
Concolic Testing

Koushik Sen
EECS Department,

UC Berkeley, CA, USA.
ksen@cs.berkeley.edu

ABSTRACT
Concolic testing automates test input generation by com-
bining the concrete and symbolic (concolic) execution of
the code under test. Traditional test input generation tech-
niques use either (1) concrete execution or (2) symbolic exe-
cution that builds constraints and is followed by a generation
of concrete test inputs from these constraints. In contrast,
concolic testing tightly couples both concrete and symbolic
executions: they run simultaneously, and each gets feedback
from the other.

We have implemented concolic testing in tools for test-
ing both C and Java programs. We have used the tools to
find bugs in several real-world software systems including
SGLIB, a popular C data structure library used in a com-
mercial tool, a third-party implementation of the Needham-
Schroeder protocol and the TMN protocol, the scheduler of
Honeywell’s DEOS real-time operating system, and the Sun
Microsystems’ JDK 1.4 collection framework. In this tuto-
rial, we will describe concolic testing and some of its recent
extensions.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging

General Terms
Symbolic execution, Testing tools

Keywords
concolic testing, random testing, explicit path model-
checking, data structure testing, unit testing, testing C pro-
grams

1. INTRODUCTION

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ASE’07, November 4–9, 2007, Atlanta, Georgia, USA.
Copyright 2007 ACM 978-1-59593-882-4/07/0011 ...$5.00.

Today’s software systems suffer from poor reliability, with
software errors costing the U.S. economy upwards of $60 bil-
lion annually [13]. Our techniques to ensure software reli-
ability are far from the level of maturity attained by other
engineering disciplines that create critical infrastructure.

Testing is the predominant technique in industry to en-
sure software quality. Exhaustive test generation is es-
sential for effective and rigorous testing. However, ex-
isting exhaustive techniques for automated test genera-
tion [1, 4, 5, 9–11, 15, 19–21], based on symbolic execution
and model checking, usually require a lot of time and fail
to scale for large software due to the limitations of underly-
ing theorem provers and symbolic analyzers. Random test-
ing [2, 3, 6, 7, 14, 16], in contrast, is fast and scalable, but
it is not exhaustive—random testing usually tests a small
fraction of all program behaviors.

Concolic testing [8,12,17,18] combines random testing and
symbolic execution to partly remove the limitations of ran-
dom testing and symbolic execution based testing: concrete
values from random testing are used to partly overcome the
limitations of symbolic execution, and symbolic execution is
used to generate concrete test inputs that give better cov-
erage than random testing. We have implemented concolic
testing for C and Java programs in two publicly available
tools called CUTE and jCUTE, respectively. We have used
CUTE and jCUTE to find bugs in several real-world soft-
ware systems including SGLIB, a popular C data structure
library used in a commercial tool, implementations of the
Needham-Schroeder protocol and the TMN protocol, the
scheduler of Honeywell’s DEOS real-time operating system,
and the Sun Microsystems’ JDK 1.4 collection framework.
In this tutorial, we give an overview of concolic testing and
its implementations.

2. OVERVIEW OF CONCOLIC TESTING
In concolic testing, our goal is to generate data inputs that

would exercise all the feasible execution paths (up to a given
length) of a sequential program having memory graphs as
inputs. We next describe the essential idea behind concolic
testing.

Concolic testing uses concrete values as well as symbolic
values for the inputs and executes a program both concretely
and symbolically. This is called concolic execution. The con-
crete execution part of concolic execution constitutes the
normal execution of the program. The symbolic execution
part of concolic execution collects symbolic constraints over
the symbolic input values at each branch point encountered
along the concrete execution path. At the end of the concolic

execution, the algorithm has computed a sequence of sym-
bolic constraints corresponding to each branch point. We
call the conjunction of these constraints a path constraint.
Observe that all input values that satisfy a given path con-
straint will explore the same execution path.

Concolic testing is based on concolic execution. Concolic
testing first generates random values for primitive inputs
and the NULL value for pointer inputs. Then the algorithm
does the following in a loop: it executes the code concolically
with the generated input. At the end of the execution a sym-
bolic constraint in the path constraint is negated and solved
using constraint solvers to generate a new test input that
directs the program along a different execution path. The
loop is repeated with the newly generated test input. The
loop continues until the algorithm has explored all feasible
distinct execution paths using a depth-first search strategy.

A complication arises from the fact that for some sym-
bolic constraints, our constraint solver may not be power-
ful enough to compute concrete values that satisfy the con-
straints. To address this difficulty, such symbolic constraints
are simplified by replacing some of the symbolic values with
concrete values. Because of this, concolic testing is com-
plete only if given an oracle that can solve all constraints in
a program, and the length and the number of paths is finite.
Note that because the algorithm does concrete executions,
it is sound, i.e. all bugs it infers are real.

3. IMPLEMENTATION
In concolic testing, since we execute a program both con-

cretely and symbolically simultaneously, we can implement
concolic execution through program instrumentation. Pro-
gram instrumentation inserts function calls throughout the
program. During an execution of an instrumented program,
the original code of the program performs the concrete exe-
cution and the inserted function calls perform the symbolic
execution without interfering with the normal execution of
the program. We believe that our implementation of con-
colic testing using program instrumentation is a novel idea
which enabled us to quickly and elegantly implement sym-
bolic execution without writing a full-fledged symbolic inter-
preter. Moreover, since our symbolic execution piggy-backs
the normal execution, we have the capability to approximate
the symbolic execution of some statements by their concrete
outcomes. For example, if we call a function for which we do
not have the code for symbolic execution, we use the out-
come of its concrete execution as an approximation of its
symbolic execution.

In this tutorial, we shall describe a simple implementation
of concolic testing where the inserted functions calls record
the statements executed and generate a simple ASCII file
called a trace file. Concolic execution is then implemented
as a program that takes this trace file and generates an in-
put file. Our experience shows that such a program can be
written in Python or similar other scripting languages using
at most 250 lines of code.

Acknowledgements
Part of this work is done in collaboration with Gul Agha,
Patrice Godefroid, Nils Klarlund, and Darko Marinov. This
work is supported in part by the NSF Grant CNS-0720906.

4. REFERENCES
[1] D. Beyer, A. J. Chlipala, T. A. Henzinger, R. Jhala, and

R. Majumdar. Generating Test from Counterexamples. In
Proc. of the 26th ICSE, pages 326–335, 2004.

[2] D. Bird and C. Munoz. Automatic Generation of Random
Self-Checking Test Cases. IBM Systems Journal,
22(3):229–245, 1983.

[3] K. Claessen and J. Hughes. Quickcheck: A lightweight tool
for random testing of Haskell programs. In Proc. of 5th
ACM SIGPLAN International Conference on Functional
Programming (ICFP), pages 268–279, 2000.

[4] L. Clarke. A system to generate test data and symbolically
execute programs. IEEE Trans. Software Eng., 2:215–222,
1976.

[5] P. D. Coward. Symbolic execution systems-a review.
Software Engineering Journal, 3(6):229–239, 1988.

[6] C. Csallner and Y. Smaragdakis. JCrasher: an automatic
robustness tester for Java. Software: Practice and
Experience, 34:1025–1050, 2004.

[7] J. E. Forrester and B. P. Miller. An Empirical Study of the
Robustness of Windows NT Applications Using Random
Testing. In Proceedings of the 4th USENIX Windows
System Symposium, 2000.

[8] P. Godefroid, N. Klarlund, and K. Sen. DART: Directed
automated random testing. In Proc. of the ACM SIGPLAN
2005 Conference on Programming Language Design and
Implementation (PLDI), 2005.

[9] S. Khurshid, C. S. Pasareanu, and W. Visser. Generalized
symbolic execution for model checking and testing. In Proc.
9th Int. Conf. on TACAS, pages 553–568, 2003.

[10] J. C. King. Symbolic Execution and Program Testing.
Communications of the ACM, 19(7):385–394, 1976.

[11] G. Lee, J. Morris, K. Parker, G. A. Bundell, and P. Lam.
Using symbolic execution to guide test generation:
Research articles. Softw. Test. Verif. Reliab., 15(1):41–61,
2005.

[12] R. Majumdar and K. Sen. Hybrid concolic testing. In 29th
International Conference on Software Engineering
(ICSE’07), pages 416–426. IEEE, 2007.

[13] The economic impacts of inadequate infrastructure for
software testing. National Institute of Standards and
technology, Planning Report 02-3, May 2002.

[14] J. Offut and J. Hayes. A Semantic Model of Program
Faults. In Proc. of ISSTA’96, pages 195–200, 1996.

[15] L. Osterweil. Integrating the testing, analysis and
debugging of programs. In Proc. of a symposium on
Software validation:
inspection-testing-verification-alternatives, pages 73–102,
New York, NY, USA, 1984. Elsevier North-Holland, Inc.

[16] C. Pacheco and M. D. Ernst. Eclat: Automatic generation
and classification of test inputs. In 19th European
Conference Object-Oriented Programming, 2005.

[17] K. Sen and G. Agha. CUTE and jCUTE : Concolic unit
testing and explicit path model-checking tools. In Computer
Aided Verification (CAV’06), LNCS, 2006. (To Appear).

[18] K. Sen, D. Marinov, and G. Agha. CUTE: A concolic unit
testing engine for C. In 5th joint meeting of the European
Software Engineering Conference and ACM SIGSOFT
Symposium on the Foundations of Software Engineering
(ESEC/FSE’05). ACM, 2005.

[19] W. Visser, C. S. Pasareanu, and S. Khurshid. Test input
generation with Java PathFinder. In Proc. 2004 ACM
SIGSOFT International Symposium on Software Testing
and Analysis, pages 97–107, 2004.

[20] S. Visvanathan and N. Gupta. Generating test data for
functions with pointer inputs. In 17th IEEE International
Conference on Automated Software Engineering, 2002.

[21] T. Xie, D. Marinov, W. Schulte, and D. Notkin. Symstra:
A framework for generating object-oriented unit tests using
symbolic execution. In Procs. of TACAS, 2005.

