
if p 6= p′

path c[j].needs delay = false;
path c = path c[0 . . . j];
branch hist=branch hist[0 . . . j];
return;

j = j − 1;
if (j < 0) completed=true;

Fig. 12. Efficient Scheduler for Testing MPIL

by checking the independence of the send event with any previously executed
receive event. If such a check passes, then we flag the scheduler choice at the
execution point just before the independent receive event. The flag indicates that
in some future execution, just before the receive event, the scheduler needs to
consider all messages of at least one more process.

To keep track of vector clocks and the flag, we introduce two more fields to
each element of path c as follows.

1. vclock : stores a pair (p, V), where p is the process executing the receive event
and V is the vector clock of the event.

2. needs delay : stores the flag whose truth indicates that at the current exe-
cution point, the scheduler needs to consider all messages of more than one
process. If the flag is false, then the scheduler only considers all messages of
a single process.

Soundness of our algorithm is trivial. A bug reported by our algorithm is
an actual bug because our algorithm provides a concrete input and schedule on
which the program exhibits the bug. Moreover, our algorithm can be complete
in some cases.

Proposition 2. (Completeness) During testing a program with our efficient

algorithm, if the following conditions hold:

– The algorithm terminates.

– The algorithm makes no approximation during concolic execution and it is

able to solve any constraint which is satisfiable.

then our algorithm has executed all executions in E≡ and we have hit all reachable

statements of the program.

15

The proof of this proposition, while fairly intuitive, is beyond the scope of this
paper. Next, we show that the efficient algorithm explores significantly fewer
execution paths than the simple algorithm while achieving the same branch
coverage.

7 Implementation and Experiments

We have implemented both the simple and the efficient testing algorithm as a
part of the Java testing tool jCUTE. The tool can be applied to test distributed
Java programs written in the Actor language [2]. The Actor language extends
Java by supporting actors or processes. The language is supported as a library
in Java. The library provides the following rich set of functionalities:

– New processes or actors can be created dynamically.

– The language supports simple message queues. In addition, one can define
and use multiple named queues or channels for communication between two
processes. The queues can also be made FIFO.

– A process can receive input at any time during execution using the primitive
function input. The inputs can have any type.

In the language we assume that Java threads are not used by the programmer.
Given a program in the Actor language, we instrument the program to perform
testing.

We report our experience of using jCUTE on a few examples, which include
implementations of a leader election algorithm, a distributed sorting algorithm,
and Chandy-Misra’s shortest path algorithm. We used both of our testing algo-
rithms to test these implementations. Our results show that both our algorithms
attain the same branch coverage when they terminate. However, our efficient
testing algorithm explores significantly fewer executions than our simple testing
algorithm. Furthermore, we report a bug that we discovered in the leader election
algorithm. The bug manifests when we assume that the communication channels
are not FIFO. We performed all experiments on a Windows XP laptop with a
2.0 GHz Pentium M processor and 1GB RAM. The tool and the code for the
case studies can be downloaded from http://osl.cs.uiuc.edu/~ksen/cute/.

The leader election algorithm that we considered works on a system with N

processes connected using a unidirectional ring. Each process is assumed to have
an unique id. Note that in [3], they considered a model of the implementations
where the unique ids are fixed for each process. However, we considered a more
general implementation where we assumed that the unique ids can be any value
– in fact, they are assumed to be inputs to the system. Such a model, because it
has an infinite domain for inputs, cannot be handled by the model-checker in [3].

In the implementation, when we did not assume that the communication
channels are FIFO, then our testing algorithms discovered an assertion violation
that shows that there can be inputs and schedules where the algorithm fails to
elect a leader. The bug was detected in a 3 process system in only 5 iterations
and 0.24 seconds of running time.

16

Simple Testing Algorithm Efficient Testing Algorithm
Name # of Run time # of % Branch Run time # of % Branch Bug(s)

Processes in seconds Executions Coverage in seconds Iterations Coverage Found
Leader 3 25.1 387 66.7 0.53 9 66.7 0
Election (FIFO) 4 > 33000 > 30000 66.7 15.92 22 66.7 0
Leader (non-FIFO) 3 0.16 5 70.0 0.24 5 70.0 1
Distributed 4 0.39 14 71.43 0.21 7 71.43 0
Sorting 5 13.3 420 71.43 1.13 35 71.43 0

6 2152.42 64636 71.43 7.63 226 71.43 0
Chandy- 4 > 2600 > 100000 62.5 8.92 338 62.5 0
Misra 5 > 2690 > 100000 62.5 15.01 562 62.5 0

Table 1. Results of Testing Distributed Programs

When we assumed that the communication channels are FIFO, both of our
testing algorithms terminated without reporting any error. Table 1 gives the
various statistics about this testing experiment.

Similarly, we tested implementations of a distributed sorting algorithm and
Chandy Misra’s shortest path computation algorithm. A model of the sorting
algorithm was used for model-checking using the SPIN model-checker. However,
in that experiment, they assumed a fixed sequence of numbers for sorting. In-
stead, we made the numbers to be sorted as inputs. This enabled us to test the
algorithm not only for all schedules but also for all inputs.

The experimental results show that for the implementations that we con-
sidered, the efficient algorithm explores significantly fewer execution paths than
the simple testing algorithm. On the other hand, both the algorithms attain the
same branch coverage. The branch coverage in most cases is less than 100%. Af-
ter investigating the reason for this, we found that the implementations contain
a number of assert statements that were never violated and some dead branches
which cannot be taken. When we removed these, we got complete coverage.

8 Conclusion

We presented a new algorithm and an implementation to systematically and ef-
ficiently test distributed programs with inputs. To our best knowledge, jCUTE
is the first testing tool that can automatically and exhaustively explore all non-
equivalent execution paths of a distributed program with data inputs. In con-
trast, all previous tools [12, 16, 9] were able to test distributed programs only
with a small finite domain input or with random inputs.

9 Acknowledgment

The first author benefited greatly from interaction with Patrice Godefroid and
Nils Klarlund during a summer internship. We would like to thank Timo Lat-
vala, Darko Marinov, Abhay Vardhan, and Mahesh Viswanathan for providing
valuable comments. This work is supported in part by the ONR Grant N00014-
02-1-0715, the NSF Grant NSF CNS 05-09321, and the Motorola Grant Motorola
RPF #23.

References

1. G. Agha. Actors: A Model of Concurrent Computation. MIT Press, 1986.
2. G. Agha, I. A. Mason, S. F. Smith, and C. L. Talcott. A foundation for actor

computation. Journal of Functional Programming, 7:1–72, 1997.

17

3. R. Alur, R. K. Brayton, T. A. Henzinger, S. Qadeer, and S. K. Rajamani. Partial-
order reduction in symbolic state space exploration. In Computer Aided Verifica-
tion, pages 340–351, 1997.

4. O. Babaoglu and K. Marzullo. Consistent global states of distributed systems:
Fundamental concepts and mechanisms. In Distributed Systems, pages 55–96. 1993.

5. K. M. Chandy and L. Lamport. Distributed snapshots: determining global states
of distributed systems. ACM Trans. Comput. Syst., 3(1):63–75, 1985.

6. J. Corbett, M. B. Dwyer, J. Hatcliff, C. S. Pasareanu, Robby, S. Laubach, and
H. Zheng. Bandera : Extracting Finite-state Models from Java Source Code. In
International Conference on Software Engineering. ACM Press, 2000.

7. M. B. Dwyer, J. Hatcliff, Robby, and V. P. Ranganath. Exploiting object escape
and locking information in partial-order reductions for concurrent object-oriented
programs. Form. Methods Syst. Des., 25(2–3):199–240, 2004.

8. C. J. Fidge. Partial orders for parallel debugging. In Proceedings of the Workshop
on Parallel and Distributed Debugging (WPDD), pages 183–194. ACM, 1988.

9. C. Flanagan and P. Godefroid. Dynamic partial-order reduction for model checking
software. In Proc. of the 32nd Symposium on Principles of Programming Languages
(POPL’05), pages 110–121, 2005.

10. V. K. Garg and C. M. Chase. Distributed algorithms for detecting conjunctive
predicates. In Proceedings of the 15th International Conference on Distributed
Computing Systems (ICDCS’95), page 423. IEEE, 1995.

11. P. Godefroid. Partial-Order Methods for the Verification of Concurrent Systems –
An Approach to the State-Explosion Problem, volume 1032 of LNCS. 1996.

12. P. Godefroid. Model Checking for Programming Languages using VeriSoft. In 24th
ACM Symposium on Principles of Programming Languages), pages 174–186, 1997.

13. P. Godefroid, N. Klarlund, and K. Sen. DART: Directed automated random test-
ing. In Proc. of the ACM SIGPLAN 2005 Conference on Programming Language
Design and Implementation (PLDI), 2005.

14. G. J. Holzmann. The model checker Spin. IEEE Trans. on Software Engineering,
23(5):279–295, 1997.

15. J. C. King. Symbolic Execution and Program Testing. Communications of the
ACM, 19(7):385–394, 1976.

16. Y. Lei and K.-C. Tai. Efficient reachability testing of asynchronous message-passing
programs. In 8th International Conference on Engineering of Complex Computer
Systems (ICECCS), pages 35–, 2002.

17. G. J. Myers. The Art of Software Testing. Wiley, 1979.
18. C. S. Pasareanu, M. B. Dwyer, and W. Visser. Finding feasible counter-examples

when model checking abstracted Java programs. In Proc. of TACAS’01, pages
284–298, 2001.

19. D. Peled. All from one, one for all: on model checking using representatives. In
5th Conference on Computer Aided Verification, pages 409–423, 1993.

20. K. Sen and G. Agha. Concolic testing of multithreaded programs and its ap-
plication to testing security protocols. Technical Report UIUCDCS-R-2006-2676,
UIUC, 2006.

21. K. Sen, D. Marinov, and G. Agha. CUTE: A concolic unit testing engine for C. In
5th joint meeting of the European Software Engineering Conference and ACM SIG-
SOFT Symposium on the Foundations of Software Engineering (ESEC/FSE’05).
ACM, 2005.

22. S. D. Stoller. Model-Checking Multi-Threaded Distributed Java Programs. In
Proc. of SPIN’00: SPIN Model Checking and Software Verification, volume 1885
of LNCS, pages 224–244. Springer, 2000.

23. A. Valmari. Stubborn sets for reduced state space generation. In 10th International
Conference on Applications and Theory of Petri Nets, pages 491–515, 1991.

24. W. Visser, C. S. Pasareanu, and S. Khurshid. Test input generation with Java
PathFinder. In Proc. 2004 ACM SIGSOFT International Symposium on Software
Testing and Analysis, pages 97–107, 2004.

18

25. T. Xie, D. Marinov, W. Schulte, and D. Notkin. Symstra: A framework for gen-
erating object-oriented unit tests using symbolic execution. In Proc. of the Tools
and Algorithms for the Construction and Analysis of Systems, 2005.

19

