
june 2010 | vol. 53 | no. 6 | communications of the acm 97

doi:10.1145/1743546.1743572

Asserting and Checking
Determinism for
Multithreaded Programs
By Jacob Burnim and Koushik Sen

Abstract
The trend towards processors with more and more parallel
cores is increasing the need for software that can take advan-
tage of parallelism. The most widespread method for writing
parallel software is to use explicit threads. Writing correct
multithreaded programs, however, has proven to be quite
challenging in practice. The key difficulty is nondetermin-
ism. The threads of a parallel application may be interleaved
nondeterministically during execution. In a buggy program,
nondeterministic scheduling can lead to nondeterministic
results—where some interleavings produce the correct result
while others do not.

We propose an assertion framework for specifying that
regions of a parallel program behave deterministically despite
nondeterministic thread interleaving. Our framework allows
programmers to write assertions involving pairs of program
states arising from different parallel schedules. We describe an
implementation of our deterministic assertions as a library for
Java, and evaluate the utility of our specifications on a number
of parallel Java benchmarks. We found specifying determinis-
tic behavior to be quite simple using our assertions. Further,
in experiments with our assertions, we were able to identify
two races as true parallelism errors that lead to incorrect non-
deterministic behavior. These races were distinguished from a
number of benign races in the benchmarks.

1. INTRODUCTION
The semiconductor industry has hit the power wall—
performance of general-purpose single-core microprocessors
can no longer be increased due to power constraints. Therefore,
to continue to increase performance, the microprocessor
industry is instead increasing the number of processing cores
per die. The new “Moore’s Law” is that the number of cores will
double every generation, with individual cores going no faster.2

This new trend of increasingly parallel chips means that we
will have to write parallel software in order to take advantage
of future hardware advances. Unfortunately, parallel software
is more difficult to write and debug than its sequential coun-
terpart. A key reason for this difficulty is nondeterminism—i.e.,
that in two runs of a parallel program on the exact same input,
the parallel threads of execution can interleave differently,
producing different output. Such nondeterministic thread
interleaving is an essential part of harnessing the power of
parallel chips, but it is a major departure from sequential
programming, where we typically expect programs to behave
identically in every execution on the same input. We share a

widespread belief that helping programmers manage nonde-
terminism in parallel software is critical in making parallel
programming widely accessible.

For more than 20 years, many researchers have attacked
the problem of nondeterminism by attempting to detect or
predict sources of nondeterminism in parallel programs. The
most notorious of such sources is the data race. A data race
occurs when two threads in a program concurrently access the
same memory location and at least one of those accesses is a
write. That is, the two threads “race” to perform their conflict-
ing memory accesses, so the order in which the two accesses
occur can change from run to run, potentially yielding nonde-
terministic program output. Many algorithms and tools have
been developed to detect and eliminate data races in parallel
programs. (See Burnim and Sen5 for further discussion and
references.) Although the work on data race detection has
significantly helped in finding determinism bugs in parallel
programs, it has been observed that the absence of data races
is not sufficient to ensure determinism.1, 8, 9 Thus researchers
have also developed techniques to find high-level races,1, 16, 21
likely atomicity violations,9, 8, 14 and other potential sources of
nondeterminism. Further, such sources of nondeterminism
are not always bugs—they may not lead to nondeterministic
program behavior or nondeterminism may be intended. In
fact, race conditions may be useful in gaining performance
while still ensuring high-level deterministic behavior.3

More recently, a number of ongoing research efforts aim
to make parallel programs deterministic by construction.
These efforts include the design of new parallel program-
ming paradigms10, 12, 13, 19 and the design of new type systems,
annotations, and checking or enforcement mechanisms
that could retrofit existing parallel languages.4, 15 But such
efforts face two key challenges. First, new languages see
slow adoption and often remain specific to limited domains.
Second, new paradigms often include restrictions that can
hinder general-purpose programming. For example, a new
type system may require complex type annotations and may
forbid reasonable programs whose determinism cannot be
expressed in the type system.

We argue that programmers should be provided with
a framework that will allow them to express deterministic

The original version of this paper was published in Pro-
ceedings of the 7th Joint Meeting of the European Software
Engineering Conference and the ACM SIGSOFT Symposium
on the Foundations of Software Engineering, August 2009.

98 communications of the acm | june 2010 | vol. 53 | no. 6

research highlights

behaviors of parallel programs directly and easily. Specifically,
we should provide an assertion framework where program-
mers can directly and precisely express intended deterministic
behavior. Further, the framework should be flexible enough
so that deterministic behaviors can be expressed more eas-
ily than with a traditional assertion framework. For example,
when expressing the deterministic behavior of a parallel edge
detection algorithm for images, we should not have to rephrase
the problem as race detection; nor should we have to write a
state assertion that relates the output to the input, which would
be complex and time-consuming. Rather, we should simply be
able to say that, if the program is executed on the same input
image, then the output image remains the same regardless of
how the program’s parallel threads are scheduled.

In this paper, we propose such a framework for asserting
that blocks of parallel code behave deterministically. Formally,
our framework allows a programmer to give a specification for
a block P of parallel code as:

deterministic assume(Pre(s0 , s ¢0) ) {
	 P

} assert(Post(s, s¢) );

This specification asserts the following: Suppose P is exe-
cuted twice with potentially different schedules, once from
initial state s0 and once from s¢0 and yielding final states s and
s ¢. Then, if the user-specified precondition Pre holds over s0
and s ¢0, then s and s¢ must satisfy the user-specified postcon-
dition Post.

For example, we could specify the deterministic behavior
of a parallel matrix multiply with:

deterministic assume(|A − A¢| < 10−9 and
	 |B − B¢| < 10−9) {

C = parallel_matrix_multiply_float(A, B);

} assert(|C − C¢| < 10−6);

Note the use of primed variables A¢,B¢, and C¢ in the above
example. These variables represent the state of the matrices
A,B,and C from a different execution. Thus, the predicates
that we write inside assume and assert are different from
state predicates written in a traditional assertion framework—
our predicates relate a pair of states from different executions.
We call such predicates bridge predicates and assertions using
bridge predicates bridge assertions. A key contribution of
this paper is the introduction of these bridge predicates and
bridge assertions.

Our deterministic assertions provide a way to specify
the correctness of the parallelism in a program indepen-
dently of the program’s traditional functional correct-
ness. By checking whether different program schedules
can nondeterministically lead to semantically different
answers, we can find bugs in a program’s use of parallelism
even when unable to directly specify or check functional
correctness—i.e., that the program’s output is correct
given its input. Inversely, by checking that a parallel pro-
gram behaves deterministically, we can gain confidence

in the correctness of its use of parallelism independently
of whatever method we use to gain confidence in the
program’s functional correctness.

We have implemented our deterministic assertions as a
library for the Java programming language. We evaluated
the utility of these assertions by manually adding determin-
istic specifications to a number of parallel Java benchmarks.
We used an existing tool to find executions exhibiting data
and higher-level races in these benchmarks and used our
deterministic assertions to distinguish between harmful
and benign races. We found it to be fairly easy to specify the
correct deterministic behavior of the benchmark programs
using our assertions, despite being unable in most cases to
write traditional invariants or functional correctness asser-
tions. Further, our deterministic assertions successfully
distinguished the two races known to lead to undesired non-
determinism from the benign races in the benchmarks.

2. DETERMINISTIC SPECIFICATION
In this section, we motivate and define our proposal for
assertions for specifying determinism.

Strictly speaking, a block of parallel code is said to be
deterministic if, given any particular initial state, all execu-
tions of the code from the initial state produce the exact same
final state. In our specification framework, the programmer
can specify that they expect a block of parallel code, say P, to
be deterministic with the following construct:

deterministic {
P

}

This assertion specifies that if s and s¢ are both program
states resulting from executing P under different thread
schedules from some initial state s0, then s and s¢ must be
equal. For example, the specification:

deterministic {
C = parallel_matrix_multiply_int(A, B);

}

asserts that for the parallel implementation of matrix mul-
tiplication in function parallel_matrix_multiply_
int, any two executions from the same program state
must reach the same program state—i.e., with identical
entries in matrix C—no matter how the parallel threads
are scheduled.

A key implication of knowing that a block of parallel code
is deterministic is that we may be able to treat the block as
sequential in other contexts. That is, although the block
may have internal parallelism, a programmer (or perhaps
a tool) can hopefully ignore this parallelism when consider-
ing the larger program using the code block. For example,
perhaps a deterministic block of parallel code in a function
can be treated as if it were a sequential implementation
when reasoning about the correctness of code calling the
function.

june 2010 | vol. 53 | no. 6 | communications of the acm 99

Semantic Determinism: The above deterministic specifi-
cation is often too conservative. For example, consider a
similar example, but where A,B,and C are floating-point
matrices:

deterministic {

C = parallel_matrix_multiply_float(A, B);

}

Limited-precision floating-point addition and multipli-
cation are not associative due to rounding error. Thus,
depending on the implementation, it may be unavoidable
that the entries of matrix C will differ slightly depending on
the thread schedule.

In order to tolerate such differences, we must relax the
deterministic specification:

deterministic {

C = parallel_matrix_multiply_float(A, B);

} assert(|C − C¢| < 10−6);

This assertion specifies that, for any two matrices C and
C¢ resulting from the execution of the matrix multiply from
the same initial state, the entries of C and C¢ must differ by
only a small quantity (i.e., 10−6).

Note that the above specification contains a predicate
over two states—each from a different parallel execution of
the deterministic block. We call such a predicate a bridge
predicate, and an assertion using a bridge predicate a bridge
assertion. Bridge assertions are different from traditional
assertions in that they allow one to write a property over two
program states coming from different executions whereas
traditional assertions only allow us to write a property over
a single program state.

Note also that such predicates need not be equivalence
relations on pairs of states. In particular, the approximate
equality used above is not an equivalence relation.

This relaxed notion of determinism is useful in many con-
texts. Consider the following example which adds in parallel
two items to a synchronized set:

Set set = new SynchronizedTreeSet();
deterministic {

set.add(3); || set.add(5);

} assert(set.equals(set¢) );

If set is represented internally as a red–black tree, then a strict
deterministic assertion would be too conservative. The struc-
ture of the resulting tree, and its layout in memory, will likely
differ depending on which element is inserted first, and thus
different parallel executions can yield different program states.

But we can use a bridge predicate to assert that, no mat-
ter what schedule is taken, the resulting set is semantically

the same. That is, for objects set and set¢ computed by two
different schedules, the equals method must return true
because the sets must logically contain the same elements.
We call this semantic determinism.
Preconditions for Determinism: So far we have described
the following construct:

deterministic {
P

} assert(Post);

where Post is a predicate over two program states from dif-
ferent executions with different thread schedules. That is,
if s and s¢ are two states resulting from any two executions
of P from the same initial state, then Post (s, s¢) holds.

The above construct could be rewritten:

deterministic assume(s0 = s0¢) {
P

} assert(Post);

That is, if any two executions of P start from initial states
s0 and s0¢, respectively, and if s and s¢ are the resulting final
states, then s0 = s0¢ implies that Post (s, s¢) holds. The above
rewritten specification suggests that we can relax the re-
quirement of s0 = s0¢ by replacing it with a bridge predicate
Pre (s0, s0¢). For example:

deterministic assume(set.equals(set¢) ) {
set.add(3);    ||    set.add(5);

} assert(set.equals(set¢) );

The above specification states that if any two executions
start from sets containing the same elements, then after the
execution of the code, the resulting sets must also contain
the same elements.
Comparison to Traditional Assertions: In summary, we pro-
pose the following construct for the specification of deter-
ministic behavior:

deterministic assume(Pre) {
P

} assert(Post);

Formally, it states that for any two program states s0 and s0¢,
if (1) Pre (s0, s0¢) holds, (2) an execution of P from s0 termi-
nates and results in state s, and (3) an execution of P from
s0¢ terminates and results in state s¢, then Post (s, s¢) must
hold.

Note that the use of bridge predicates Pre and Post has
the same flavor as pre- and postconditions used for functions
in program verification. However, unlike traditional pre- and
postconditions, the proposed Pre and Post predicates relate
pairs of states from two different executions. In traditional ver-
ification, a precondition is usually written as a predicate over

100 communications of the acm | june 2010 | vol. 53 | no. 6

research highlights

a single program state, and a postcondition is usually written
over two states—the states at the beginning and end of the
function. For example:

parallel_matrix_multiply_int(A, B) {
	 assume(A.cols == B.rows);
	 ...
	 assert(C == A × B);
	 return C;

}

The key difference between a postcondition and a Post
predicate is that a postcondition relates two states at differ-
ent times along a same execution—e.g., here relating inputs
A and B to output C—whereas a Post predicate relates two
program states from different executions.
Advantages of Deterministic Assertions: Our deterministic
specifications are a middle ground between the implicit
specification used in race detection—that programs should
be free of data races—and the full specification of functional
correctness. It is a great feature of data race detectors that
typically no programmer specification is needed. However,
manually determining which reported races are benign and
which are bugs can be time-consuming and difficult. We
believe our deterministic assertions, while requiring little
effort to write, can greatly aid in distinguishing harmful
from benign data races (or higher-level races).

One could argue that a deterministic specification frame-
work is unnecessary given that we can write the functional
correctness of a block of code using traditional pre- and
postconditions. For example, one could write the following
to specify the correct behavior of a paralell matrix multiply:

C = parallel_matrix_multiply_float(A, B);

assert(|C − A × B| < 10−6);

We agree that if one can write a functional specification of
a block of code, then there is no need to write deterministic
specification, as functional correctness implies determinis-
tic behavior.

The advantage of our deterministic assertions is that
they provide a way to specify the correctness of just the use
of parallelism in a program, independent of the program’s
full functional correctness. In many situations, writing a full
specification of functional correctness is difficult and time-
consuming. A simple deterministic specification, however,
enables us to use automated techniques to check for paral-
lelism bugs, such as harmful data races causing semantically
nondeterministic behavior.

Consider a function parallel_edge_detection
that takes an image as input and returns an image where
detected edges have been marked. Relating the output to the
input image with traditional pre- and postconditions would
likely be quite challenging. However, it is simple to specify
that the routine does not have any parallelism bugs causing
a correct image to be returned for some thread schedules
and an incorrect image for others:

deterministic assume(img.equals(img¢)) {
result = parallel_edge_detection(img);

} assert(result.equals(result¢));

where img.equals(img¢) returns true if the two images
are pixel-by-pixel equal.

For this example, a programmer could gain some confi-
dence in the correctness of the routine by writing unit tests
or manually examining the output for a handful of images.
He or she could then use automated testing or model check-
ing to separately check that the parallel routine behaves
deterministically on a variety of inputs, gaining confidence
that the code is free from concurrency bugs.

We believe that it is often difficult to come up with effective
functional correctness assertions. However, it is often quite
easy to use bridge assertions to specify deterministic behav-
ior, enabling a programmer to check for harmful concurrency
bugs. In Section 5, we provide several case studies to support
this argument.

3. CHECKING DETERMINISM
There may be many potential approaches to checking or
verifying a deterministic specification, from testing to model
checking to automated theorem proving. In this section, we
propose a simple, sound, and incomplete method for check-
ing deterministic specifications at run-time.

The key idea of the method is that, whenever a determin-
istic block is encountered at run-time, we can record the
program states spre and spost at the beginning and end of the
block. Then, given a collection of (spre, spost) pairs for a par-
ticular deterministic block in some program, we can check a
deterministic specification by comparing pairwise the pairs
of initial and final states for the block. That is, for a deter-
ministic block:

deterministic assume(Pre) {
P

} assert(Post);

with pre- and postbridge predicates Pre and Post, we check
for every recorded pair of pairs (spre, spost) and (s¢pre, s¢post) that:

Pre (spre, s¢pre) Þ Post (spost, s¢post)

If this condition does not hold for some pair, then we report
a determinism violation.

To increase the effectiveness of this checking, we must
record pairs of initial and final states for deterministic
blocks executed under a wide variety of possible thread
interleavings and inputs. Thus, in practice we likely want to
combine our deterministic assertion checking with existing
techniques and tools for exploring parallel schedules of a
program, such as noise making,7, 18 active random schedul-
ing,16 or model checking.20

In practice, the cost of recording and storing entire pro-
gram states could be prohibitive. However, real determinism

june 2010 | vol. 53 | no. 6 | communications of the acm 101

predicates often depend on just a small portion of the whole
program state. Thus, we need only to record and store small
projections of program states. For example, for a determin-
istic specification with pre- and postpredicate set.equals
(set¢) we need only to save object set and its elements (pos-
sibly also the memory reachable from these objects), rather
than the entire program memory. This storage cost sometimes
can be further reduced by storing and comparing check-sums
or approximate hashes.

4. DETERMINISM CHECKING LIBRARY
In this section, we describe the design and implementation of
an assertion library for specifying and checking determinism
of Java programs. Note that, while it might be preferable to
introduce a new syntactic construct for specifying determin-
ism, we provide the functionality as a library to simplify the
implementation.

4.1. Overview
Figure 1 shows the core API for our deterministic asser-
tion library. Functions open and close specify the begin-
ning and end of a deterministic block. Deterministic blocks
may be nested, and each block may contain multiple calls
to functions assume and assert, which are used to specify
the pre- and postpredicates of deterministic behavior.

Each call assume(o, pre) in a deterministic block speci-
fies part of the prepredicate by giving some projection o of
the program state and a predicate pre. That is, it specifies
that one condition for any execution of the block to compute
an equivalent, deterministic result is that pre.apply(o, o¢)
return true for object o¢ from the other execution.

Similarly, a call assert(o, post) in a deterministic block
specifies that, for any execution satisfying every assume,
predicate post.apply(o, o¢) must return true for object o¢
from the other execution.

At run-time, our library records every object (i.e., state
projection) passed to each assert and assume in each
deterministic block, saving them to a central, persistent
store. We require that all objects passed as state projections
implement the Serializable interface to facilitate this
recording. (In practice, this does not seem to be a heavy bur-
den. Most core objects in the Java standard library are seri-
alizable, including numbers, strings, arrays, lists, sets, and
maps/hashtables.)

Then, also at run-time, a call to assert(o, post) checks
post on o and all o¢ saved from previous, matching execu-
tions of the same deterministic block. If the postpredicate
does not hold for any of these executions, a determinism
violation is immediately reported. Deterministic blocks can
contain many assert’s so that determinism bugs can be
caught as early as possible and can be more easily localized.

For flexibility, programmers are free to write state projec-
tions and predicates using the full Java language. However,
it is a programmer’s responsibility to ensure that these
predicates contain no observable side effects, as there are
no guarantees as to how many times such a predicate may
be evaluated in any particular run.
Built-in Predicates: For programmer convenience, we pro-
vide two built-in predicates that are often sufficient for spec-
ifying pre- and postpredicates for determinism. The first,
Equals, returns true if the given objects are equal using
their built-in equals method—i.e., if o.equals(o¢). For
many Java objects, this method checks semantic equality—
e.g., for integers, floating-point numbers, strings, lists, sets,
etc. Further, for single- or multidimensional arrays (which
do not implement such an equals method), the Equals
predicate compares corresponding elements using their
equals methods. Figure 2 gives an example with assert
and assume using this Equals predicate.

The second predicate, ApproxEquals, checks if two
floating-point numbers, or the corresponding elements
of two floating-point arrays, are within a given margin of
each other. We found this predicate useful in specifying the
deterministic behavior of numerical applications, where it
is often unavoidable that the low-order bits may vary with
different thread interleavings.
Real-World Floating-Point Predicates: In practice, float-
ing-point computations often have input-dependent error
bounds. For example, we may expect any two runs of a paral-
lel algorithm for summing inputs x1, …, xn to return answers

Figure 1. Core deterministic specification API.

public class Deterministic {

	 static void open() {...}

	 static void close() {...}

	 static void assume(Object o, Predicate p) {...}

	 static void assert(Object o, Predicate p) {...}

	 interface Predicate {
	 boolean apply(Object a, Object b);
	 }
}

Figure 2. Deterministic assertions for a Mandelbrot Set
implementation from the Parallel Java (PJ) Library.11

main(String args[]) {
	 // Read parameters from command-line.
	 ...
	 // Pre-predicate: equal parameters.
	 Predicate equals = new Equals();
	 Deterministic.open();
	 Deterministic.assume(width, equals);
	 Deterministic.assume(height, equals);
	 ...
	 Deterministic.assume(gamma, equals);

	 // spawn threads to compute fractal
	 int matrix[][] = ...;
	 ...
	 // join threads
	 ...
	 Deterministic.assert(matrix, equals);
	 Deterministic.close();

	 // write fractal image to f ile
	 ...
}

102 communications of the acm | june 2010 | vol. 53 | no. 6

research highlights

equal to within 2N  ∑i|xi|, where Î is the machine epsilon.
We can assert:

sum = parallel_sum(x);
bound = 2 * x.length *  * sum_of_abs(x);
Predicate apx = new ApproxEquals(bound);
Deterministic.assert(sum, apx);

As another example, different runs of a molecular dynam-
ics simulation may be expected to produce particle positions
equal to within something like  multiplied by the sum of
the absolute values of all initial positions. We can similarly
compute this value at the beginning of the computation,
and use an ApproxEquals predicate with the appropriate
bound to compare particle positions.

4.2. Concrete example: Mandelbrot
Figure 2 shows the deterministic assertions we added to one
of our benchmarks, a program for rendering images of the
Mandelbrot Set fractal from the Parallel Java (PJ) Library.11

The benchmark first reads a number of integer and
floating-point parameters from the command-line. It then
spawns several worker threads that each compute the hues
for different segments of the final image and store the hues
in shared array matrix. After waiting for all of the worker
threads to finish, the program encodes and writes the image
to a file given as a command-line argument.

To add determinism annotations to this program, we
simply opened a deterministic block just before the worker
threads are spawned and closed it just after they are joined.
At the beginning of this block, we added an assume call for
each of the seven fractal parameters, such as the image size
and color palette. At the end of the block, we assert that the
resulting array matrix should be deterministic, however
the worker threads are interleaved.

Note that it would be quite difficult to add assertions
for the functional correctness of this benchmark, as each

pixel of the resulting image is a complicated function of the
inputs (i.e., the rate at which a particular complex sequence
diverges). Further, there do not seem to be any simple tra-
ditional invariants on the program state or outputs which
would help identify a parallelism bug.

5. EVALUATION
In this section, we describe our efforts to validate two claims
about our proposal for specifying and checking determinis-
tic parallel program execution:

1.	 First, deterministic specifications are easy to write. That
is, even for programs for which it is difficult to specify tra-
ditional invariants or functional correctness, it is relatively
easy for a programmer to add deterministic assertions.

2.	 Second, deterministic specifications are useful. When
combined with tools for exploring multiple thread
schedules, deterministic assertions catch real parallel-
ism bugs that lead to semantic nondeterminism.
Further, for traditional concurrency issues such as data
races, these assertions provide some ability to distin-
guish between benign cases and true bugs.

To evaluate these claims, we used a number of bench-
mark programs from the Java Grande Forum (JGF) bench-
mark suite,17 the Parallel Java (PJ) Library,11 and elsewhere.
The names and sizes of these benchmarks are given in
Table 1. We describe the benchmarks in greater detail in
Burnim and Sen.5 Note that the benchmarks range from
a few hundred to a few thousand lines of code, with the
PJ benchmarks relying on an additional 10–20,000 lines
of library code from the PJ Library (for threading, synchro-
nization, and other functionality).

5.1. Ease of use
We evaluate the ease of use of our deterministic specification
by manually adding assertions to our benchmark programs.
One deterministic block was added to each benchmark.

Benchmark

Approximate
Lines of Code

(App + Library)

Lines of
Specification
(+ Predicates) Threads

Data Races High-Level Races

Found
Determinism

Violations Found
Determinism

Violations

JGF sor
sparsematmult
series
crypt
moldyn
lufact
raytracer
montecarlo

300
700
800

1,100
1,300
1,500
1,900
3,600

6
7
4
5
6
9
4
4 + 34

10
10
10
10
10
10
10
10

2
0
0
0
2
1
3
1

0
0
0
0
0
0
1
0

0
0
0
0
0
0
0
2

0
0
0
0
0
0
0
0

PJ pi
keysearch3
mandelbrot
phylogeny

150 + 15,000
200 + 15,000
250 + 15,000

4,400 + 15,000

5
6

10
8

4
4
4
4

9
3
9
4

0
0
0
0

1+
0+
0+
0+

1
0
0
0

tsp 700 4 5 6 0 2 0

Table 1. Summary of experimental evaluation of deterministic assertions. A single deterministic block specification was added to each
benchmark. Each specification was checked on executions with races found by the CalFuzzer14, 16 tool.

june 2010 | vol. 53 | no. 6 | communications of the acm 103

The third column of Table 1 records the number of
lines of specification (and lines of custom predicate code)
added to each benchmark. Overall, the specification bur-
den is quite small. Indeed, for the majority of the programs,
an author was able to add deterministic assertions in only
5 to 10 minutes per benchmark, despite being unfamiliar
with the code. In particular, it was typically not difficult to
both identify regions of code performing parallel computa-
tion and to determine from documentation, comments, or
source code which results were intended to be determinis-
tic. Figure 2 shows the assertions added to the mandelbrot
benchmark.

The added assertions were correct on the first attempt for
all but two benchmarks. For phylogeny, the resulting phy-
logenetic tree was erroneously specified as deterministic,
when, in fact, there are many correct optimal trees. The spec-
ification was modified to assert only that the optimal score
must be deterministic. For sparsematmult, we incorrectly
identified the variable to which the output was written. This
error was identified during later work on automatically infer-
ring deterministic specifications.6

The two predicates provided by our assertion library were
sufficient for all but one of the benchmarks. For the JGF
montecarlo benchmark, the authors had to write a custom
equals and hashCode method for two classes—34 total
lines of code—in order to assume and assert that two sets,
one of initial tasks and one of results, are equivalent across
executions.
Discussion: More experience, or possibly user studies, would
be needed to conclude decisively that our assertions are eas-
ier to use than existing techniques for specifying that parallel
code is correctly deterministic. However, we believe our expe-
rience is quite promising. In particular, writing assertions for
the full functional correctness of the parallel regions of these
programs seemed to be quite difficult, perhaps requiring
implementing a sequential version of the code and asserting
that it produces the same result. Further, there seemed to be
no obvious simpler, traditional assertions that would aid in
catching nondeterministic parallelism.

Despite these difficulties, we found that specifying the
natural deterministic behavior of the benchmarks with our
bridge assertions required little effort.

5.2. Effectiveness
To evaluate the utility of our deterministic specifications in
finding true parallelism bugs, we used a modified version
of the CalFuzzer14, 16 tool to find real races in the bench-
mark programs, both data races and higher level races (such
as races to acquire a lock). For each such race, we ran 10
trials using CalFuzzer to create real executions with these
races and to randomly resolve the races (i.e., randomly pick
a thread to “win”). We turned on run-time checking of our
deterministic assertions for these trials, and recorded all
found violations.

Table 1 summarizes the results of these experiments. For
each benchmark, we indicate the number of real data races
and higher-level races we observed. Further, we indicate
how many of these races led to determinism violations in
any execution.

In these experiments, the primary computational cost
is from CalFuzzer, which typically has an overhead in the
range of 2x–20x for these kinds of compute bound applica-
tions. We have not carefully measured the computational
cost of our deterministic assertion library. For most bench-
marks, however, the cost of serializing and comparing a
computation’s inputs and outputs is dwarfed by the cost of
the computation itself—e.g., consider the cost of checking
that two fractal images are identical versus the cost of com-
puting each fractal in the first place.
Determinism Violations: We found two cases of nondeter-
ministic behavior. First, a known data race in the raytracer
benchmark, due the use of the wrong lock to protect a shared
sum, can yield an incorrect final answer.

Second, the pi benchmark can yield a nondeterministic
answer given the same random seed because of insufficient
synchronization of a shared random number generator.
In each Monte Carlo sample, two successive calls to java.
util.Random.nextDouble() are made. A context switch
between these calls changes the set of samples generated.
Similarly, nextDouble() itself makes two calls to java.
util.Random.next(), which atomically generates up to
32 pseudorandom bits. A context switch between these two
calls changes the generated sequence of pseudorandom
doubles. Thus, although java.util.Random.next
Double()is thread-safe and free of data races, scheduling
nondeterminism can still lead to a nondeterministic result.
(This behavior is known—the PJ Library provides several
versions of this benchmark, one of which does guarantee a
deterministic result for any given random seed.)
Benign Races: The high number of real data races for these
benchmarks is largely due to benign races on volatile variables
used for synchronization—e.g., to implement a tournament
barrier or a custom lock. Although CalFuzzer does not under-
stand these sophisticated synchronization schemes, our deter-
ministic assertions automatically provide some confidence
that these races are benign because, over the course of many
experimental runs, they did not lead to nondeterministic final
results.

Note that it can be quite challenging to verify by hand that
these races are benign. On inspecting the benchmark code
and these data races, an author several times believed he
had found a synchronization bug. But on deeper inspection,
the code was found to be correct in all such cases.

The number of high-level races is low for the JGF bench-
marks because all the benchmarks except montecarlo
exclusively use volatile variables (and thread joins) for syn-
chronization. Thus, all observable scheduling nondeter-
minism is due to data races.

The number of high-level races is low for the PJ bench-
marks because they primarily use a combination of vola-
tile variables and atomic compare-and-set operations for
synchronization. Currently, the only kind of high-level
race our modified CalFuzzer recognizes is a lock race.
Thus, while we believe there are many (benign) races
in the ordering of these compare-and-set operations,
CalFuzzer does not report them. The one high-level race
for pi, indicated in the table and described above, was
confirmed by hand.

104 communications of the acm | june 2010 | vol. 53 | no. 6

research highlights

Discussion: Although our checking of deterministic assertions
is sound—an assertion failure always indicates that two execu-
tions with equivalent initial states can yield nonequivalent
final states—it is incomplete. Parallelism bugs leading to non-
determinism may still exist even when testing fails to find any
determinism violations.

However, in our experiments we successfully distin-
guished the races known to cause undesired nondetermin-
ism from the benign races in only a small number of trials.
Thus, we believe our deterministic assertions can help catch
harmful nondeterminism due to parallelism, as well as save
programmer effort in determining whether real races and
other potential parallelism bugs can lead to incorrect pro-
gram behavior.

6. DISCUSSION
In this section, we compare the concepts of atomicity and
determinism. Further, we discuss several other possible
uses for bridge predicates and bridge assertions.

6.1. Atomicity versus determinism
A concept complementary to determinism in parallel pro-
grams is atomicity. A block of sequential code in a multi-
threaded program is said to be atomic9 if for every possible
interleaved execution of the program there exists an equiv-
alent execution with the same overall behavior in which
the atomic block is executed serially (i.e., the execution of
the atomic block is not interleaved with actions of other
threads). Therefore, if a code block is atomic, the program-
mer can assume that the execution of the code block by a
thread cannot be interfered with by any other thread. This
enables programmers to reason about atomic code blocks
sequentially. This seemingly similar concept has the follow-
ing subtle differences from determinism:

1.	 Atomicity is the property about a sequential block of
code—i.e., the block of code for which we assert atom-
icity has a single thread of execution and does not
spawn other threads. Note that a sequential block is by
default deterministic if it is not interfered with by other
threads. Determinism is a property of a parallel block
of code. In determinism, we assume that the parallel
block of code’s execution is not influenced by the exter-
nal world.

2.	 In atomicity, we say that the execution of a sequential
block of code results in the same state no matter how it is
scheduled with other external threads—i.e., atomicity
ensures that external nondeterminism does not interfere
with the execution of an atomic block of code. In deter-
minism, we say that the execution of a parallel block of
code gives the same semantic state no matter how the
threads inside the block are scheduled—i.e., determin-
ism ensures that internal nondeterminism does not result
in different outputs.

In summary, atomicity and determinism are orthogonal con-
cepts. Atomicity reasons about a single thread under external
nondeterminism, whereas determinism reasons about mul-
tiple threads under internal nondeterminism.

Here we focus on atomicity and determinism as pro-
gram specifications to be checked. There is much work
on atomicity as a language mechanism, in which an
atomic specification is instead enforced by some com-
bination of library, run-time, compiler, or hardware
support. One could similarly imagine enforcing deter-
ministic specifications through, e.g., compiler and run-
time mechanisms.4

6.2. Other uses of bridge predicates
We have already argued that bridge predicates simplify
the task of directly and precisely specifying deterministic
behavior of parallel programs. We also believe that bridge
predicates could provide a simple but powerful tool to
express correctness properties in many other situations.
For example, if we have two versions of a program, P1 and
P2, that we expect to produce the same output on the same
input, then we can easily assert this using our framework
as follows:

deterministic assume(Pre) {
if (nonDeterministicBoolean() ) {

	 P1
} else {

	 P2
}

} assert(Post);

where Pre requires that the inputs are the same and Post
specifies that the outputs will be the same.

In particular, if a programmer has written both a sequential
and parallel version of a piece of code, he or she can specify
that the two versions are semantically equivalent with an
assertion like:

deterministic assume(A==A¢ and B==B¢) {
	 if (nonDeterministicBoolean() ) {
	 C = par_matrix_multiply_int(A, B);
	 } else {
	 C = seq_matrix_multiply_int(A, B);
	 }

} assert(C==C¢);

where nonDeterministicBoolean() returns true or
false nondeterministically.

Similarly, a programmer can specify that the old
and new versions of a piece of code are semantically
equivalent:

deterministic assume(A==A¢ and B==B¢) {
	 if (nonDeterministicBoolean() ) {
	 C = old_matrix_multiply_int(A, B);
	 } else {
	 C = new_matrix_multiply_int(A, B);
	 }

} assert(C==C¢);

june 2010 | vol. 53 | no. 6 | communications of the acm 105

Checking this specification is a kind of regression testing. In
particular, if the code change has introduced a regression—
i.e., a bug that causes the new code to produce a semantically
different output then the old code for some input—then the
above specification does not hold.

Further, we believe there is a wider class of program prop-
erties that are easy to write in bridge assertions but would be
quite difficult to write otherwise. For example, consider the
specification:

deterministic assume(set.size() == set¢.size()) {
	 P
} assert (set.size () == set¢.size ());

This specification requires that sequential or parallel pro-
gram block P transforms set so that its final size is some
function of its initial size, independent of its elements. The
specification is easy to write even in cases where the exact
relationship between the initial and final size might be
quite complex and difficult to write. It is not entirely clear,
however, when such properties are important or useful to
specify.

7. CONCLUSION
We have proposed bridge predicates and bridge assertions
for specifying the user-intended semantic deterministic
behavior of parallel programs. We argue that our specifica-
tions are much simpler for programmers to write than tradi-
tional specifications of functional correctness, because they
enable programmers to compare pairs of program states
across different executions rather than relating program
outputs directly to program inputs. Thus, bridge predicates
and bridge assertions can be thought of as a lightweight
mechanism for specifying the correctness of just the paral-
lelism in a program, independently of the program’s func-
tional correctness.

We have shown experimental evidence that we can effec-
tively check our deterministic specifications. In particular,
we can use existing techniques for testing parallel software
to generate executions exhibiting data and higher-level
races. Then our deterministic specifications allow us to
distinguish from the benign races the parallel nondeter-
minism bugs that lead to unintended nondeterministic
program behavior. Thus, we argue that it is worthwhile for
programmers to write such lightweight deterministic speci-
fications. In fact, later work6 has suggested that, given the
simple form of our specifications, it may often be possible
to automatically infer likely deterministic specifications for
parallel programs.

Acknowledgments
We would like to thank Nicholas Jalbert, Mayur Naik,
Chang-Seo Park, and our anonymous reviewers for their
valuable comments on previous drafts of this paper. This
work supported in part by Microsoft (Award #024263) and

	 1.	 Artho, C., Havelund, K., Biere, A.
High-level data races. Softw. Test.
Ver. Reliab. 13, 4 (2003), 207–227.

	 2.	 Asanovic, K., Bodik, R., Demmel, J.,
Keaveny, T., Keutzer, K., Kubiatowicz,
J.D., Lee, E.A., Morgan, N., Necula,
G., Patterson, D.A., Sen, K.,
Wawrzynek, J., Wessel, D., Yelick,
K.A. The Parallel Computing
Laboratory at U.C. Berkeley: A
Research Agenda Based on the
Berkeley View. Technical Report
UCB/EECS-2008–23, EECS
Department, University of California,
Berkeley, March 2008.

	 3.	B arnes, G. A method for
implementing lock-free shared-data
structures. In 5th ACM Symposium
on Parallel Algorithms and
Architectures (SPAA) (1993).

	 4.	B occhino, R.L., Jr., Adve, V.S., Dig, D.,
Adve, S.V., Heumann, S., Komuravelli,
R., Overbey, J., Simmons, P., Sung,
H., Vakilian, M. A type and effect
system for deterministic parallel
Java. In 24th ACM SIGPLAN
Conference on Object-Oriented
Programming Systems, Languages
and Applications (OOPSLA) (2009).

	 5.	B urnim, J., Sen, K. Asserting
and checking determinism for
multithreaded programs. In 7th
Joint Meeting of the European
Software Engineering Conference
and the ACM SIGSOFT Symposium
on the Foundations of Software
Engineering (ESEC/FSE) (2009).

	 6.	B urnim, J. Sen, K. DETERMIN:
Inferring likely deterministic
specifications of multithreaded
programs. In 32nd ACM/IEEE
International Conference on
Software Engineering (ICSE) (2010).

	 7.	 Edelstein, O., Farchi, E., Nir, Y.,
Ratsaby, G., Ur, S. Multithreaded
Java program test generation. IBM
Syst. J. 41, 1 (2002), 111–125.

	 8.	 Flanagan, C., Freund, S.N. Atomizer:
A dynamic atomicity checker for
multithreaded programs. In 31st
ACM SIGPLAN-SIGACT Symposium
on Principles of Programming
Languages (POPL) (2004).

	 9.	 Flanagan, C., Qadeer, S. A type and
effect system for atomicity. In ACM
SIGPLAN 2003 Conference on
Programming Language Design and
Implementation (PLDI) (2003).

	10.	 Johnston, W.M., Hanna, J.R.P.,
Millar, R.J. Advances in dataflow
programming languages. ACM
Comput. Surv. 36, 1 (2004),

1–34.
	11.	K aminsky, A. Parallel Java: a unified

API for shared memory and cluster
parallel programming in 100%
Java. In 21st IEEE International
Parallel and Distributed Processing
Symposium (IPDPS) (2007).

	12.	 Lee, E.A. The problem with threads.
Computer 39, 5 (May 2006),
33–42.

	13.	 Loidl, H., Rubio, F., Scaife, N.,
Hammond, K., Horiguchi, S., Klusik,
U., Loogen, R., Michaelson, G.,
Pena, R., Priebe, S. et al. Comparing
parallel functional languages:
Programming and performance.
High. Order Symb. Comput. 16, 3
(2003), 203–251.

	14.	 Park, C.-S., Sen, K. Randomized
active atomicity violation detection in
concurrent programs. In 16th ACM
SIGSOFT International Symposium
on Foundations of Software
Engineering (FSE) (2008).

	15.	 Sadowski, C., Freund, S., Flanagan,
C. SingleTrack: A dynamic
determinism checker for
multithreaded programs. In
18th European Symposium on
Programming (ESOP) (2009).

	16.	 Sen, K. Race directed random
testing of concurrent programs.
In ACM SIGPLAN Conference on
Programming Language Design
and Implementation (PLDI'08)
(2008).

	17.	 Smith, L.A., Bull, J.M., Obdrzálek,
J. A parallel java grande benchmark
suite. In ACM/IEEE Conference
on Supercomputing (SC) (2001).

	18.	 Stoller, S.D. Testing concurrent
Java programs using randomized
scheduling. In 2nd Workshop on
Runtime Verification (RV) (2002).

	19.	 Thies, W., Karczmarek, M.,
Amarasinghe, S. StreamIt:
A language for streaming
applications. In 11th International
Conference
on Compiler Construction (CC)
(2002).

	20.	 Visser, W., Havelund, K., Brat, G.,
Park, S., Lerda, F. Model checking
programs. Autom. Softw. Eng. 10, 2
(2003), 203–232.

	21.	 von Praun, C., Gross, T.R. Object
race detection. In 16th ACM
SIGPLAN Conference on Object-
Oriented Programming, Systems,
Languages, and Applications
(OOPSLA) (2001).

References

© 2010 ACM 0001-0782/10/0600 $10.00

Intel (Award #024894) funding and by matching funding by
U.C. Discovery (Award #DIG07–10227), by NSF Grants CNS-
0720906 and CCF-0747390, and by a DoD NDSEG Graduate
Fellowship.�

Jacob Burnim (jburnim@cs.berkeley.edu),
EECS Department, UC Berkeley, CA.

Koushik Sen (ksen@cs.berkeley.edu),
EECS Department, UC Berkeley, CA.

