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Abstract
The trend towards processors with more and more parallel 
cores is increasing the need for software that can take advan-
tage of parallelism. The most widespread method for writing 
parallel software is to use explicit threads. Writing correct 
multithreaded programs, however, has proven to be quite 
challenging in practice. The key difficulty is nondetermin-
ism. The threads of a parallel application may be interleaved 
nondeterministically during execution. In a buggy program, 
nondeterministic scheduling can lead to nondeterministic 
results—where some interleavings produce the correct result 
while others do not.

We propose an assertion framework for specifying that 
regions of a parallel program behave deterministically despite 
nondeterministic thread interleaving. Our framework allows 
programmers to write assertions involving pairs of program 
states arising from different parallel schedules. We describe an 
implementation of our deterministic assertions as a library for 
Java, and evaluate the utility of our specifications on a number 
of parallel Java benchmarks. We found specifying determinis-
tic behavior to be quite simple using our assertions. Further, 
in experiments with our assertions, we were able to identify 
two races as true parallelism errors that lead to incorrect non-
deterministic behavior. These races were distinguished from a 
number of benign races in the benchmarks.

1. INTRODUCTION
The semiconductor industry has hit the power wall—
performance of general-purpose single-core microprocessors 
can no longer be increased due to power constraints. Therefore, 
to continue to increase performance, the microprocessor 
industry is instead increasing the number of processing cores 
per die. The new “Moore’s Law” is that the number of cores will 
double every generation, with individual cores going no faster.2

This new trend of increasingly parallel chips means that we 
will have to write parallel software in order to take advantage 
of future hardware advances. Unfortunately, parallel software 
is more difficult to write and debug than its sequential coun-
terpart. A key reason for this difficulty is nondeterminism—i.e., 
that in two runs of a parallel program on the exact same input, 
the parallel threads of execution can interleave differently, 
producing different output. Such nondeterministic thread 
interleaving is an essential part of harnessing the power of 
parallel chips, but it is a major departure from sequential 
programming, where we typically expect programs to behave 
identically in every execution on the same input. We share a 

widespread belief that helping programmers manage nonde-
terminism in parallel software is critical in making parallel 
programming widely accessible.

For more than 20 years, many researchers have attacked 
the problem of nondeterminism by attempting to detect or 
predict sources of nondeterminism in parallel programs. The 
most notorious of such sources is the data race. A data race 
occurs when two threads in a program concurrently access the 
same memory location and at least one of those accesses is a 
write. That is, the two threads “race” to perform their conflict-
ing memory accesses, so the order in which the two accesses 
occur can change from run to run, potentially yielding nonde-
terministic program output. Many algorithms and tools have 
been developed to detect and eliminate data races in parallel 
programs. (See Burnim and Sen5 for further discussion and 
references.) Although the work on data race detection has 
significantly helped in finding determinism bugs in parallel 
programs, it has been observed that the absence of data races 
is not sufficient to ensure determinism.1, 8, 9 Thus researchers 
have also developed techniques to find high-level races,1, 16, 21 
likely atomicity violations,9, 8, 14 and other potential sources of 
nondeterminism. Further, such sources of nondeterminism 
are not always bugs—they may not lead to nondeterministic 
program behavior or nondeterminism may be intended. In 
fact, race conditions may be useful in gaining performance 
while still ensuring high-level deterministic behavior.3

More recently, a number of ongoing research efforts aim 
to make parallel programs deterministic by construction. 
These efforts include the design of new parallel program-
ming paradigms10, 12, 13, 19 and the design of new type systems, 
annotations, and checking or enforcement mechanisms 
that could retrofit existing parallel languages.4, 15 But such 
efforts face two key challenges. First, new languages see 
slow adoption and often remain specific to limited domains. 
Second, new paradigms often include restrictions that can 
hinder general-purpose programming. For example, a new 
type system may require complex type annotations and may 
forbid reasonable programs whose determinism cannot be 
expressed in the type system.

We argue that programmers should be provided with 
a framework that will allow them to express deterministic 
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behaviors of parallel programs directly and easily. Specifically, 
we should provide an assertion framework where program-
mers can directly and precisely express intended deterministic 
behavior. Further, the framework should be flexible enough 
so that deterministic behaviors can be expressed more eas-
ily than with a traditional assertion framework. For example, 
when expressing the deterministic behavior of a parallel edge 
detection algorithm for images, we should not have to rephrase 
the problem as race detection; nor should we have to write a 
state assertion that relates the output to the input, which would 
be complex and time-consuming. Rather, we should simply be 
able to say that, if the program is executed on the same input 
image, then the output image remains the same regardless of 
how the program’s parallel threads are scheduled.

In this paper, we propose such a framework for asserting 
that blocks of parallel code behave deterministically. Formally, 
our framework allows a programmer to give a specification for 
a block P of parallel code as:

deterministic assume(Pre(s0 , s ¢0) ) {
	 P

} assert(Post(s, s¢) );

This specification asserts the following: Suppose P is exe-
cuted twice with potentially different schedules, once from 
initial state s0 and once from s¢0 and yielding final states s and 
s ¢. Then, if the user-specified precondition Pre holds over s0 
and s ¢0, then s and s¢ must satisfy the user-specified postcon-
dition Post.

For example, we could specify the deterministic behavior 
of a parallel matrix multiply with:

deterministic assume(|A − A¢| < 10−9 and
	 |B − B¢| < 10−9) {

C = parallel_matrix_multiply_float(A, B);

} assert(|C − C¢| < 10−6);

Note the use of primed variables A¢,B¢, and C¢ in the above 
example. These variables represent the state of the matrices 
A,B,and C from a different execution. Thus, the predicates 
that we write inside assume and assert are different from 
state predicates written in a traditional assertion framework—
our predicates relate a pair of states from different executions. 
We call such predicates bridge predicates and assertions using 
bridge predicates bridge assertions. A key contribution of 
this paper is the introduction of these bridge predicates and 
bridge assertions.

Our deterministic assertions provide a way to specify 
the correctness of the parallelism in a program indepen-
dently of the program’s traditional functional correct-
ness. By checking whether different program schedules 
can nondeterministically lead to semantically different 
answers, we can find bugs in a program’s use of parallelism 
even when unable to directly specify or check functional 
correctness—i.e., that the program’s output is correct 
given its input. Inversely, by checking that a parallel pro-
gram behaves deterministically, we can gain confidence 

in the correctness of its use of parallelism independently 
of whatever method we use to gain confidence in the 
program’s functional correctness.

We have implemented our deterministic assertions as a 
library for the Java programming language. We evaluated 
the utility of these assertions by manually adding determin-
istic specifications to a number of parallel Java benchmarks. 
We used an existing tool to find executions exhibiting data 
and higher-level races in these benchmarks and used our 
deterministic assertions to distinguish between harmful 
and benign races. We found it to be fairly easy to specify the 
correct deterministic behavior of the benchmark programs 
using our assertions, despite being unable in most cases to 
write traditional invariants or functional correctness asser-
tions. Further, our deterministic assertions successfully 
distinguished the two races known to lead to undesired non-
determinism from the benign races in the benchmarks.

2. DETERMINISTIC SPECIFICATION
In this section, we motivate and define our proposal for 
assertions for specifying determinism.

Strictly speaking, a block of parallel code is said to be 
deterministic if, given any particular initial state, all execu-
tions of the code from the initial state produce the exact same 
final state. In our specification framework, the programmer 
can specify that they expect a block of parallel code, say P, to 
be deterministic with the following construct:

deterministic {
P

}

This assertion specifies that if s and s¢ are both program 
states resulting from executing P under different thread 
schedules from some initial state s0, then s and s¢ must be 
equal. For example, the specification:

deterministic {
C = parallel_matrix_multiply_int(A, B);

}

asserts that for the parallel implementation of matrix mul-
tiplication in function parallel_matrix_multiply_
int, any two executions from the same program state 
must reach the same program state—i.e., with identical 
entries in matrix C—no matter how the parallel threads 
are scheduled.

A key implication of knowing that a block of parallel code 
is deterministic is that we may be able to treat the block as 
sequential in other contexts. That is, although the block 
may have internal parallelism, a programmer (or perhaps 
a tool) can hopefully ignore this parallelism when consider-
ing the larger program using the code block. For example, 
perhaps a deterministic block of parallel code in a function 
can be treated as if it were a sequential implementation 
when reasoning about the correctness of code calling the 
function.
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Semantic Determinism: The above deterministic specifi-
cation is often too conservative. For example, consider a 
similar example, but where A,B,and C are floating-point 
matrices:

deterministic {

C = parallel_matrix_multiply_float(A, B);

}

Limited-precision floating-point addition and multipli-
cation are not associative due to rounding error. Thus, 
depending on the implementation, it may be unavoidable 
that the entries of matrix C will differ slightly depending on 
the thread schedule.

In order to tolerate such differences, we must relax the 
deterministic specification:

deterministic {

C = parallel_matrix_multiply_float(A, B);

} assert(|C − C¢| < 10−6);

This assertion specifies that, for any two matrices C and 
C¢ resulting from the execution of the matrix multiply from 
the same initial state, the entries of C and C¢ must differ by 
only a small quantity (i.e., 10−6).

Note that the above specification contains a predicate 
over two states—each from a different parallel execution of 
the deterministic block. We call such a predicate a bridge 
predicate, and an assertion using a bridge predicate a bridge 
assertion. Bridge assertions are different from traditional 
assertions in that they allow one to write a property over two 
program states coming from different executions whereas 
traditional assertions only allow us to write a property over 
a single program state.

Note also that such predicates need not be equivalence 
relations on pairs of states. In particular, the approximate 
equality used above is not an equivalence relation.

This relaxed notion of determinism is useful in many con-
texts. Consider the following example which adds in parallel 
two items to a synchronized set:

Set set = new SynchronizedTreeSet();
deterministic {

set.add(3); || set.add(5);

} assert(set.equals(set¢) );

If set is represented internally as a red–black tree, then a strict 
deterministic assertion would be too conservative. The struc-
ture of the resulting tree, and its layout in memory, will likely 
differ depending on which element is inserted first, and thus 
different parallel executions can yield different program states.

But we can use a bridge predicate to assert that, no mat-
ter what schedule is taken, the resulting set is semantically 

the same. That is, for objects set and set¢ computed by two 
different schedules, the equals method must return true 
because the sets must logically contain the same elements. 
We call this semantic determinism.
Preconditions for Determinism: So far we have described 
the following construct:

deterministic {
P

} assert(Post);

where Post is a predicate over two program states from dif-
ferent executions with different thread schedules. That is, 
if s and s¢ are two states resulting from any two executions 
of P from the same initial state, then Post (s, s¢) holds.

The above construct could be rewritten:

deterministic assume(s0 = s0¢) {
P

} assert(Post);

That is, if any two executions of P start from initial states 
s0 and s0¢, respectively, and if s and s¢ are the resulting final 
states, then s0 = s0¢ implies that Post (s, s¢) holds. The above 
rewritten specification suggests that we can relax the re-
quirement of s0 = s0¢ by replacing it with a bridge predicate 
Pre (s0, s0¢). For example:

deterministic assume(set.equals(set¢) ) {
set.add(3);    ||    set.add(5);

} assert(set.equals(set¢) );

The above specification states that if any two executions 
start from sets containing the same elements, then after the 
execution of the code, the resulting sets must also contain 
the same elements.
Comparison to Traditional Assertions: In summary, we pro-
pose the following construct for the specification of deter-
ministic behavior:

deterministic assume(Pre) {
P

} assert(Post);

Formally, it states that for any two program states s0 and s0¢, 
if (1) Pre (s0, s0¢) holds, (2) an execution of P from s0 termi-
nates and results in state s, and (3) an execution of P from 
s0¢ terminates and results in state s¢, then Post (s, s¢) must 
hold.

Note that the use of bridge predicates Pre and Post has 
the same flavor as pre- and postconditions used for functions 
in program verification. However, unlike traditional pre- and 
postconditions, the proposed Pre and Post predicates relate 
pairs of states from two different executions. In traditional ver-
ification, a precondition is usually written as a predicate over 



100    communications of the acm    |   june 2010  |   vol.  53  |   no.  6

research highlights 

 

a single program state, and a postcondition is usually written 
over two states—the states at the beginning and end of the 
function. For example:

parallel_matrix_multiply_int(A, B) {
	 assume(A.cols == B.rows);
	 ...
	 assert(C == A × B);
	 return C;

}

The key difference between a postcondition and a Post 
predicate is that a postcondition relates two states at differ-
ent times along a same execution—e.g., here relating inputs 
A and B to output C—whereas a Post predicate relates two 
program states from different executions.
Advantages of Deterministic Assertions: Our deterministic 
specifications are a middle ground between the implicit 
specification used in race detection—that programs should 
be free of data races—and the full specification of functional 
correctness. It is a great feature of data race detectors that 
typically no programmer specification is needed. However, 
manually determining which reported races are benign and 
which are bugs can be time-consuming and difficult. We 
believe our deterministic assertions, while requiring little 
effort to write, can greatly aid in distinguishing harmful 
from benign data races (or higher-level races).

One could argue that a deterministic specification frame-
work is unnecessary given that we can write the functional 
correctness of a block of code using traditional pre- and 
postconditions. For example, one could write the following 
to specify the correct behavior of a paralell matrix multiply:

C = parallel_matrix_multiply_float(A, B);

assert(|C − A × B| < 10−6);

We agree that if one can write a functional specification of 
a block of code, then there is no need to write deterministic 
specification, as functional correctness implies determinis-
tic behavior.

The advantage of our deterministic assertions is that 
they provide a way to specify the correctness of just the use 
of parallelism in a program, independent of the program’s 
full functional correctness. In many situations, writing a full 
specification of functional correctness is difficult and time-
consuming. A simple deterministic specification, however, 
enables us to use automated techniques to check for paral-
lelism bugs, such as harmful data races causing semantically 
nondeterministic behavior.

Consider a function parallel_edge_detection 
that takes an image as input and returns an image where 
detected edges have been marked. Relating the output to the 
input image with traditional pre- and postconditions would 
likely be quite challenging. However, it is simple to specify 
that the routine does not have any parallelism bugs causing 
a correct image to be returned for some thread schedules 
and an incorrect image for others:

deterministic assume(img.equals(img¢)) {
result = parallel_edge_detection(img);

} assert(result.equals(result¢));

where img.equals(img¢) returns true if the two images 
are pixel-by-pixel equal.

For this example, a programmer could gain some confi-
dence in the correctness of the routine by writing unit tests 
or manually examining the output for a handful of images. 
He or she could then use automated testing or model check-
ing to separately check that the parallel routine behaves 
deterministically on a variety of inputs, gaining confidence 
that the code is free from concurrency bugs.

We believe that it is often difficult to come up with effective 
functional correctness assertions. However, it is often quite 
easy to use bridge assertions to specify deterministic behav-
ior, enabling a programmer to check for harmful concurrency 
bugs. In Section 5, we provide several case studies to support 
this argument.

3. CHECKING DETERMINISM
There may be many potential approaches to checking or 
verifying a deterministic specification, from testing to model 
checking to automated theorem proving. In this section, we 
propose a simple, sound, and incomplete method for check-
ing deterministic specifications at run-time.

The key idea of the method is that, whenever a determin-
istic block is encountered at run-time, we can record the 
program states spre and spost at the beginning and end of the 
block. Then, given a collection of (spre, spost) pairs for a par-
ticular deterministic block in some program, we can check a 
deterministic specification by comparing pairwise the pairs 
of initial and final states for the block. That is, for a deter-
ministic block:

deterministic assume(Pre) {
P

} assert(Post);

with pre- and postbridge predicates Pre and Post, we check 
for every recorded pair of pairs (spre, spost) and (s¢pre, s¢post) that:

Pre (spre, s¢pre) Þ Post (spost, s¢post)

If this condition does not hold for some pair, then we report 
a determinism violation.

To increase the effectiveness of this checking, we must 
record pairs of initial and final states for deterministic 
blocks executed under a wide variety of possible thread 
interleavings and inputs. Thus, in practice we likely want to 
combine our deterministic assertion checking with existing 
techniques and tools for exploring parallel schedules of a 
program, such as noise making,7, 18 active random schedul-
ing,16 or model checking.20

In practice, the cost of recording and storing entire pro-
gram states could be prohibitive. However, real determinism 
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predicates often depend on just a small portion of the whole 
program state. Thus, we need only to record and store small 
projections of program states. For example, for a determin-
istic specification with pre- and postpredicate set.equals 
(set¢) we need only to save object set and its elements (pos-
sibly also the memory reachable from these objects), rather 
than the entire program memory. This storage cost sometimes 
can be further reduced by storing and comparing check-sums 
or approximate hashes.

4. DETERMINISM CHECKING LIBRARY
In this section, we describe the design and implementation of 
an assertion library for specifying and checking determinism 
of Java programs. Note that, while it might be preferable to 
introduce a new syntactic construct for specifying determin-
ism, we provide the functionality as a library to simplify the 
implementation.

4.1. Overview
Figure 1 shows the core API for our deterministic asser-
tion library. Functions open and close specify the begin-
ning and end of a deterministic block. Deterministic blocks 
may be nested, and each block may contain multiple calls 
to functions assume and assert, which are used to specify 
the pre- and postpredicates of deterministic behavior.

Each call assume(o, pre) in a deterministic block speci-
fies part of the prepredicate by giving some projection o of 
the program state and a predicate pre. That is, it specifies 
that one condition for any execution of the block to compute 
an equivalent, deterministic result is that pre.apply(o, o¢) 
return true for object o¢ from the other execution.

Similarly, a call assert(o, post) in a deterministic block 
specifies that, for any execution satisfying every assume, 
predicate post.apply(o, o¢) must return true for object o¢ 
from the other execution.

At run-time, our library records every object (i.e., state 
projection) passed to each assert and assume in each 
deterministic block, saving them to a central, persistent 
store. We require that all objects passed as state projections 
implement the Serializable interface to facilitate this 
recording. (In practice, this does not seem to be a heavy bur-
den. Most core objects in the Java standard library are seri-
alizable, including numbers, strings, arrays, lists, sets, and 
maps/hashtables.)

Then, also at run-time, a call to assert(o, post) checks 
post on o and all o¢ saved from previous, matching execu-
tions of the same deterministic block. If the postpredicate 
does not hold for any of these executions, a determinism 
violation is immediately reported. Deterministic blocks can 
contain many assert’s so that determinism bugs can be 
caught as early as possible and can be more easily localized.

For flexibility, programmers are free to write state projec-
tions and predicates using the full Java language. However, 
it is a programmer’s responsibility to ensure that these 
predicates contain no observable side effects, as there are 
no guarantees as to how many times such a predicate may 
be evaluated in any particular run.
Built-in Predicates: For programmer convenience, we pro-
vide two built-in predicates that are often sufficient for spec-
ifying pre- and postpredicates for determinism. The first, 
Equals, returns true if the given objects are equal using 
their built-in equals method—i.e., if o.equals(o¢). For 
many Java objects, this method checks semantic equality—
e.g., for integers, floating-point numbers, strings, lists, sets, 
etc. Further, for single- or multidimensional arrays (which 
do not implement such an equals method), the Equals 
predicate compares corresponding elements using their 
equals methods. Figure 2 gives an example with  assert 
and assume using this Equals predicate.

The second predicate, ApproxEquals, checks if two 
floating-point numbers, or the corresponding elements 
of two floating-point arrays, are within a given margin of 
each other. We found this predicate useful in specifying the 
deterministic behavior of numerical applications, where it 
is often unavoidable that the low-order bits may vary with 
different thread interleavings.
Real-World Floating-Point Predicates: In practice, float-
ing-point computations often have input-dependent error 
bounds. For example, we may expect any two runs of a paral-
lel algorithm for summing inputs x1, …, xn to return answers 

Figure 1. Core deterministic specification API.

public class Deterministic {

	 static void open() {...}

	 static void close() {...}

	 static void assume(Object o, Predicate p) {...}

	 static void assert(Object o, Predicate p) {...}

	 interface Predicate {
	 boolean apply(Object a, Object b);
	 }
}

Figure 2. Deterministic assertions for a Mandelbrot Set  
implementation from the Parallel Java (PJ) Library.11

main(String args[]) {
	 // Read parameters from command-line.
	 ...
	 // Pre-predicate: equal parameters.
	 Predicate equals = new Equals();
	 Deterministic.open();
	 Deterministic.assume(width, equals);
	 Deterministic.assume(height, equals);
	 ...
	 Deterministic.assume(gamma, equals);

	 // spawn threads to compute fractal
	 int matrix[][] = ...;
	 ...
	 // join threads
	 ...
	 Deterministic.assert(matrix, equals);
	 Deterministic.close();

	 // write fractal image to f ile
	 ...
}
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equal to within 2N  ∑i|xi|, where Î is the machine epsilon. 
We can assert:

sum = parallel_sum(x);
bound = 2 * x.length *  * sum_of_abs(x);
Predicate apx = new ApproxEquals(bound);
Deterministic.assert(sum, apx);

As another example, different runs of a molecular dynam-
ics simulation may be expected to produce particle positions 
equal to within something like  multiplied by the sum of 
the absolute values of all initial positions. We can similarly 
compute this value at the beginning of the computation, 
and use an ApproxEquals predicate with the appropriate 
bound to compare particle positions.

4.2. Concrete example: Mandelbrot
Figure 2 shows the deterministic assertions we added to one 
of our benchmarks, a program for rendering images of the 
Mandelbrot Set fractal from the Parallel Java (PJ) Library.11

The benchmark first reads a number of integer and 
floating-point parameters from the command-line. It then 
spawns several worker threads that each compute the hues 
for different segments of the final image and store the hues 
in shared array matrix. After waiting for all of the worker 
threads to finish, the program encodes and writes the image 
to a file given as a command-line argument.

To add determinism annotations to this program, we 
simply opened a deterministic block just before the worker 
threads are spawned and closed it just after they are joined. 
At the beginning of this block, we added an assume call for 
each of the seven fractal parameters, such as the image size 
and color palette. At the end of the block, we assert that the 
resulting array matrix should be deterministic, however 
the worker threads are interleaved.

Note that it would be quite difficult to add assertions 
for the functional correctness of this benchmark, as each 

pixel of the resulting image is a complicated function of the 
inputs (i.e., the rate at which a particular complex sequence 
diverges). Further, there do not seem to be any simple tra-
ditional invariants on the program state or outputs which 
would help identify a parallelism bug.

5. EVALUATION
In this section, we describe our efforts to validate two claims 
about our proposal for specifying and checking determinis-
tic parallel program execution:

1.	 First, deterministic specifications are easy to write. That 
is, even for programs for which it is difficult to specify tra-
ditional invariants or functional correctness, it is relatively 
easy for a programmer to add deterministic assertions.

2.	 Second, deterministic specifications are useful. When 
combined with tools for exploring multiple thread 
schedules, deterministic assertions catch real parallel-
ism bugs that lead to semantic nondeterminism. 
Further, for traditional concurrency issues such as data 
races, these assertions provide some ability to distin-
guish between benign cases and true bugs.

To evaluate these claims, we used a number of bench-
mark programs from the Java Grande Forum (JGF) bench-
mark suite,17 the Parallel Java (PJ) Library,11 and elsewhere. 
The names and sizes of these benchmarks are given in 
Table 1. We describe the benchmarks in greater detail in 
Burnim and Sen.5 Note that the benchmarks range from 
a  few hundred to a few thousand lines of code, with the 
PJ  benchmarks relying on an additional 10–20,000 lines 
of library code from the PJ Library (for threading, synchro-
nization, and other functionality).

5.1. Ease of use
We evaluate the ease of use of our deterministic specification 
by manually adding assertions to our benchmark programs. 
One deterministic block was added to each benchmark.

Benchmark

Approximate 
Lines of Code 

(App + Library)

Lines of  
Specification  
(+ Predicates) Threads

Data Races High-Level Races

Found
Determinism 

Violations Found
Determinism  

Violations

JGF sor
sparsematmult
series
crypt
moldyn
lufact
raytracer
montecarlo

300
700
800

1,100
1,300
1,500
1,900
3,600

6
7
4
5
6
9
4
4 + 34

10
10
10
10
10
10
10
10

2
0
0
0
2
1
3
1

0
0
0
0
0
0
1
0

0
0
0
0
0
0
0
2

0
0
0
0
0
0
0
0

PJ pi
keysearch3
mandelbrot
phylogeny

150 + 15,000
200 + 15,000
250 + 15,000

4,400 + 15,000

5
6

10
8

4
4
4
4

9
3
9
4

0
0
0
0

1+
0+
0+
0+

1
0
0
0

tsp 700 4 5 6 0 2 0

Table 1. Summary of experimental evaluation of deterministic assertions. A single deterministic block specification was added to each 
benchmark. Each specification was checked on executions with races found by the CalFuzzer14, 16 tool.



june 2010  |   vol.  53  |   no.  6   |   communications of the acm     103

The third column of Table 1 records the number of 
lines of specification (and lines of custom predicate code) 
added to each benchmark. Overall, the specification bur-
den is quite small. Indeed, for the majority of the programs, 
an author was able to add deterministic assertions in only 
5  to 10 minutes per benchmark, despite being unfamiliar 
with the code. In particular, it was typically not difficult to 
both identify regions of code performing parallel computa-
tion and to determine from documentation, comments, or 
source code which results were intended to be determinis-
tic. Figure 2 shows the assertions added to the mandelbrot 
benchmark.

The added assertions were correct on the first attempt for 
all but two benchmarks. For phylogeny, the resulting phy-
logenetic tree was erroneously specified as deterministic, 
when, in fact, there are many correct optimal trees. The spec-
ification was modified to assert only that the optimal score 
must be deterministic. For sparsematmult, we incorrectly 
identified the variable to which the output was written. This 
error was identified during later work on automatically infer-
ring deterministic specifications.6

The two predicates provided by our assertion library were 
sufficient for all but one of the benchmarks. For the JGF 
montecarlo benchmark, the authors had to write a custom 
equals and hashCode method for two classes—34 total 
lines of code—in order to assume and assert that two sets, 
one of initial tasks and one of results, are equivalent across 
executions.
Discussion: More experience, or possibly user studies, would 
be needed to conclude decisively that our assertions are eas-
ier to use than existing techniques for specifying that parallel 
code is correctly deterministic. However, we believe our expe-
rience is quite promising. In particular, writing assertions for 
the full functional correctness of the parallel regions of these 
programs seemed to be quite difficult, perhaps requiring 
implementing a sequential version of the code and asserting 
that it produces the same result. Further, there seemed to be 
no obvious simpler, traditional assertions that would aid in 
catching nondeterministic parallelism.

Despite these difficulties, we found that specifying the 
natural deterministic behavior of the benchmarks with our 
bridge assertions required little effort.

5.2. Effectiveness
To evaluate the utility of our deterministic specifications in 
finding true parallelism bugs, we used a modified version 
of the CalFuzzer14, 16 tool to find real races in the bench-
mark programs, both data races and higher level races (such 
as  races to acquire a lock). For each such race, we ran 10 
trials using CalFuzzer to create real executions with these 
races and to randomly resolve the races (i.e., randomly pick 
a thread to “win”). We turned on run-time checking of our 
deterministic assertions for these trials, and recorded all 
found violations.

Table 1 summarizes the results of these experiments. For 
each benchmark, we indicate the number of real data races 
and higher-level races we observed. Further, we indicate 
how many of these races led to determinism violations in 
any execution.

In these experiments, the primary computational cost 
is from CalFuzzer, which typically has an overhead in the 
range of 2x–20x for these kinds of compute bound applica-
tions. We have not carefully measured the computational 
cost of our deterministic assertion library. For most bench-
marks, however, the cost of serializing and comparing a 
computation’s inputs and outputs is dwarfed by the cost of 
the computation itself—e.g., consider the cost of checking 
that two fractal images are identical versus the cost of com-
puting each fractal in the first place.
Determinism Violations: We found two cases of nondeter-
ministic behavior. First, a known data race in the raytracer 
benchmark, due the use of the wrong lock to protect a shared 
sum, can yield an incorrect final answer.

Second, the pi benchmark can yield a nondeterministic 
answer given the same random seed because of insufficient 
synchronization of a shared random number generator. 
In each Monte Carlo sample, two successive calls to java.
util.Random.nextDouble() are made. A context switch 
between these calls changes the set of samples generated. 
Similarly, nextDouble() itself makes two calls to java.
util.Random.next(), which atomically generates up to 
32 pseudorandom bits. A context switch between these two 
calls changes the generated sequence of pseudorandom 
doubles. Thus, although java.util.Random.next
Double()is thread-safe and free of data races, scheduling 
nondeterminism can still lead to a nondeterministic result. 
(This behavior is known—the PJ Library provides several 
versions of this benchmark, one of which does guarantee a 
deterministic result for any given random seed.)
Benign Races: The high number of real data races for these 
benchmarks is largely due to benign races on volatile variables 
used for synchronization—e.g., to implement a tournament 
barrier or a custom lock. Although CalFuzzer does not under-
stand these sophisticated synchronization schemes, our deter-
ministic assertions automatically provide some confidence 
that these races are benign because, over the course of many 
experimental runs, they did not lead to nondeterministic final 
results.

Note that it can be quite challenging to verify by hand that 
these races are benign. On inspecting the benchmark code 
and these data races, an author several times believed he 
had found a synchronization bug. But on deeper inspection, 
the code was found to be correct in all such cases.

The number of high-level races is low for the JGF bench-
marks because all the benchmarks except montecarlo 
exclusively use volatile variables (and thread joins) for syn-
chronization. Thus, all observable scheduling nondeter-
minism is due to data races.

The number of high-level races is low for the PJ bench-
marks because they primarily use a combination of vola-
tile variables and atomic compare-and-set operations for 
synchronization. Currently, the only kind of high-level 
race our modified CalFuzzer recognizes is a lock race. 
Thus, while we believe there are many (benign) races 
in the ordering of these compare-and-set operations, 
CalFuzzer does not report them. The one high-level race 
for pi, indicated in the table and described above, was 
confirmed by hand.
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Discussion: Although our checking of deterministic assertions 
is sound—an assertion failure always indicates that two execu-
tions with equivalent initial states can yield nonequivalent 
final states—it is incomplete. Parallelism bugs leading to non-
determinism may still exist even when testing fails to find any 
determinism violations.

However, in our experiments we successfully distin-
guished the races known to cause undesired nondetermin-
ism from the benign races in only a small number of trials. 
Thus, we believe our deterministic assertions can help catch 
harmful nondeterminism due to parallelism, as well as save 
programmer effort in determining whether real races and 
other potential parallelism bugs can lead to incorrect pro-
gram behavior.

6. DISCUSSION
In this section, we compare the concepts of atomicity and 
determinism. Further, we discuss several other possible 
uses for bridge predicates and bridge assertions.

6.1. Atomicity versus determinism
A concept complementary to determinism in parallel pro-
grams is atomicity. A block of sequential code in a multi-
threaded program is said to be atomic9 if for every possible 
interleaved execution of the program there exists an equiv-
alent execution with the same overall behavior in which 
the atomic block is executed serially (i.e., the execution of 
the atomic block is not interleaved with actions of other 
threads). Therefore, if a code block is atomic, the program-
mer can assume that the execution of the code block by a 
thread cannot be interfered with by any other thread. This 
enables programmers to reason about atomic code blocks 
sequentially. This seemingly similar concept has the follow-
ing subtle differences from determinism:

1.	 Atomicity is the property about a sequential block of 
code—i.e., the block of code for which we assert atom-
icity has a single thread of execution and does not 
spawn other threads. Note that a sequential block is by 
default deterministic if it is not interfered with by other 
threads. Determinism is a property of a parallel block 
of code. In determinism, we assume that the parallel 
block of code’s execution is not influenced by the exter-
nal world.

2.	 In atomicity, we say that the execution of a sequential 
block of code results in the same state no matter how it is 
scheduled with other external threads—i.e., atomicity 
ensures that external nondeterminism does not interfere 
with the execution of an atomic block of code. In deter-
minism, we say that the execution of a parallel block of 
code gives the same semantic state no matter how the 
threads inside the block are scheduled—i.e., determin-
ism ensures that internal nondeterminism does not result 
in different outputs.

In summary, atomicity and determinism are orthogonal con-
cepts. Atomicity reasons about a single thread under external 
nondeterminism, whereas determinism reasons about mul-
tiple threads under internal nondeterminism.

Here we focus on atomicity and determinism as pro-
gram specifications to be checked. There is much work 
on atomicity as a language mechanism, in which an 
atomic specification is instead enforced by some com-
bination of library, run-time, compiler, or hardware 
support. One  could similarly imagine enforcing deter-
ministic specifications through, e.g., compiler and run-
time mechanisms.4

6.2. Other uses of bridge predicates
We have already argued that bridge predicates simplify 
the task of directly and precisely specifying deterministic 
behavior of parallel programs. We also believe that bridge 
predicates could provide a simple but powerful tool to 
express correctness properties in many other situations. 
For example, if we have two versions of a program, P1 and 
P2, that we expect to produce the same output on the same 
input, then we can easily assert this using our framework 
as follows:

deterministic assume(Pre) {
if (nonDeterministicBoolean() ) {

	 P1
} else {

	 P2
}

} assert(Post);

where Pre requires that the inputs are the same and Post 
specifies that the outputs will be the same.

In particular, if a programmer has written both a sequential 
and parallel version of a piece of code, he or she can specify 
that the two versions are semantically equivalent with an 
assertion like:

deterministic assume(A==A¢ and B==B¢) {
	 if (nonDeterministicBoolean() ) {
	 C = par_matrix_multiply_int(A, B);
	 } else {
	 C = seq_matrix_multiply_int(A, B);
	 }

} assert(C==C¢);

where nonDeterministicBoolean() returns true or 
false nondeterministically.

Similarly, a programmer can specify that the old 
and new versions of a piece of code are semantically 
equivalent:

deterministic assume(A==A¢ and B==B¢) {
	 if (nonDeterministicBoolean() ) {
	 C = old_matrix_multiply_int(A, B);
	 } else {
	 C = new_matrix_multiply_int(A, B);
	 }

} assert(C==C¢);
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Checking this specification is a kind of regression testing. In 
particular, if the code change has introduced a regression—
i.e., a bug that causes the new code to produce a semantically 
different output then the old code for some input—then the 
above specification does not hold.

Further, we believe there is a wider class of program prop-
erties that are easy to write in bridge assertions but would be 
quite difficult to write otherwise. For example, consider the 
specification:

deterministic assume(set.size() == set¢.size()) {
	 P
} assert (set.size () == set¢.size ());

This specification requires that sequential or parallel pro-
gram block P transforms set so that its final size is some 
function of its initial size, independent of its elements. The 
specification is easy to write even in cases where the exact 
relationship between the initial and final size might be 
quite complex and difficult to write. It is not entirely clear, 
however, when such properties are important or useful to 
specify.

7. CONCLUSION
We have proposed bridge predicates and bridge assertions 
for specifying the user-intended semantic deterministic 
behavior of parallel programs. We argue that our specifica-
tions are much simpler for programmers to write than tradi-
tional specifications of functional correctness, because they 
enable programmers to compare pairs of program states 
across different executions rather than relating program 
outputs directly to program inputs. Thus, bridge predicates 
and bridge assertions can be thought of as a lightweight 
mechanism for specifying the correctness of just the paral-
lelism in a program, independently of the program’s func-
tional correctness.

We have shown experimental evidence that we can effec-
tively check our deterministic specifications. In particular, 
we can use existing techniques for testing parallel software 
to generate executions exhibiting data and higher-level 
races. Then our deterministic specifications allow us to 
distinguish from the benign races the parallel nondeter-
minism bugs that lead to unintended nondeterministic 
program behavior. Thus, we argue that it is worthwhile for 
programmers to write such lightweight deterministic speci-
fications. In fact, later work6 has suggested that, given the 
simple form of our specifications, it may often be possible 
to automatically infer likely deterministic specifications for 
parallel programs.
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