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Abstract
Continuous-time Markov Chains (CTMCs) are an impor-

tant class of stochastic models that have been used to model
and analyze a variety of practical systems. In this paper we
present an algorithm to learn and synthesize a CTMC model
from sample executions of a system. Apart from its theoret-
ical interest, we expect our algorithm to be useful in veri-
fying black-box probabilistic systems and in composition-
ally verifying stochastic components interacting with un-
known environments. We have implemented the algorithm
and found it to be effective in learning CTMCs underlying
practical systems from sample runs.

1. Introduction
Stochastic models such as continuous-time Markov

chains (CTMCs) [22] are widely used to model prac-
tical software systems and analyze their performance
and reliability. Before building a complex software sys-
tem, CTMCs are generated from higher-level speci-
fications, like queueing networks, stochastic process
algebra [14, 11], or stochastic Petri-nets [4]. These mod-
els are then used for quantitative evaluation of reliability
and performance for example to determine the through-
put of production lines, to calculate average failure time
of systems, or to find other reliability or performance bot-
tlenecks of the system. Once a model has been validated
against performance and reliability requirements, the sys-
tem is implemented. However, even if a model has been
carefully validated, the implementation may not con-
form to the model. There are two potential sources of
error: first, there could be bugs introduced when trans-
lating the design into system code, and second the es-
timated values of various parameters used in construct-
ing the stochastic model may differ considerably from the
actual values in the deployed system. To catch such po-
tential post-implementation problems, testing for perfor-
mance and reliability is performed by running the system a
large number of times in the real environment and check-
ing for reliability problems or performance bottlenecks.
However, because it is difficult achieve completecover-
ageduring testing, despite its evident importance in prac-
tice, testing fails to guarantee the full correctness of a
deployed system.

An approach that tries to leverage the benefits of formal
analysis - usually done in the design phase - to the post-
implementation phase, islearning the model from sam-
ple executions of the system and then formally verifying
the learnt model against the design specification. This ap-
proach has been fruitfully used to model-check unknown,
black-boxsystems [9] and to learn unknown environments
to assist in compositional verification of systems [7]. Both
these efforts apply to non-deterministic, discrete systems
and have not been extended to more general stochastic sys-
tems. While there are several machine learning algorithms
on grammatical inference [6, 1, 8, 19, 5] that have been
successfully applied to pattern recognition, speech recog-
nition, natural language processing and several other do-
mains, there are no algorithms in the literature that can learn
the real-time, stochastic models that are typically used to
model systems in formal verification. In this paper, we ad-
dress this problem by presenting an algorithm that given ex-
ecution traces (possibly obtained by running the deployed
system during testing) of the system, infers a CTMC model
that could have generated the traces according to the ob-
served distribution. The learned CTMC can then be used
by existing probabilistic model-checking [17, 12, 21, 24]
and performance evaluation tools [14, 4] for further analy-
sis and thereby helping to find bugs in post-implementation
phase. The learning algorithm may also potentially be used
to perform automatic compositional verification (as in [7])
for stochastic systems. A closely related work is given in
[23] where they learn continuous-time hidden Markov mod-
els to do performance evaluation. However, they fix the size
of the continuous-time hidden Markov model before learn-
ing. This can be restrictive if the system cannot be modelled
by a continuous-time hidden Markov model of given size.
In our approach there is no such restriction.

We present an algorithm and show that it correctly iden-
tifies the CTMC model in the limit [8] when it is given
samples drawn from a distribution generated by a CTMC.
One technical difficulty when talking about samples drawn
from a CTMC is that traditionally CTMCs are unlabeled,
and so they only have runs, which are sequences of states
that are traversed and not traces. However, the problem is
that when samples are drawn from an implementation get-
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ting information that uniquely identifies states is expensive
and impractical, and can lead to the construction of a very
large model which does not collapse equivalent states. To
address this difficulty, we introduce the model of anEdge
Labeled Continuous-time Markov Chain(CTMCL) where
edges are labeled from a finite set of alphabet and traces are
sequences of edge labels which are given to the learning al-
gorithm.

Our algorithm is based on the state merging paradigm
introduced and used in RPNI [19] and ALERGIA [6]. The
samples provided to the learning algorithm are used to con-
struct what we call aprefix-tree continuous-time Markov
chain. Such Markov chains are the simplest CTMC that are
consistent with the samples. The algorithm then progres-
sively generalizes this model (i.e., produces models with ad-
ditional behaviors) by merging pairs of states about whose
“equivalence” the sample has evidence. Since the traces
do not have complete state information about the original
CTMC states, statistical information present in the samples
is used to distinguish states. Our key algorithmic insight is
in determining the statistical tests that can be used to con-
clude the equivalence of states with a given confidence. The
candidate states that are tested for equivalence by the algo-
rithm are done in a carefully chosen order (as in RPNI and
ALERGIA) to ensure that the algorithm runs in time poly-
nomial in sample size. The algorithm terminates when it
has tested for all possible merges. Like all algorithms that
learn in the limit, we show that this algorithm learns the cor-
rect CTMC given a sufficiently large sample. Our proof that
the algorithm learns in the limit relies on a novel method
to bound the error probability of our statistical tests. The
CTMC that the algorithm learns may be much smaller than
the implementation, since it merges all potentially equiva-
lent states, and it only generates thereachableportion of the
implementation. This can be particularly beneficial in the
context of formal verification; the running time and space
requirements of verification algorithms depend on the size
of the reachable portion of the model. We have implemented
our algorithm in Java and experimented by learning some
example systems encountered in practice.

The rest of the paper is organized as follows. We give
the preliminary definitions and notations in Section 2, fol-
lowed by the learning algorithm in Section 3. In Section 4
we prove that the learned CTMC converges to the original
CTMC in the limit. We report our initial experimental re-
sults in Section 5 and conclude in Section 6.
2. Preliminaries

We recall some basic concepts related to CTMCs. Our
presentation of this material is slightly non-standard in that
we consider CTMCs that have labels both on the edges and
the states. In what follows we assumeAP to be a finite set
of atomic propositions that are used in describing reliability
and performance constraints.

Definition 1 An Edge Labeled Continuous-time Markov
Chain(CTMCL) is a tupleM = (S, Σ, s0, δ, ρ, L) where

• S is a finite set of states,

• Σ is a finite alphabet of edge labels,

• s0 ∈ S is the initial state,

• δ : S×Σ → S is a partial function which maps a state
and an alphabet to the next state,

• ρ : S × Σ → R≥0 is a function which returns a posi-
tive real, calledrate, associated with the transition. We
assume thatρ(s, a) = 0 if and only ifδ(s, a) is not de-
fined.

• L : S → 2AP is a function which assigns to each state
s ∈ S the setL(s) of atomic propositions that are valid
in s.

A CTMCL defined as above is deterministic in the sense
that for a given states ∈ S and an alphabeta ∈ Σ the
state reached froms by the edge labeleda is unique if it
exists. Intuitively, the probability of moving from states
to states′ along the edge labeleda within time t is given
by (1 − e−ρ(s,a)t). This probability corresponds to the cu-
mulative probability of an exponential distribution with rate
ρ(s, a). For a given states, if there are more than one al-
phabeta ∈ Σ such thatρ(s, a) > 0 then there is a competi-
tion between the transitions. More precisely, for each tran-
sition s → δ(s, a) from s for which ρ(s, a) > 0, a ran-
dom time t is sampled from the exponential distribution
with rateρ(s, a). Then the transition corresponding to the
lowest sampled time is taken. The probability to move from
a states to another state, along the edgea, within t time
units i.e. the time sampled for the transition corresponding
to s → δ(s, a) is minimum, is given by

P(s, a, t) =
ρ(s, a)
E(s)

(
1− e−E(s)t

)

where E(s) =
∑

a∈Σ ρ(s, a) is the total rate at which
any transition from the states is taken. In other words,
the probability of leaving the states within t time units is
(1 − e−E(s)t). This is because the distribution for the min-
imum time among all edges is exponential with rateE(s).
Thus we can see the probability of moving from a states
along the edgea is the probability of staying at the states
for less thant time units times the probability of taking the
edgea. The probability of taking the edgea from states is
thus given by

P(s, a) =
ρ(s, a)
E(s)

WhenE(s) = 0, we defineP(s, a) = 0 for everya.
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Paths and Probability SpaceA pathτ starting at states is

a finite or infinite sequencel0
(a1,t1)−→ l1

(a2,t2)−→ l2
(a3,t3)−→ · · ·

such that there is a corresponding sequencev0
a1−→ v1

a2−→
v2

a3−→ · · · of states withs = v0, L(vi) = li, ti ∈ R≥0,
δ(vi, ai+1) = vi+1 for all i. For a pathτ from s, τ [s, i] = vi

is the ith state of the path andη[τ, s, i] = ti is the time
spent in statevi−1. A maximalpath starting at states is a
path τ starting ats such that it is either infinite or (if fi-
nite)E(τ [s, n]) = 0, wheren is the length ofτ . The set of
all maximal paths starting at states is denoted byPath(s);
the set of all (maximal) paths in a CTMCM, denoted by
Path(M), is taken to bePath(s0), wheres0 is the initial
state.

Let π = l0
a1−→ l1

a2−→ · · · ak−→ lk be a finite sequence
such that there is a sequence of statess0, s1, . . . sk such
that s0 is the initial state,L(si) = li and δ(si, ai+1) =
si+1; π[i] is used to denote statesi in the sequence cor-
responding toπ. Let I1, I2, . . . Ik be non-empty intervals
in R≥0. Then C(l0, (a1, I1), l1, . . . (ak, Ik), lk) denotes a
cylinder setconsisting of all pathsτ ∈ Path(s0) such that
τ [s0, i] = π[i] (for i ≤ k) andη[τ, s0, i] ∈ Ii. Let B be
the smallestσ-algebra onPath(s0) which contains all the
cylindersC(l0, (a1, I1), l1, . . . (ak, Ik), lk). The probability
measure overB is the unique measure inductively defined
asPath(C(l0)) = 1, if L(s0) = l0 and fork > 0 as

Prob(C(l0, (a1, I1), l1, . . . lk−1, (ak, Ik), lk))
= Prob(C(l0, (a1, I1), l1, . . . lk−1))·

P(sk−1, ak) · (e−E(sk−1)` − e−E(sk−1)u
)

where` = inf Ik andu = sup Ik, andsk−1 = π[k − 1]

3. Learning Edge Labeled CTMCs
The learning problem considered in this paper falls un-

der the category of stochastic grammatical inference [6, 16,
20, 5]. In stochastic grammatical inference, samples are
taken from a stochastic language. Given these samples the
stochastic language is learned by finding statistical regular-
ity among the samples. The parameters for the different dis-
tributions determining the language are also estimated from
the relative frequencies of the samples. For most of these
learning algorithms it has been shown that they can learn
the stochastic language in thelimit i.e. if the number of sam-
ples tends towards infinity then the learned language is the
same as the language that generated the sample. All these al-
gorithms essentially follow the same technique: they build
a prefix-tree automata which stores exactly the same sam-
ples and then they test and merge possibly equivalent states.

We present the algorithm for learning edge labeled
CTMCs. We first consider the issue of how to gener-
ate and reason about behaviors (visible execution traces) of
finite length, given that traditionally the behaviors are as-
sumed to be of infinite length. We then present some con-
cepts that are used in the algorithm. After this we present

the algorithm, whose proof of correctness appears in Sec-
tion 4.

3.1. Generating Samples
In this paper we consider the problem of learning

CTMCL from examples generated by simulating a sys-
tem under investigation. The wayCTMCL is formally
defined in Section 2, all behaviors aremaximal execu-
tions, and maximal executions are typically infinite. This
creates a technical difficulty namely what the samples ap-
propriate for learning are. To overcome this problem
we define a finitary version ofCTMCL called Fini-
tary Edge Labeled Continuous-time Markov Chains
(CTMC f

L) which is a CTMCL, with a non-zero stop-
ping probability in any state. This allows one to generate
and reason about behaviors of finite length. It is impor-
tant to note however, that use ofCTMC f

L is merely a
technical tool. Our primary goal is to learn the under-
lying CTMCL and as we shall see in Proposition 3,
we can achieve this by learning theCTMC f

L. More-
over in this effort, the specific value of the stopping
probability that we use does not influence the correct-
ness of the result. We present the formal definition of a
CTMC f

L.

Definition 2 A Finitary Edge Labeled Continuous-time
Markov Chain(CTMC f

L) is a pair F = (M, p) where
M is a CTMCL and p denotes the stopping probabil-
ity in any states ofM
There exists a trivial surjectionΘ: (M, p) 7→ M.

A finite sequenceτ = l0
(a1,t1)−→ l1

(a2,t2)−→ l2 · · · (an,tn)−→ ln
is a path of theCTMC f

L F = (M, p) starting from a states
iff it is path (not necessarily maximal) ofM starting froms.
The set of paths starting from states is denoted byPath(s).
The ith state of pathτ from s and the time spent in the
ith state are defined similarly, and are denoted byτ [s, i]
and η[τ, s, i], respectively.Theσ-field corresponding to a
CTMC f

L is defined analogously to that of aCTMCL. For
the pathτ from states, the probability that theCTMC f

L ex-
hibits such a path is given by

ProbF (τ, s) =
(1− p) ·P(τ [s, 0], a1, t1) · (1− p) ·P(τ [s, 1], a2, t2)
· · · (1− p) ·P(τ [s, n− 1], an, tn) · p

Given aCTMCL we extend it to aCTMC f
L by associat-

ing a known probabilityp⊥ (say p⊥ = 0.1) as the stop-
ping probability. TheCTMC f

L thus obtained is then simu-
lated to get a multi-set of finite samples which we treat as
the multi-set of examples for learning. In our algorithm we
will assume that we are given a finite multi-set of examples
from aCTMCL M extended with a known stopping prob-
ability p to aCTMC f

L. Our goal will be to learnM from
the multi-set of examples.
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Note that for a given implemented system, which can be
seen as a software program, an example can be generated
in the following way. Lets0 be the initial state of the pro-
gram. Then addl0 = L(s0) to the example sequence. We set
a probabilityp0 = 0.1. With probabilityp0 return the cur-
rent sequence as an example. With probability1 − p0 ex-
ecute the next instruction of the program. If the execution
of the instructionai takes timeti and results in the change

of state fromsi−1 to si then add
(ai,ti)−→ L(si) to the exam-

ple sequence.

3.2. Definitions
We next define the notations and the concepts that

we will use to describe the learning algorithm. Given a
CTMCL M = (S, Σ, s0, δ, ρ, L) we can extend the defini-
tion of δ as follows:

δ(s, λ) = s whereλ is the empty string
δ(s, xa) = δ(δ(s, x), a) wherex ∈ Σ∗ anda ∈ Σ
δ(s, a) = ⊥ if δ(s, a) is not defined
δ(s, xa) = ⊥ if δ(s, x) = ⊥ or δ(δ(s, x), a) is undefined

For a given exampleτ = l0
(a1,t1)−→ l1

(a2,t2)−→ l2 · · · (an,tn)−→
ln, let τ |Σ be the stringa1a2 . . . an. We usePr(τ) to de-
note the set{x | ∃y : xy = τ |Σ}, that is,Pr(τ) is the set
of all prefixes ofτ |Σ. Given a multi-setI+ of examples, let
Pr(I+) be the set

⋃
τ∈I+ Pr(τ). If there exists an exam-

ple l0
(a1,t1)−→ l1

(a2,t2)−→ l2 · · · (ai,ti)−→ li · · · (an,tn)−→ ln in I+

such thatx = a1a2 . . . ai then we defineL(x, I+) = li.
Let n(x, I+) be the number ofτ ∈ I+ such thatx ∈

Pr(τ) and letn′(x, I+) ben(x, I+) minus the number of
x ∈ I+. Thus n(x, I+) counts the number of examples
in I+ for which x is a prefix andn′(x, I+) is the num-
ber of examples inI+ for which x is prefix and length of

x is less than the length of the example. Forτ = l0
(a1,t1)−→

l1
(a2,t2)−→ l2 · · · (ai,ti)−→ li · · · (an,tn)−→ ln, if x = a1a2 . . . ai−1

anda = ai, thenθ(x, a, τ) = ti and0 otherwise; in other
words,θ(x, a, τ) denotes the time spent in the state reached
afterx in τ . We definêθ(x, I+) andp̂(x, a, I+) as follows:

θ̂(x, I+) =

{ ∑
a∈Σ

∑
τ∈I+ θ(x,a,τ)

n′(x,I+) if n′(x, I+) > 0
0 otherwise

p̂(x, a, I+) =

{
n(xa,I+)
n′(x,I+) if n′(x, I+) > 0
0 otherwise

Note thatθ̂(x, I+) gives an estimate of1/E(s) where
s is the stateδ(s0, x) and p̂(x, a, I+) gives an estimate of
P(s, a).

Given a multi-setI+ of examples we first construct a
prefix-treeCTMC f

L defined as follows.

Definition 3 The prefix-tree CTMC f
L for a multi-

set of examplesI+ is a CTMC f
L PCTMC (I+) =

((S, Σ, s0, δ, ρ, L), p), where

1. S = Pr(I+)

2. s0 = λ (the empty string)

3. δ(x, a) =
{

xa if xa ∈ S
⊥ otherwise

4. E(x) = 1/θ̂(x, I+)

5. P(x, a) = p̂(x, a, I+)

6. ρ(x, a) = P(x, a)E(x)

7. L(x) = L(x, I+)

8. p is the stopping probability associated with the
CTMC f

L that generated the examples.

A PCTMC (I+) is anCTMC f
L consistent with the ex-

amples inI+ in the sense that for every example inI+ there
is a corresponding path in theCTMC f

L.
The learning algorithm proceeds by generalizing the ini-

tial guess,PCTMC (I+), by mergingequivalentstates. The
formal definition of when two states are equivalent is now
presented.

Definition 4 Given aCTMCL M = (S, Σ, s0, δ, ρ, L), a
relationR ⊆ S × S is said to bestable relationif and only
if for anys, s′ ∈ S such that(s, s′) ∈ R, we have

a) L(s) = L(s′)

b) E(s) = E(s′)

c) for all a ∈ Σ if there existst ∈ S such thatδ(s, a) = t
then there exists at′ ∈ S such thatδ(s′, a) = t′,
P(s, a) = P(s′, a) and(t, t′) ∈ R, and conversely

d) for all a ∈ Σ if there existst′ ∈ S such thatδ(s′, a) =
t′ then there exists at ∈ S such thatδ(s, a) = t,
P(s′, a) = P(s, a) and(t′, t) ∈ R.

Two statess ands′ in CTMCL M are said to beequivalent
(s ≡ s′) if and only if there is a stable relationR such that
(s, s′) ∈ R.

The correctness of learning algorithm crucially depends
on the fact that merging two equivalent states results in a
CTMCL that generates the same distribution. But before
we state and prove this formally we make a simple observa-
tion about equivalent states.

Lemma 1 Let F = (M, p) be anCTMC f
L and s ≡ s′.

τ is a path starting froms iff τ is a path starting froms′.
MoreoverProbF (τ, s) = ProbF (τ, s′).

Proof: Let τ = l0
(a1,t1)−→ l1

(a2,t2)−→ l2 · · · (an,tn)−→ ln be a path
starting froms. There is a sequencev0

a1−→ v1
a2−→ · · · vn

of states such thatv0 = s. Sinces ≡ s′ andδ(s, a1) = v1,
there must be a stateu1 such thatδ(s′, a1) = u1 and
u1 ≡ v1. Continuing inductively, we can construct a se-
quence of statesu0

a1−→ u1
a2−→ · · ·un, such thatu0 = s′
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andui ≡ vi. Henceτ is also a path starting froms′. Fur-
thermore, sinceui ≡ vi, we know thatE(ui) = E(vi),
andP(ui, ai+1) = P(vi, ai+1) and henceProbF (τ, s) =
ProbF (τ, s′). For paths starting froms′, the argument is
symmetric.

Definition 5 TwoCTMC f
LsF andF ′ with initial statess0

ands′0, respectively, are said to beequivalentif Path(F) =
Path(F ′) and for everyτ ∈ Path(F), ProbF (τ, s0) =
ProbF ′(τ, s′0).

For a CTMCL M = (S, Σ, s0, δ, ρ, L), the minimal
CTMCL is defined to be the quotient ofM with respect
to the equivalence relation on states. Formally, the minimal
CTMCL isM′ = (S′, Σ, s′0, δ

′, ρ′, L′) such that

1. S′ are the equivalence classes ofS with respect to≡,

2. s′0 = [s0], the equivalence class ofs0

3. δ′([s], a) = [s′] iff δ(s, a) = s′

4. ρ′([s], a) = ρ(s, a) and

5. L′([s]) = L(s)

Observe, that this is well-defined, because of the way≡ is
defined.

Proposition 2 Let F = (M, p) be a CTMC f
L. Then

F ′ = (M′, p) is equivalent toF whereM′ is the mini-
malCTMCL corresponding toM
Proof: The proof is a straightforward consequence of the
definition of the minimalCTMCL M′. It relies on the ob-
servation that for a pathτ , v0

a1−→ v1
a2−→ · · · vn is a se-

quence of states visited inM iff [v0]
a1−→ [v1]

a2−→ · · · [vn]
in M′. Furthermore, sinceρ′([s], a) = ρ(s, a), the proba-
bilities are also the same.

We conclude the section with the observation that for
equivalentCTMC f

Ls with the same stopping probability,
the associatedCTMCLs define the same probability space
on the set of paths. This next proposition together with
Proposition 2 shows that given anyCTMCL, we can al-
ways construct a smaller equivalentCTMCL by merging
equivalent states, thus providing mathematical justification
for our algorithm.

Proposition 3 LetF = (M, p) andF ′ = (M′, p) be two
CTMC f

Ls with the same stopping probabilityp. Then the
probability spaces defined byM andM′ are the same.

We skip the proof of this proposition in the interests of
space. However, we would like to point out some of the im-
portant consequences of Proposition 3. First is that if we
learn anCTMC f

L that has the same stopping probability as
the one that was used to generate the samples from the sys-
tem, then the underlyingCTMCLs are also equivalent in
terms of the distribution on traces they generate. Second,
the specific value of the stopping probability plays no role

in proving the correctness of our learning algorithm. It may
have an effect in terms of the length of traces produced and
the number of traces needed to learn. The right choice of
the stopping probability is thus one that is determined by
the empirical constraints that one is working in.

3.3. Learning Algorithm

algorithm learnCTMC
Input: I+ : a multi-set of examples

α : confidence level
Output: CTMCL

begin
A ← PCTMC (I+)
for i = 2 to |A| do

for j = 1 to i− 1 do
if compatible(si, sj , α, I+) then

A ← merge(A, si, sj)
A ← determinize(A)
exit j-loop

endif
return A

end
Figure 1. Algorithm to learnCTMC f

L

The algorithm for CTMCL learning, described
in Figure 1, first constructs the prefix-treeCTMC f

L

A = PCTMC (I+) from the multi-set of examplesI+. We
assume that the states inA are ordered in lexicographic or-
der.1 Let |A| be the number of states inA. The algorithm
then tries to merge pairs of states inA that are equiva-
lent in a quadratic loop, i.e. for alli from 1 to |A| the al-
gorithm tries to mergesi with the statess1, s2, . . . , si−1

in that order. If two statessi and sj are equivalent they
are merged using the methodmerge(A, si, sj). The small-
est state in a block of merged states is used to represent the
whole block. After every merge of statesi andsj the result-
ing CTMC f

L may be non-deterministic. However, equiva-
lence ofsi andsj implies that each successor ofsi is equiv-
alent to the corresponding successor ofsj . This means
that those successors should also get merged. To en-
sure this the methoddeterminize(A) described in Fig-
ure 2 is invoked which removes the non-determinism in
A by a sequence of merges. After every merge the prob-
abilities P(s, a) and the ratesE(s) are re-computed for
every state as there is more information available at ev-
ery state. The algorithm stops when no more merging is
possible.

1 For Σ = {a, b}, the lexicographic ordering is
λ, a, b, aa, ab, ba, bb, aaa, . . .
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algorithm determinize
Input: A
Output: CTMCL

begin
while(∃s, a ∈ A : s′, s′′ ∈ δ(s, a)) do

A ← merge(A, s′, s′′)
return A

end
Figure 2. determinizeremoves non-determinism

Now the observations Proposition 2 and 3 together sug-
gest that the above algorithm would be correct if indeed we
could test for equivalence of two states. This, however, is
not the case, asA is built from experimental data. However,
we approximately check the equivalence of two states recur-
sively through statistical hypothesis testing [15, 18]. We say
that two statessi andsj are compatible, denoted bysi ≈ sj ,
if L(s) = L(s′), E(s) ∼ E(s′), for all a ∈ Σ, P(si, a) ∼
P(sj , a), and δ(si, a) ≈ δ(sj , a), whereE(s) ∼ E(s′)
means thatE(s) andE(s′) are equal within some statistical
uncertainty and similarly forP(si, a) ∼ P(sj , a). The deci-
sion for compatibility is made using the functioncompatible
described in Figure 3.

algorithm compatible
Input: x, y, I+, α
Output: boolean
begin

if L(x, I+) 6= L(y, I+) then
return FALSE

if differentExpMeans(θ̂(x, I+), n′(x, I+),

θ̂(y, I+), n′(y, I+), α) then
return FALSE

for ∀a ∈ Σ
if differentBerMeans(p̂(x, a, I+), n(xa, I+),

p̂(y, a, I+), n(ya, I+), α) then
return FALSE

if not compatible(δ(x, a), δ(y, a), I+, α) then
return FALSE

endfor
return TRUE

end

Figure 3. compatiblechecks if two two states are ap-
proximately equivalent

The check forE(si) ∼ E(sj) is performed by the func-
tion differentExpMean, described in Figure 4, which uses
statistical hypothesis testing. The function actually checks
if the means1/E(si) and1/E(sj) of two exponential dis-
tributions are different. Given two exponential distributions
with meansθ1 andθ2 we want to check ifθ1 = θ2 against

the fact fact thatθ1 6= θ2. This is equivalent to checking
θ1
θ2

= 1 against the fact thatθ1
θ2
6= 1. In statistical terms

we call θ1
θ2

= 1 as the null hypothesis (denoted byH0)

and θ1
θ2
6= 1 as the alternate hypothesis (denoted byHa).

To test the hypothesisH0 againstHa we drawn1 samples,
sayx1, x2, . . . , xn1 , from the exponential distribution with
meanθ1 andn2 samples, sayy1, y2, . . . , yn2 , from the ex-
ponential distribution with meanθ2. We estimateθ1 andθ2

by θ̂1 =
∑n1

i=1 xi

n1
and θ̂2 =

∑n2
i=1 yi

n2
respectively. Then we

use the ratioθ̂1

θ̂2
to checkH0 againstHa as follows:

We can say thatx1, x2, . . . , xn1 are random samples
from the random variablesX1, X2, . . . , Xn1 where each
Xi has an exponential distribution with meanθ1. Similarly,
y1, y2, . . . , yn2 are random samples from the random vari-
ablesY1, Y2, . . . , Yn2 where eachYi has an exponential dis-
tribution with meanθ2. Then it can be shown by methods
of moment generating function that the random variables
2

∑
Xi

θ1
and 2

∑
Yi

θ2
haveχ2(2n1) andχ2(2n2) distributions

respectively. This implies that the ratio(2
∑

Xi)/(2n1θ1)
(2

∑
Yi)/(2n2θ2)

or
∑

Xi/n1
θ1

/
∑

Yi/n2
θ2

hasF distribution with (2n1, 2n2) de-

grees of freedom. Assuming thatH0 holds
∑

Xi/n1∑
Yi/n2

has
F (2n1, 2n2) distribution. Let us introduce the random vari-
ablesΘ1 andΘ2 whereΘ1 =

∑
Xi

n1
andΘ2 =

∑
Yi

n2
. Our

experimental value ofθ̂1

θ̂2
gives a random sample from the

random variableΘ1
Θ2

. Let the random variableZ = Θ1
Θ2

θ2
θ1

.
ThenZ hasF distribution with(2n1, 2n2) degrees of free-
dom. Givenθ1 = θ2, from Chebyshev’s inequality, we get

Prob
[∣∣∣∣

Θ1

Θ2
− µ

∣∣∣∣ ≥
σ√
α

]
= Prob

[
|Z − µ| ≥ σ√

α

]
≤ α

whereµ = n2
n2−1 is the mean ofF (2n1, 2n2) and σ =√

n2
2(n1+n2−1)

n1(n2−1)2(n2−2) its standard deviation. Thus, takingř =
µ− σ√

α
andr̂ = µ + σ√

α
, we get

Prob
[
ř ≤ Θ1

Θ2
≤ r̂

]
> 1− α (1)

If θ̂1

θ̂2
> 1 then we calculate the probability of our observa-

tion givenθ1 = θ2, called thep-value, as

p-value= Prob

[
Θ1

Θ2
>

θ̂1

θ̂2

]
= Prob

[
Z >

θ̂1

θ̂2

]

Similarly, if θ̂1

θ̂2
< 1, thep-value is given by

p-value= Prob

[
Θ1

Θ2
<

θ̂1

θ̂2

]
= Prob

[
Z <

θ̂1

θ̂2

]

If the calculatedp-value in both cases together is less thanα
we say we have enough evidence to reject the null hypoth-
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esisθ1 = θ2. This is equivalent to say that we rejectH0 if
θ̂1

θ̂2
/∈ [ř, r̂].

algorithm differentExpMeans
Input: θ̂1, n1, θ̂2, n2, α
Output: boolean
begin

if n1 = 0 or n2 = 0 then
return FALSE

return θ̂1
θ̂2

/∈ [ř, r̂]

end

Figure 4. differentExpMeanschecks if two estimated
exponential means are different; the parameterα is
used in calculatinǧr andr̂

The check forP(si, a) ∼ P(sj , a) is performed by the
function differentBerMeans(see Figure 5) using Hoeffd-
ing bounds similar to that in [6]. The method checks if the
meansp1 andp2 of two Bernoulli distributions are statisti-
cally different or not. Iff1 tries are 1 out ofn1 tries from
a Bernoulli distribution with meanp1 andf2 tries are 1 out
of n2 tries from a Bernoulli distribution with meanp2, then
we say thatp1 andp2 are statistically same if

∣∣∣∣
f1

n1
− f2

n2

∣∣∣∣ <

√
1
2

log
2
α

(
1√
n1

+
1√
n2

)

Note that it is possible to use other tests, such as multi-
nomial test [16], to compare two means of Bernoulli distri-
butions.

algorithm differentBerMeans
Input: p̂1, n1, p̂2, n2, α
Output: boolean
begin

if n1 = 0 or n2 = 0 then
return FALSE

return |p̂1 − p̂2| >
√

1
2

log 2
α

(
1√
n1

+ 1√
n2

)

end

Figure 5. differentBerMeanschecks if two estimated
Bernoulli means are different

3.4. Complexity
The worst case running complexity of the algorithm is

cubic in the sum of the length of all samples. However, in
our experiments we found that the running time grows al-
most linearly with the sum of length of sample lengths. The
parameterα influences the size of the sample needed for

converging on the right model. The exact dependence of
sample size onα is an open problem that needs investiga-
tion.

4. Learning in the Limit
In order to prove correctness of our algorithm, we need

to show that theCTMCL that the learning algorithm pro-
duces is eventually equivalent to the model that was used
to generate the samples. Our proof proceeds in two steps.
First we show that the learning algorithm will eventually
be presented what is usually called astructurally complete
sample. A structurally complete sampleI+ is a multi-set of
traces such that the traces visit every (reachable) state and
every transition. More formally, for every states of the tar-
getCTMCL, there is a traceτ ∈ I+ such thats is one of
the states visited when traceτ was produced, and for every
(reachable) transition(s, a) there is a traceτ ∈ I+ such that
(s, a) is traversed byτ . Observe that ifI+ ⊆ I ′+ andI+

is structurally complete thenI ′+ is also structurally com-
plete. The second step of the proof involves showing that
if we keep adding samples to a structurally complete set,
then we will eventually learn the rightCTMCL. These two
steps together show that our algorithm will learn the target
CTMCL in the limit [8].

The first thing to observe that for anyCTMCL M there
is a finite structurally complete sample set. LetΓ be a struc-
turally complete sample set and letF = (M, p) be a
CTMC f

L (with any stopping probabilityp). Now observe
that for anyτ ∈ Γ, p = ProbF (τ, s0) is finite and non-
zero. Thus, the probability thatτ is not among the firstk
samples generated byF is (1 − p)k, and this tends to0 as
k increases. Hence, every string inΓ is eventually gener-
ated, and so the sample given to the learning algorithm is
eventually structurally complete.

The main challenge in the proof of correctness is to
show that once we have a structurally complete sample,
we will eventually learn the rightCTMCL. In what fol-
lows, we simply assume that whenever we refer to a sam-
ple I+, we mean thatI+ is structurally complete. Ob-
serve that for a (structurally complete) sampleI+, the right
CTMCL is one that results from merging equivalent states
of PCTMC (I+). However, since we can only check com-
patibility (and not exact equivalence) the only errors the al-
gorithm makes can result when we check the compatibility
of two states. There are two types of errors in this context.

1. Type I error : compatibility returns false when two
states are actually equivalent, and

2. Type II error : compatibility returns true when two
states are not equivalent

Our goal is to reduce these two errors as much as possible.
We show that ass = |I+| goes to infinity, the global contri-
bution of these two errors tend to zero. Observe that, ift is
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the number of states inPCTMC (I+), thent cannot grow
as fast ass does. Ifm be the number of states in the target
CTMC f

L, then the number of merges performed by the al-
gorithm before giving the correctCTMC f

L is t−m. Further
recall that thep-value of the tests performed by the func-
tions differentExpMeansanddifferentBerMeansis at most
α. Hence, global Type I error,eα is bounded byα(|Σ|+1)t.
This error can be made negligible and independent of the
size of thePCTMC (I+) by taking α = kt−1 for some
very small constantk.

Thus, by makingα small we can ensure that the learning
algorithm always merges equivalent states. Then the errors
of the learning algorithm can be confined to those resulting
from merging inequivalent states. In the absence of Type I
errors, the learning algorithm always outputs aCTMC f

L,
whose states form a partition of the targetCTMC f

L. Thus
an upper bound on Type II errors is given by the probabil-
ity that an error occurs when comparing two states of the
targetCTMC f

L. Taking β to be the probability of merg-
ing two non-equivalent states, we get the Type II error
eβ ≤ 1

2βm(m− 1)(|Σ|+ 1). Thus if we show thatβ tends
to 0 as the sample size grows, then we know that the algo-
rithm will eventually not make any errors.

Observe that the probability of merging a pair of non-
equivalent states is bounded by the probability of either
differentExpMeansor differentBerMeansreturning TRUE
when the actual means are different. Hence, in order to show
that the learning algorithm eventually gives the right an-
swer, we need to show that the probability thatdifferent-
ExpMeansanddifferentBerMeansmake an error when the
means are different tends to 0. We will consider each of the
procedures separately and bound their error.
CasedifferentExpMeans: Assume thatr = θ2

θ1
6= 1, i.e.,

E(si) 6= E(sj). Recall that for a givenα, takingř = µ− σ√
α

andr̂ = µ+ σ√
α

, whereµ is the mean andσ the standard de-

viation of F (2n1, 2n2), we say that an observationθ̂1

θ̂2
pro-

vides evidence forE(si) ∼ E(sj) when θ̂1

θ̂2
∈ [ř, r̂]. Now,

we have

Prob
[
ř ≤ Θ1

Θ2
≤ r̂

]
= Prob

[
řr ≤ Θ1

Θ2

θ2
θ1
≤ r̂r

]

= Prob [řr ≤ Z ≤ r̂r]

where, Z has distributionF (2n1, 2n2). Once again by
Chebyshev’s inequality, we know that

Prob

[
|Z − µ| ≥ σ√

β

]
≤ β

Thus, ifrř ≥ µ + σ√
β

or rr̂ ≤ µ− σ√
β

then

Prob

[
ř ≤ Θ1

Θ2
≤ r̂

]
= Prob [řr ≤ Z ≤ r̂r] ≤ β

Taking

β =
(

σ
√

α

|r − 1|µ√α + rσ

)2

we observe that ifr < 1 thenrř ≥ µ + σ√
β

and if r ≥ 1
thenrr̂ ≤ µ − σ√

β
. Finally, plugging in the values ofµ, σ

andα, we observe thatβ tends to0.
Case differentBerMeans: Let P(si, a) = p1 6= p2 =
P(sj , a). Let F1 be a random variable that is the mean of
n1 Bernoulli trials with meanp1 and F2 the mean ofn2

Bernoulli trials with meanp2. Recall that we sayP(si, a) ∼
P(sj , a) if some observation̂f1 of variableF1 and observa-
tion f̂2 of F2 are such that|f̂1 − f̂2| < ε where

ε =

√
1

2
log

2

α

(
1√
n1

+
1√
n2

)

We will try to bound the probability that this happens. Ob-
serve thatE(F1 − F2) = p1 − p2 and

Var(F1 − F2) = Var(F1) + Var(F2)

= p1(1−p1)
n1

+ p2(1−p2)
n2

≥ 1
4n1

+ 1
4n2

Now β = Prob(|F1−F2| < ε) < Prob(|(F1−F2)−(p1−
p2)| > |p1 − p2| − ε). By Chebyshev’s inequality,β ≤ B
where

B =





Var(F1−F2)

(|p1−p2|−ε)2
if ε < |p1 − p2| and
Var(F1 − F2) < ((p1 − p2)− ε)2

1 otherwise

First observe thatn1 andn2 grow linearly ass = |I+| in-
creases, and so even ifα is kt−1 as needed in order to elim-
inate Type I errors, sincet is bounded bys, ε tends to0 ass
grows. NextVar(F1−F2) also tends to0 ass grows. Hence
B vanishes withs, proving that in the limit Type II errors
are eliminated.

5. Tool and Experiments
We have implemented the learning algorithm in Java as

a sub-component of the toolVESTA (Verification based on
Statistical Analysis).2 The tool takes a multi-set of examples
generated from the simulation of a system having an un-
knownCTMCL model. Based on these examples the tool
learns the underlyingCTMCL for a given value ofα. The
learned model can be used for verification of CSL formulas
either using the statistical model-checker ofVESTA [21] or
other model-checkers such as PRISM [17], ETMCC [12],
Ymer [24] etc. We tested the performance of our tool on
severalCTMCL models. For eachCTMCL model we per-
formed discrete-event simulation to get a large number of
examples and then learned aCTMCL based on these exam-
ples. Finally we checked if the learnedCTMCL is equiva-
lent as the originalCTMCL, that generated the examples.
We found that the learnedCTMCL is equivalent to the
original CTMCL in all our experiments provided that the
number of samples is large enough. In all our experiments
we assumed that the set of atomic propositions at any state

2 Available fromhttp://osl.cs.uiuc.edu/ ∼ksen/vesta/
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are same. This is assumed to show the working of the statis-
tical tests. If we take atomic propositions into consideration
then the learning becomes faster because atomic proposi-
tions will be sufficient in distinguishing certain states. We
next report the results of our experiments performed on a
Pentium III 1.2GHz laptop with 620 MB SDRAM.
Symmetric CTMC The CTMCL in Figure 6, which is
carefully selected, contains four states. The probability of
taking the edges labeleda and b from the states0 and 2
are same; however, the total rates at which transitions take
place from the two states are different. Therefore, to distin-
guish these two states comparison of the total rates is re-
quired. Similar is the case for states1 and3. On the other
hand, the total rates for the states0 and1 are same; how-
ever, the probability of taking the edgesa andb are different
which is used to distinguish the two states. The same is true
for the states2 and3. Thus this example shows the effec-
tiveness of both the functionsdifferentBerMeansanddiffer-
entExpMeansduring learning. We use theCTMCL to gen-
erate samples which are then used to learn aCTMCL. We
found that for more than 600 samples andα = 0.0001 the
CTMCL learned is same as the originalCTMCL.

0

3 2

1

a, rate = 5 

b, rate = 3 

b, rate = 10 

b, rate = 20 
a, rate = 24 

a, rate = 12

b, rate = 6 

a, rate = 10

Figure 6. Symmetric CTMC

Triple Modular Redundant System Our next example is
theCTMCL in Figure 7 representing the model of aTriple
Modular Redundant System(TMR). The example is taken
from [10, 2]. We ignore the atomic propositions that are
true at each state to show the effectiveness of our statisti-
cal test. Although we generated the samples through the dis-
crete event simulation of theCTMCL in Figure 7, we can
as well assume that the samples are coming from the ac-
tual running system. In figure 7 we plot the average number
of states in the learnedCTMCL and time taken in learning
against the number of samples used in learning. The number
of states converges to five when the sample is large enough.
The time taken for learning grows almost linearly with the
number of samples. Withα = 0.0001 and 1000 samples
the algorithm learns the sameCTMCL in less than 2 sec-

onds. For small number of samples, due to lack of sufficient
information, the algorithm tends to generalize more result-
ing in less number of states in the learnedCTMCL.

Tandem Queuing Network In this more practical example
we considered a M/Cox2/1-queue sequentially composed
with a M/M/1-queue. This example is taken from [13]. For
N = 3, whereN denotes the capacity of the queues, the
algorithm learned aCTMCL model with15 states. How-
ever, the number of samples required in this case to learn
the underlyingCTMCL is quite large (around 20,000).
This particular experiment suggests that learning underly-
ing CTMCL for large systems may require a large number
of samples. Therefore, a more effective technique would be
to verify the approximate model learnt from small number
of samples. However, because the model learnt is approxi-
mate, the result of verification would also be approximate.
This suggests that the confidence in verification should be
quantified reasonably. How to do such quantification re-
mains an open problem.

6. Conclusion and Future Work
We have presented a novel machine-learning algo-

rithm to learn the underlying edge-labeled continuous-time
Markov chains of deployed stochastic systems for which
we do not know the model before-hand. An impor-
tant aspect of the learning algorithm is that it can learn
a formal stochastic model from the traces generated dur-
ing testing or executing the deployed system. The learnt
CTMCL can be used to verify the deployed systems us-
ing existing probabilistic model-checking tools. More-
over, one can also check if the learnt model isF -bisimilar
[2, 3] to the model given in a specification. This al-
lows us to check if the deployed system correctly imple-
ments a specification with respect to a set of formulas
F . Finally, we provide an implementation of the algo-
rithm which can be used with various other tools.

One of the limitations of our work is that it may not
scale up for systems having large underlying CTMC model.
Therefore, one needs to develop techniques that can per-
form approximate verification as the model is learnt. The
accuracy of such verification technique should increase with
the increase in the number of samples. The difficult part in
developing such an approach is to correctly quantify the
confidence (or accuracy) in verification. Such a technique
will make verification of “black-box” systems a very prac-
tical approach that can co-exist with testing based on dis-
crete event simulation.
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