Learning Continuous Time Markov Chains from Sample Executions

Koushik Sen, Mahesh Viswanathan, Gul Agha
Department of Computer Science
University of lllinois at Urbana Champaign
{ksen,vmahesh,agha }@cs.uiuc.edu

Abstract An approach that tries to leverage the benefits of formal

Continuous-time Markov Chains (CTMCs) are animpor- analysis - usually done in the design phase - to the post-
tant class of stochastic models that have been used to mOthpIementation phase, iarning the model from sam-
and analyze a variety of practical systems. In this paper we pje executions of the system and then formally verifying
present an algorithm to learn and synthesize a CTMC modelthe |earnt model against the design specification. This ap-
from sample executions of a system. Apart from its theoret-proach has been fruitfully used to model-check unknown,
ical interest, we expect our algorithm to be useful in veri- black-boxsystems [9] and to learn unknown environments
fying black-box probabilistic systems and in composition- g assist in compositional verification of systems [7]. Both
ally verifying stochastic components interacting with un- these efforts apply to non-deterministic, discrete systems
known environments. We have implemented the algorithmang have not been extended to more general stochastic sys-
and found it to be effective in learning CTMCs underlying tems. While there are several machine learning algorithms
practical systems from sample runs. on grammatical inference [6, 1, 8, 19, 5] that have been
1. Introduction successfully applied to pattern recognition, speech recog-

. . . nition, natural language processing and several other do-
Stochastic models such as continuous-time Markov . . : X
. X mains, there are no algorithms in the literature that can learn
chains (CTMCs) [22] are widely used to model prac-) . .
. : the real-time, stochastic models that are typically used to
tical software systems and analyze their performance : e .
L - model systems in formal verification. In this paper, we ad-
and reliability. Before building a complex software sys- . . : .
. . dress this problem by presenting an algorithm that given ex-
tem, CTMCs are generated from higher-level speci- : . . .
N) . : ecution traces (possibly obtained by running the deployed
fications, like queueing networks, stochastic process :) .
. . system during testing) of the system, infers a CTMC model
algebra [14, 11], or stochastic Petri-nets [4]. These mod- :
o : - ..~ that could have generated the traces according to the ob-
els are then used for quantitative evaluation of reliability o
. served distribution. The learned CTMC can then be used
and performance for example to determine the through- - T .
- ; . by existing probabilistic model-checking [17, 12, 21, 24]
put of production lines, to calculate average failure time .
. i and performance evaluation tools [14, 4] for further analy-
of systems, or to find other reliability or performance bot-)
) is and thereby helping to find bugs in post-implementation
tlenecks of the system. Once a model has been validate . . .
. o . phase. The learning algorithm may also potentially be used
against performance and reliability requirements, the sys- ; - e X
S . to perform automatic compositional verification (as in [7])
tem is implemented. However, even if a model has been . N .
. . . for stochastic systems. A closely related work is given in
carefully validated, the implementation may not con-) . :
. [23] where they learn continuous-time hidden Markov mod-
form to the model. There are two potential sources of

error: first, there could be bugs introduced when trans- els to do performance evaluation. However, they fix the size

lating the design into system code, and second the es-.Of the continuous-time hidden Markov model before learn-

. . ; ing. This can be restrictive if the system cannot be modelled
timated values of various parameters used in construct- ; : . i .
. .) . by a continuous-time hidden Markov model of given size.
ing the stochastic model may differ considerably from the) .

) In our approach there is no such restriction.
actual values in the deployed system. To catch such po-
tential post-implementation problems, testing for perfor- We present an algorithm and show that it correctly iden-
mance and reliability is performed by running the system a tifies the CTMC model in the limit [8] when it is given
large number of times in the real environment and check- samples drawn from a distribution generated by a CTMC.
ing for reliability problems or performance bottlenecks. One technical difficulty when talking about samples drawn
However, because it is difficult achieve completaver- from a CTMC is that traditionally CTMCs are unlabeled,
age during testing, despite its evident importance in prac- and so they only have runs, which are sequences of states
tice, testing fails to guarantee the full correctness of athat are traversed and not traces. However, the problem is
deployed system. that when samples are drawn from an implementation get-

ting information that uniquely identifies states is expensive Definition 1 An Edge Labeled Continuous-time Markov
and impractical, and can lead to the construction of a very Chain(CTMC}) is atupleM = (S, %, s, d, p, L) where
large model which does not collapse equivalent states. To

address this difficulty, we introduce the model of adge e Sis afinite set of states,

Labeled Continuous-time Markov Chai6'TM C' 1) where
edges are labeled from a finite set of alphabet and traces are
sequences of edge labels which are given to the learning al- o 5, € $ is the initial state,

> is a finite alphabet of edge labels,

gorithm. _) _ _
Our algorithm is based on the state merging paradigm ® 0: S x 3 — Sisapartial function which maps a state
introduced and used in RPNI [19] and ALERGIA [6]. The and an alphabet to the next state,

samples provided to the learning algorithm are used to con-
struct what we call grefix-tree continuous-time Markov
chain Such Markov chains are the simplest CTMC that are
consistent with the samples. The algorithm then progres-
sively generalizes this model (i.e., produces models with ad-
ditional behaviors) by merging pairs of states about whose e L: S — 247 is a function which assigns to each state
“equivalence” the sample has evidence. Since the traces s € Sthe setl(s) of atomic propositions that are valid
do not have complete state information about the original in s.

CTMC states, statistical information present in the samples

is used to distinguish states. Our key algorithmic insightis A CTMC' ., defined as above is deterministic in the sense
in determining the statistical tests that can be used to con-that for a given state € S and an alphabet € ¥ the
clude the equivalence of states with a given confidence. Thestate reached from by the edge labeled is unique if it
candidate states that are tested for equivalence by the algoeXists. Intuitively, the probability of moving from state
rithm are done in a carefully chosen order (as in RPNI and to states” along the edge labeled within time ¢ is given
ALERGIA) to ensure that the algorithm runs in time poly- by (1 — e~?{=*)"). This probability corresponds to the cu-
nomial in Samp|e size. The a|gorithm terminates when it mulative probablllty of an eXponential distribution with rate
has tested for all possible merges. Like all algorithms that (s, @). For a given state, if there are more than one al-
learn in the limit, we show that this algorithm learns the cor- phabeta € X such thap(s, a) > 0 then there is a competi-
rect CTMC given a sufficiently large sample. Our proof that tion between the transitions. More precisely, for each tran-
the algorithm learns in the limit relies on a novel method Sition s — d(s,a) from s for which p(s,a) > 0, a ran-

to bound the error probability of our statistical tests. The dom timet is sampled from the exponential distribution
CTMC that the algorithm learns may be much smaller than With rate p(s, a). Then the transition corresponding to the
the implementation, since it merges all potentially equiva- lowest sampled time is taken. The probability to move from
lent states, and it only generates thachableportion of the @ states to another state, along the edgewithin ¢ time
implementation. This can be particularly beneficial in the units i.e. the time sampled for the transition corresponding
context of formal verification; the running time and space 10 s — d(s, a) is minimum, is given by

requirements of verification algorithms depend on the size

of the reachable portion of the model. We have implemented P(s,a,t) = pls, a) (1 _ efE(s)t>

our algorithm in Java and experimented by learning some E(s)

example systems encountered in practice. _)

The rest of the paper is organized as follows. We give Where E(s) = 3,5 p(s,a) is the total rate at which
the preliminary definitions and notations in Section 2, fol- 1Y transition from the state is taken. In other words,
lowed by the learning algorithm in Section 3. In Section 4 e protP)]ablllty of leaving the statewithin ¢ time units is
we prove that the learned CTMC converges to the original (1 = ¢~ (*)1). This is because the distribution for the min-

CTMC in the limit. We report our initial experimental re- Imum time among all edges is exponential with ri).
sults in Section 5 and conclude in Section 6. Thus we can see the probability of moving from a state

2 Preliminaries along the edge is the probability of staying at the state
for less thart time units times the probability of taking the
We recall some basic concepts related to CTMCs. Our edgea. The probability of taking the edgefrom states is
presentation of this material is slightly non-standard in that thus given by

e p: S x ¥ — Ry is a function which returns a posi-
tive real, calledrate associated with the transition. We
assume that(s,a) = 0 if and only ifd(s, a) is not de-
fined.

we consider CTMCs that have labels both on the edges and p(s,q)

the states. In what follows we assut@ to be a finite set P(s,a) = EQ)

of atomic propositions that are used in describing reliability

and performance constraints. WhenE(s) = 0, we defineP(s,a) = 0 for everya.

Paths and Probability Spac@& path starting at state is

a finite or infinite sequencigy (a1.81) I (a2.t2) Iy (asits) .
such that there is a corresponding sequence= v; —
of states withs = vy, L(v;) = l;, t; € Rxo,
0(vs,ai41) = vi4q foralli. For a pathr from s, 7[s, i] = v;
is thei*! state of the path ang[r, s,i] = ¢; is the time
spent in state,;_;. A maximalpath starting at state is a
path r starting ats such that it is either infinite or (if fi-
nite) E(r[s, n]) = 0, wheren is the length ofr. The set of
all maximal paths starting at statés denoted byPath(s);
the set of all (maximal) paths in a CTM@&1, denoted by
Path(M), is taken to bePath(sg), wheres is the initial
state.

Letm = Iy -5 I, =2 ... 25 [, be a finite sequence
such that there is a sequence of staigss,...s, such
that sq is the initial state,L(s;) = [; and(s;,a;41) =
si+1; 7[i] is used to denote statg in the sequence cor-
responding tor. Let 11, I, ... I;; be non-empty intervals
in R>o. ThenC(lo, (a1,11),l1,. .. (ax, Ix), ;) denotes a
cylinder setconsisting of all paths € Path(sg) such that
T[s0,4] = w[i] (for i < k) andnr,so,i] € I;. Let B be
the smallest-algebra onPath(sg) which contains all the
CylinderSC(lo, (al, Il), li,... (ak, Ik), lk) The probablllty

as
Vg — -+

measure oveB is the uniqgue measure inductively defined

asPath(C(lp)) =1, if L(sg) = lp and fork > 0 as

PT’Ob(C(Zo, (al,Il), ll, . lk—la (ak,lk), lk))
= PT’Ob(C(lO, (al, Il), ll, e lk—l))'
P(sk-1,ax) - (e’E(S’“*I)E - e’E(Skfl)“)

wherel = inf I}, andu = sup Iy, ands,_, = w[k — 1]
3. Learning Edge Labeled CTMCs

the algorithm, whose proof of correctness appears in Sec-
tion 4.

3.1. Generating Samples

In this paper we consider the problem of learning
CTMC |, from examples generated by simulating a sys-
tem under investigation. The wagTMC is formally
defined in Section 2, all behaviors ameaximal execu-
tions, and maximal executions are typically infinite. This
creates a technical difficulty namely what the samples ap-
propriate for learning are. To overcome this problem
we define a finitary version ofCTMC; called Fini-
tary Edge Labeled Continuous-time Markov Chains
(CTMCY) which is a CTMC,, with a non-zero stop-
ping probability in any state. This allows one to generate
and reason about behaviors of finite length. It is impor-
tant to note however, that use aﬁ’TMC{ is merely a
technical tool. Our primary goal is to learn the under-
lying CTMC; and as we shall see in Proposition 3,
we can achieve this by learning thé TMCY. More-
over in this effort, the specific value of the stopping
probability that we use does not influence the correct-
ness of the result. We present the formal definition of a
cTMCY .

Definition 2 A Finitary Edge Labeled Continuous-time
Markov Chain(CTMC?) is a pair F = (M, p) where
M is a CTMC and p denotes the stopping probabil-
ity in any states of M

There exists a trivial surjectio®: (M, p) — M.

(arty)) (aaty)) (anity)

A finite sequence =1y —" [} Iy
is a path of theCTMC{ F = (M, p) starting from a state
iff it is path (not necessarily maximal) g#1 starting froms.

The learning problem considered in this paper falls un- The set of paths starting from statés denoted byPath(s).
der the category of stochastic grammatical inference [6, 16,The jth state of pathr from s and the time spent in the
20, 5]. In stochastic grammatical inference, samples are;th state are defined similarly, and are denotedrby;]
taken from a stochastic language. Given these samples th@nd |, s,], respectively. Thes-field corresponding to a
§t0chast|c language is learned by finding stausugal regulqr- CTMC{ is defined analogously to that of @TMC'y.. For
|ty among the samples. The parameters for the qn*ferent dIS'the pathr from states, the probability that theﬁ‘TMC{ ex-
tributions determining the language are also estimated fromhibitS such a path is given by
the relative frequencies of the samples. For most of these
learning algorithms it has been shown that they can learn Prob - (r,s) =
the stochastic language in thimit i.e. if the number of sam- (1—p)-P(r[s,0],a1,t1) - (1 —p) - P(7[s, 1], az, t2)
ples tends towards infinity then the learned language is the (1 =p)-P(r[s,n —1],an,tn) - p
same as the language that generated the sample. All these al-
gorithms essentially follow the same technique: they build Given aCTMC';, we extend it to aCTMC£ by associat-

a prefix-tree automata which stores exactly the same saming a known probabilityp, (sayp, = 0.1) as the stop-
ples and then they test and merge possibly equivalent stateging probability. TheCTMO{ thus obtained is then simu-

We present the algorithm for learning edge labeled lated to get a multi-set of finite samples which we treat as
CTMCs. We first consider the issue of how to gener- the multi-set of examples for learning. In our algorithm we
ate and reason about behaviors (visible execution traces) otill assume that we are given a finite multi-set of examples
finite length, given that traditionally the behaviors are as- from a CTMC; M extended with a known stopping prob-
sumed to be of infinite length. We then present some con-ability p to a CTMCf. Our goal will be to learnM from
cepts that are used in the algorithm. After this we presentthe multi-set of examples.

Note that for a given implemented system, which can be

seen as a software program, an example can be generated

in the following way. Lets, be the initial state of the pro-
gram. Then add, = L(so) to the example sequence. We set
a probabilitypg = 0.1. With probability p, return the cur-
rent sequence as an example. With probability p, ex-
ecute the next instruction of the program. If the execution
of the instructiory; takes timet; and results in the change

i 7)

of state froms;_; to s; then add(—> L

ple sequence.
3.2. Definitions

We next define the notations and the concepts that
we will use to describe the learning algorithm. Given a
CTMC M = (S,%, s0,9, p, L) we can extend the defini-
tion of ¢ as follows:

0(s,\) = s where)\ is the empty string

(s;) to the exam-

0(s,za) = 6(6(s,x),a) wherex € ¥* anda € 2
0(s,a) = Lif &(s,a) is not defined
0(s,za) = Lif §(s,z) = L ord(d(s,z),a) is undefined

(an,tn)
—

For a given example = [, Sl 1)1 (a2.t2) ly---

ln, let 7|s be the stringuias . . . a,,. We usePr(r) to de-

note the se{z | Jy: xy = 7|s}, thatis, Pr(7) is the set
of all prefixes ofr|s. Given a multi-sef + of examples, let
Pr(I*) be the setJ, .+ Pr(r). If there exists an exam-

p|8l lq (%) lg(al—i;) ll(an—’t?) lnin]—"_
such thatr = aqas . . . a; then we defind.(z, I'T) = I;.

Let n(x, IT) be the number of € I such thatr €
Pr(7) and letn/(z, IT) ben(z, IT) minus the number of
x € I". Thusn(z,I") counts the number of examples
in I+ for which z is a prefix andn’(z, ™) is the num-
ber of examples id* for which z is prefix and Iength of

(a1, tl)

(al t1)

x is less than the length of the example. Foe [
(az,t2) (aits) (an,tn)

lh, =g e 22, i = aras ... a5

anda = a;, thend(z,a,) = t; and0 otherwise; in other

words,f(x, a, 7) denotes the time spent in the state reached

afterz in 7. We defined(z, I't) andp(z, a, I") as follows:

0(z,a,r)
dory = | SRR @) > 0
’ 0 otherwise
n(xa,l
Baa) = | W @) >0
o 0 otherwise

Note thatf(x, IT) gives an estimate of/E(s) where
s is the statej(sg, z) andp(z, a, I') gives an estimate of
P(s,a).

Given a multi-set/+ of examples we first construct a
prefix-treeCTM C{ defined as follows.

Definition 3 The prefix-tree CTMC) for a multi-
set of examples/t is a CTMC] PCTMC(It) =
((S,%,50,0,p,L),p), where

1. 8 = Pr(It)
2. sg = A (the empty string)

3. d(z,a) = { oteraise

4. E(z) = 1/0(x, 1)

5. P(z,a) = p(z,a,IT)

6. p(z,a) = P(z,a)E(x)

7. L(z) = L(z, IT)

8. p is the stopping probability associated with the

CTMC{ that generated the examples.

A PCTMC(I)is an CTMC consistent with the ex-
amples in/* in the sense that for every example/in there
is a corresponding path in tr@TMC{.

The learning algorithm proceeds by generalizing the ini-
tial guess PCTMC(I), by mergingequivalenstates. The
formal definition of when two states are equivalent is now
presented.

Definition 4 Given aCTMC M = (S,%,50,9,p,L), a
relation R C S x S is said to bestable relationf and only
if for any s, s’ € S such thaf(s, s’) € R, we have

a) L(s) = L(s)
b) E(s) = E(s')
c) forall a € ¥ if there existg € S such thati(s,a) = ¢

then there exists @ < S such thaté(s’,a) = ¢,
P(s,a) = P(s',a) and(¢,t') € R, and conversely

d) for all a € X if there existg’ € S such thatd(s’, a)
t' then there exists @ € S such thaté(s,a) =
P(s’,a) =P(s,a) and(¥,t) € R.

Two states ands’ in CTMC 1, M are said to beequivalent
(s = ') if and only if there is a stable relatioR such that
(s,s') € R.

i,

The correctness of learning algorithm crucially depends
on the fact that merging two equivalent states results in a
CTMC, that generates the same distribution. But before
we state and prove this formally we make a simple observa-
tion about equivalent states.

Lemmal Let F = (M,p) be anCTMC4 ands = .
7 is a path starting frony iff 7 is a path starting froms’.

MoreoverProbz(t, s) = Probz(t,s’).
Proof: Let 7 — [, (24 g, @22) .. (nle)) e 4 path

starting froms. There is a sequenag N “—> ce Uy,
of states such thaly = s. Sinces = s’ andd(s,a1) = vy,
there must be a state; such thaté(s’,a;) u; and
uy; = wv1. Continuing inductively, we can construct a se-
quence of states, — u; — ---u,, such thaty = s’

andu; = v;. Hencer is also a path starting fromsf. Fur- in proving the correctness of our learning algorithm. It may

thermore, sincei; = v;, we know thatE(u;) = E(v;), have an effect in terms of the length of traces produced and
andP(u;,a;41) = P(v;,a;,41) and henceProbz(t,s) = the number of traces needed to learn. The right choice of
Probz(t,s"). For paths starting from’, the argument is the stopping probability is thus one that is determined by
symmetric. the empirical constraints that one is working in.

Definition 5 Two CTMC} s F and F' with initial statess,

andsj,, respectively, are said to Eguivalenif Path(F) = 3.3. Learning Algorithm

Path(F') and for everyr € Path(F), Probg(7,s0) =
Probz (7, s;).

For a CTMC M = (S,%, 50,9, p, L), the minimal algorl.thrﬂ learCTMC
CTMC, is defined to be the quotient d¥1 with respect Input: 1 -a T;It"setl()f elxamples
to the equivalence relation on states. Formally, the minimal Output:a .CcToAr}bLence eve
CTMCpisM' = (58,%,s(,0',p', L") such that

begin
1. ' are the equivalence classeswith respect tes, A — POTMC(I™)
.) fori=2to |A| do
2. s{, = [so], the equivalence class of forj=1toi—1do
3. 5'([s], a) = [s'] iff 3(s,a) = &' if compatible(s;. s;, a, I*) then
, A — merge(A, s;, s;)
4. p'([s],a) = p(s,a) and A « determinize(A)
5. L'([s]) = L(s) exit j-loop
L i . endif
Observe, that this is well-defined, because of the wag return A
defined. end

i i !
Proposition 2 Let # = (M,p) be a CTMCQ Then Figure 1. Algorithm to leamCTMCY,

F' = (M’,p) is equivalent taF where M’ is the mini-
mal CTMC'y, corresponding toV

Proof: The proof is a straightforward consequence of the . The algorithm for CTMCY, learning, described

- o . Figure 1, first constructs the prefix-tre€TMC?
definition of the minimalCTMC', M'. It relies on the ob- ™ . L
servation that for a path, v, at v 2 .oy, iS A se- A = PCTMC(I) from the multi-set of examples™. We

auenc ot s e o] - 1) T asme e ttes o rtred o o
in M’. Furthermore, sincg’([s],a) = p(s,a), the proba- th ’ i | t| s of stat }ht.h ¢ goritr
bilities are also the same. en tries to merge pairs of states at are equiva-

We conclude the section with the observation that for Ient_ ina q_uadrat|c loop, € for allfrom 1 o | 4| the al-
equivalentCTMCY s with the same stopping probability, gorithm tries to merge; with the statess,, s, ..., si-1
the associated'T’M C ;s define the same probability space in that order. lf two states; ands; are equivalent they
on the set of paths. This next proposition together with &'° merged using the methetergd 4, s;, s;). The small-
Proposition 2 shows that given a§TMC ., we can al- est state in a block of merged states is used to represent the
ways construct a smaller equivaleG"MC, by merging whole block. After every merge of statgands; the result-

. o R f - inisti iva-
equivalent states, thus providing mathematical justification N9 ¢TMC7, may be non-deterministic. However, equiva
for our algorithm. lence ofs; ands; implies that each successorsfis equiv-

alent to the corresponding successorsgf This means
Proposition 3 LetF = (M, p) andF’' = (M’,p) be two that those successors should also get merged. To en-
C’TMC{S with the same stopping probability Then the sure this the methodleterminizéA) described in Fig-
probability spaces defined byt and M’ are the same. ure 2 is invoked which removes the non-determinism in
A by a sequence of merges. After every merge the prob-
abilities P(s,a) and the rate¥(s) are re-computed for
every state as there is more information available at ev-
ery state. The algorithm stops when no more merging is
éa_ossible.

We skip the proof of this proposition in the interests of
space. However, we would like to point out some of the im-
portant consequences of Proposition 3. First is that if we
learn anCTMC£ that has the same stopping probability as
the one that was used to generate the samples from the sy
tem, then the underlying'TMC s are also equivalent in
terms of the distribution on traces they generate. Secondl For <% = {a,b}, the lexicographic ordering is
the specific value of the stopping probability plays no role A @b, aa;ab, ba,bb, aaa, ...

algorithm determinize
Input: A
Output: CTMC'y,
begin
while(3s,a € A: s',s" € §(s,a)) do
A «— merge(4,s’,s")
return A

end
Figure 2. determinizeemoves non-determinism

Now the observations Proposition 2 and 3 together sug-

gest that the above algorithm would be correct if indeed we
could test for equivalence of two states. This, however, is
not the case, a4 is built from experimental data. However,
we approximately check the equivalence of two states recur-
sively through statistical hypothesis testing [15, 18]. We say
that two states; ands; are compatible, denoted by = s,

if L(s) = L(s'),E(s) ~ E(¢'), foralla € &, P(s;,a) ~
P(s;,a), andd(s;,a) = 6(sj,a), whereE(s) ~ E(s)
means thaE(s) andE(s’) are equal within some statistical
uncertainty and similarly faP (s;, a) ~ P(s;, a). The deci-
sion for compatibility is made using the functioompatible
described in Figure 3.

algorithm compatible
Input: z,y,I",
Qutput: boolean
begin
if L(z,IT) # L(y,I") then
return FALSE

if differentExpMeans (9 (z, I'1),

0 n'(z,IT),
0

n'(y,I7),a) then
return FALSE
for Va € &
if differentBerMeans (p(z, a, 1), n(za, IT),
ply,a, I7), n(ya, I'T), a) then
return FALSE
if not compatible (6 (x
return FALSE
endfor
return TRUE

end

Figure 3. compatiblechecks if two two states are ap-
proximately equivalent

,a),6(y,a), I, a) then

The check foE(s;) ~ E(s;) is performed by the func-
tion differentExpMeandescribed in Figure 4, which uses
statistical hypothesis testing. The function actually checks
if the meansl/E(s;) and1/E(s;) of two exponential dis-
tributions are different. Given two exponential distributions
with meangd; andf, we want to check if; = 0, against

the fact fact that; # 6,. This is equivalent to checking
% = 1 against the fact thaf: # 1. In statistical terms

we call 91 = 1 as the null hypothesis (denoted 3jp)

and 91 ;é 1 as the alternate hypothesis (denotediby).
To test the hypothesi&, againstH, we drawn; samples,
sayzi, T, .. ., Ty, , from the exponential distribution with
meand; andny samples, say, yo, . - ., Yn,, from the ex-
ponential distribution with mea#y,. We estimat#; andf,
by 6, = Zgl”" andf, = & respectively. Then we
use the ratld’i to checkH, agalnstH as follows:

We can say thatr,, xs,...,z,, are random samples
from the random variables(y, X, ..., X,,, where each
X, has an exponential distribution W|th me@n Similarly,

1,92, - - -, Yn, are random samples from the random vari-
ablesYl, Ys, ..., Y,, where eacly; has an exponential dis-
tribution with mearﬂg Then it can be shown by methods
of moment generating function that the random variables
22X and 22 havey?(2n,) andx?(2n,) distributions
respectively. This implies that the ratfé% or
L m 2 Xl has F distribution with (2n1,2n,) de-
grees of freedom. Assuming thaf, holds §§f21 has
F(2n1, 2n9) distribution. Let us introduce the random vari-
ables©; and©, where®, = =2 X‘ and@, = =2 Y‘ . Our

experimental value oﬁ gives a random sample from the

random variableS: Let the random variablg = 81 22.
ThenZ hasF dlstr|but|on with(2n1, 2n,) degrees of free-
dom. Giverd; = 6, from Chebyshev’s inequality, we get

CH o
P > ——| =P 7 — u| >
ot H@ ”‘ - ﬁ} rob t' 4l 2

n2

wherepy = s

m% its standard deviation. Thus, takirig=

andr = u + we get

g
:|Sa

Va

is the mean ofF'(2n,,2n,) ando

h=Ta

\/71

@)

Prob{fg&gf} >1—«
SH

If 91 > 1 then we calculate the probability of our observa-
t|on givend; = 05, called thep-value, as

01

)

2

(C)
1.
2

0,

0

p-value= Prob = Prob | Z >

Similarly, if Z—l < 1, thep-value is given by
2

(C)
211
2

0,

0

Z<91]
0

2
If the calculateg-value in both cases together is less than
we say we have enough evidence to reject the null hypoth-

p-value= Prob = Prob

esisf; = 6. This is equivalent to say that we rejefdt, if

A

algorithm differentExpMeans
Input: é1, ni, éz, na2, o
Output: boolean
begin
if n1 = 0 or nz = 0 then
return FALSE
return Z—; ¢ [7,7]
end
Figure 4. differentExpMeanshecks if two estimated
exponential means are different; the parametés
used in calculating and#

The check foP(s;,a) ~ P(s;,a) is performed by the
function differentBerMeangsee Figure 5) using Hoeffd-
ing bounds similar to that in [6]. The method checks if the
meansp; andp, of two Bernoulli distributions are statisti-
cally different or not. Iff; tries are 1 out of; tries from
a Bernoulli distribution with meap; and f tries are 1 out
of ny tries from a Bernoulli distribution with meam, then
we say thap, andp, are statistically same if
I Bl 1,2 (1+1)

2 a \y/ni /n2

ny1 no

converging on the right model. The exact dependence of
sample size ol is an open problem that needs investiga-
tion.

4. Learning in the Limit

In order to prove correctness of our algorithm, we need
to show that theC'TM(C, that the learning algorithm pro-
duces is eventually equivalent to the model that was used
to generate the samples. Our proof proceeds in two steps.
First we show that the learning algorithm will eventually
be presented what is usually calledtaucturally complete
sample. A structurally complete samgié is a multi-set of
traces such that the traces visit every (reachable) state and
every transition. More formally, for every stateof the tar-
get CTMC, there is a trace € [T such thats is one of
the states visited when tracewvas produced, and for every
(reachable) transitiofs, a) there is a trace € It such that
(s,a) is traversed by. Observe that if+ € I'" and I+
is structurally complete theff ™ is also structurally com-
plete. The second step of the proof involves showing that
if we keep adding samples to a structurally complete set,
then we will eventually learn the rigi@ 7'M/ C . These two
steps together show that our algorithm will learn the target
CTMC in the limit [8].

The first thing to observe that for ayT’MC , M there
is a finite structurally complete sample set. Ldie a struc-
turally complete sample set and I&& = (M,p) be a
CTMC{ (with any stopping probability). Now observe
that for anyr € T, p = Probz(1, sp) is finite and non-
zero. Thus, the probability that is not among the firsk

Note that it is possible to use other tests, such as mUIti'sampIes generated 3 is (1 — p)*, and this tends t0 as

nomial test [16], to compare two means of Bernoulli distri-
butions.

algorithm differentBerMeans
Input: pﬁ, n1,]f2, N2,
Output: boolean
begin
if n1 = 0 orny = 0then
return FALSE

return |py — p2| > /3 log 2 (;Tl + \/1?2)
end

Figure 5. differentBerMeanshecks if two estimated
Bernoulli means are different

3.4. Complexity
The worst case running complexity of the algorithm is

cubic in the sum of the length of all samples. However, in
our experiments we found that the running time grows al-

k increases. Hence, every stringIinis eventually gener-
ated, and so the sample given to the learning algorithm is
eventually structurally complete.

The main challenge in the proof of correctness is to
show that once we have a structurally complete sample,
we will eventually learn the righCTMC . In what fol-
lows, we simply assume that whenever we refer to a sam-
ple IT, we mean that/* is structurally complete. Ob-
serve that for a (structurally complete) samplg the right
CTMC, is one that results from merging equivalent states
of PCTMC(I"). However, since we can only check com-
patibility (and not exact equivalence) the only errors the al-
gorithm makes can result when we check the compatibility
of two states. There are two types of errors in this context.

1. Type | error : compatibility returns false when two
states are actually equivalent, and

2. Type 1l error : compatibility returns true when two
states are not equivalent

Our goal is to reduce these two errors as much as possible.

most linearly with the sum of length of sample lengths. The We show that as = || goes to infinity, the global contri-
parameterx influences the size of the sample needed for bution of these two errors tend to zero. Observe thatigf

the number of states iIRCTMC(I"), thent cannot grow
as fast as does. Ifm be the number of states in the target
CTMO{, then the number of merges performed by the al-
gorithm before giving the corre(ﬂ’TMC{ ist—m. Further
recall that thep-value of the tests performed by the func-
tions differentExpMeangand differentBerMeanss at most

a. Hence, global Type | erro¢,, is bounded byy(|%|+1)t.

we observe that if < 1thenr# > p+ % and ifr > 1
thenr? < p — ﬁ. Finally, plugging in the values qf, o
anda, we observe that tends taD.

Case differentBerMeans Let P(s;,a) = p1 # py =
P(s;,a). Let Fy be a random variable that is the mean of
ny Bernoulli trials with mearp; and F; the mean ofng
Bernoulli trials with meam,. Recall that we sa¥ (s;, a) ~

This error can be made negligible and independent of theP(s;, a) if some observatiorf; of variableF; and observa-

size of thePCTMC(I) by takinga = kt~! for some
very small constart.
Thus, by makingy small we can ensure that the learning

algorithm always merges equivalent states. Then the errors

of the learning algorithm can be confined to those resulting
from merging inequivalent states. In the absence of Type |
errors, the learning algorithm always outputs’JEMC{,
whose states form a partition of the targ[éTMC{. Thus

an upper bound on Type Il errors is given by the probabil-
ity that an error occurs when comparing two states of the
target CTMCQ Taking 8 to be the probability of merg-
ing two non-equivalent states, we get the Type Il error
eg < 28m(m — 1)(|Z| + 1). Thus if we show thap tends

to 0 as the sample size grows, then we know that the algo- B

rithm will eventually not make any errors.

Observe that the probability of merging a pair of non-
equivalent states is bounded by the probability of either
differentExpMean®r differentBerMeanseturning TRUE

when the actual means are different. Hence, in order to show:

that the learning algorithm eventually gives the right an-
swer, we need to show that the probability tli#ferent-
ExpMeansanddifferentBerMeansnake an error when the
means are different tends to 0. We will consider each of the
procedures separately and bound their error.
CasedifferentExpMeans Assume that = Z—j £1,ie.,
E(s;) # E(s;). Recall that for a given, takingr = H="=
andr = /Hrﬁ, wherey is the mean and the standard de-
viation of F'(2ny,2ns), we say that an observatidj% pro-
2

vides evidence foE(s;) ~ E(s;) when % € [#,7#]. Now,
we have

Pmb[fgg—;gf] -

where, Z has distributionF'(2n;,2n,). Once again by
Chebyshev’s inequality, we know that

Prob {\Z—ul > %] <p

ifri o P _ o
Thus, ifrr > u + 75 orri <pu 73 then
Prob {fﬁ % gf} =Prob[rr < Z <#r] <
2

Taking
2
B oya
==

tion f, of F, are such thaltf; — f| < ¢ where
1 1

(7 +)

We will try to bound the probability that this happens. Ob-
serve thatt (Fy, — Fy) = p1 — p2 and

1,2
an

+

€ =

Var(Fy — F3) Var(F1) + Var(F2)
p1(1—p1) +P2(1*P2) > 1
ni ng — 4n;

1

4dng

Now 3 = Prob(|Fy — Fs| < €) < Prob(|(Fy —F2)— (p1—
p2)| > |p1 — p2| — €). By Chebyshev’s inequalityj < B

where

First observe that; andns grow linearly ass = |11 in-
creases, and so everifis k¢ ~! as needed in order to elim-

Var(Fy —F3)

Tor—po—az i e<|pr—p2|and

Var(Fi — F») < ((p1 — p2) — ¢)?
otherwise

1

Inate Type | errors, sinceis bounded by, e tends td) ass
grows. NextVar(F; — F») also tends t ass grows. Hence
B vanishes withs, proving that in the limit Type Il errors
are eliminated.

5. Tool and Experiments

We have implemented the learning algorithm in Java as
a sub-component of the to®ESTA (Verification based on
Statistical Analysisf. The tool takes a multi-set of examples
generated from the simulation of a system having an un-
known CTMC;, model. Based on these examples the tool
learns the underlying'TM C;, for a given value otv. The
learned model can be used for verification of CSL formulas
either using the statistical model-checkeMHESTA [21] or
other model-checkers such as PRISM [17], ETMCC [12],
Ymer [24] etc. We tested the performance of our tool on
severalCTMC 1, models. For eac’TMC';, model we per-
formed discrete-event simulation to get a large number of
examples and then learned’d@'M C ;, based on these exam-
ples. Finally we checked if the learn€dl'M C';, is equiva-
lent as the originaC'TMC' 1, that generated the examples.
We found that the learned'TMC, is equivalent to the
original CTMC, in all our experiments provided that the
number of samples is large enough. In all our experiments
we assumed that the set of atomic propositions at any state

2 Available fromhttp://osl.cs.uiuc.edu/ ~ksen/vesta/

are same. This is assumed to show the working of the statis-onds. For small number of samples, due to lack of sufficient
tical tests. If we take atomic propositions into consideration information, the algorithm tends to generalize more result-
then the learning becomes faster because atomic proposiing in less number of states in the learn@@M C'y..

tions will be sufficient in distinguishing certain states. We
next report the results of our experiments performed on a
Pentium Il 1.2GHz laptop with 620 MB SDRAM.
Symmetric CTMC The CTMC, in Figure 6, which is

Tandem Queuing Network In this more practical example
we considered a M/Cexl-queue sequentially composed
with a M/M/1-queue. This example is taken from [13]. For

. . N = 3, where N denotes the capacity of the queues, the
carefully selected, contains four states. The probability of algorithm learned a'TMC', model with 15 states. How-

taking the edges labeled and b from the state$) and 2 : SO

i : " ever, the number of samples required in this case to learn
are same; however, the total rates at which transitions takethe underlying CTMC, is quite large (around 20,000)
place from the two states are different. Therefore, to distin- ying L1sq 9 ' '

guish these two states comparison of the total rates is re-.ThIS particular experiment suggests that learning underly-

quired. Similar is the case for statesind3. On the other ing CTMC for large systems may require a large number
hand :[he total rates for the statesnd 1 a-re same: how- of samples. Therefore, a more effective technique would be

ever, the probability of taking the edgesandb are different to verify the approximate model learnt from smaI.I number.
o R . of samples. However, because the model learnt is approxi-
which is used to distinguish the two states. The same is true . !
) mate, the result of verification would also be approximate.
for the state® and3. Thus this example shows the effec- . : : .
) N . This suggests that the confidence in verification should be
tiveness of both the functiomifferentBerMeananddiffer- e e
. . guantified reasonably. How to do such quantification re-
entExpMeansluring learning. We use th€ TMC 1 to gen- mains an ooen problem
erate samples which are then used to lea@7a/C ;. We P) P '
found that for more than 600 samples and= 0.0001 the 6. Conclusion and Future Work
CTMCy, learned is same as the origind"’MC .. We have presented a novel machine-learning algo-
rithm to learn the underlying edge-labeled continuous-time
Markov chains of deployed stochastic systems for which
arae=s we do not know the model before-hand. An impor-
0 /3 tant aspect of the learning algorithm is that it can learn
b, rate = 3 a formal stochastic model from the traces generated dur-
ing testing or executing the deployed system. The learnt
b, rate = 10 CTMC, can be used to verify the deployed systems us-
a rate |24 b rate =20 ing existing probabilistic model-checking tools. More-
rate =12 over, one can also check if the learnt modeFiisimilar
[2, 3] to the model given in a specification. This al-
b, rate = 6 lows us to check if the deployed system correctly imple-
b \f) ments a specification with respect to a set of formulas
F. Finally, we provide an implementation of the algo-
_ _ rithm which can be used with various other tools.
Figure 6. Symmetric CTMC One of the limitations of our work is that it may not
scale up for systems having large underlying CTMC model.
Therefore, one needs to develop techniques that can per-
form approximate verification as the model is learnt. The
: accuracy of such verification technique should increase with
Modular Redundant SystefMR). The example is taken the increase in the number of samples. The difficult part in

U at each state to Show the effectences of our staist-JEVEIOPINg Such an approach is to cortecty quantiy the
cal test. Although we generated the samples through the dis_confldence (or accuracy) in verification. Such a technique

. . A will make verification of “black-box” ms a very prac-
crete event simulation of th€TMC';, in Figure 7, we can ake verification of “black-box” systems a very prac

. tical approach that can co-exist with testing based on dis-
as well assume that the samples are coming from the ac- PP g

. ; crete event simulation.
tual running system. In figure 7 we plot the average number
of states in the learne@TMC';, and time taken in learning Acknowledgement
against the number of samples used in learning. The number The work is supported in part by the DARPA IPTO TASK
of states converges to five when the sample is large enoughAward F30602-00-2-0586, the DARPA/AFOSR MURI Award
The time taken for learning grows almost linearly with the F49620-02-1-0325, the ONR Grant N00014-02-1-0715, and the
number of samples. Withh = 0.0001 and 1000 samples Motorola Grant MOTOROLA RPS #23 ANT. Our work has ben-
the algorithm learns the sam@I'MC;, in less than 2 sec- efitted considerably from our collaboration with Abhay Vardhan

o

a, rate = 10

Triple Modular Redundant System Our next example is
the CTMC', in Figure 7 representing the model oTaple

a, rate=3\

>]

)

o
T

IN
T

Number of States
N w
T T

-
T

! ! !

o

b, rate=p
¢, rate=v .
a, rate=4 ¢, rate=v .
arate=2\
4 b, rate=|| é L
E
c, rate=y,
¢, rate=! 05
b, rate=pt
0 N L L L L L L)))
a, rate=A 100 200 300 400 500 600 700

Number of Samples

800 900 1000 0 200 400 600 800

Number of Samples

1000

Figure 7. Learning TMR

on “learning to verify” framework for verifying infinite state sys-
tems. We would like to thank Tom Brown for giving us feedback
on a previous version of this paper.

References

(12]

(13]

[1] D. Angluin. Learning regular sets from queries and coun-
terexamplesinfor. and Comp.75(2):87-106, 1987.

C. Baier, B. Haverkort, H. Hermanns, and J. Katoen. Model
checking continuous-time Markov chains by transient analy-
sis. InComputer Aided Verification (CAV'00yolume 1855

of LNCS pages 358-372. Springer, 2000.

C. Baier, J. Katoen, H. Hermanns, and B. Haverkort. Simu-
lation for continuous-time Markov chains. I8th Interna-
tional Conference on Concurrency Theory (CONCUR;02)
volume 2421 oL NCS pages 338-354. Springer, 2002.

G. Balbo, G. Conte, S. Donatelli, G. Franceschinis, and (17]
M. A. Marsan. Modelling with Generalized Stochastic Petri
Nets John Wiley & Sons, 1995.

L. Baum, T. Petrie, G. Soules, and N. Weiss. A maximiza-
tion technique occuring in the statistical analysis of proba-
bilistic functions of Markov chainsAnnals of Mathematical
Statistics 41(1):164-171, 1970.

R. C. Carrasco and J. Oncina. Learning stochastic regular
grammars by means of a state merging methodnterna-
tional Colloquium Grammatical Inference and Applications (20]
(ICGI'94), volume 862 oLLNCS Springer, 1994.

J. M. Cobleigh, D. Giannakopoulou, and C. S. Pasareanu.
Learning assumptions for compositional verification. In [21]
Tools and Algorithms for the Construction and Analysis of
Systems (TACAS'03)olume 2619 of NCS pages 331-346.

E. M. Gold. Language identification in the limitnforma-

tion and Contro) 10:447-474, 1967.

A. Groce, D. Peled, and M. Yannakakis. Adaptive model
checking. InTools and Algorithms for the Construction
and Analysis of Systems (TACAS’0@)lume 2280 o NCS
pages 357-371, 2002.

B. Haverkort. Performance of Computer Communication
Systems: A Model-Based Approathiiley, 1998.

H. Hermanns, U. Herzog, and J. Katoen. Process algebra
for performance evaluatioriTheoretical Computer Science
274(1-2):43-87, 2002.

2] [14]
(15]

3] [16]

(4]

(5] [18]

(19]

(6]

(7]

(8] 22]

9] 23]

[10] [24]

(11]

10

H. Hermanns, J. P. Katoen, J. Meyer-Kayser, and M. Siegle.
A tool for model-checking Markov chainsSoftware Tools
for Technology Transfe#(2):153-172, 2003.

H. Hermanns, J. Meyer-Kayser, and M. Siegle. Multi-
terminal binary decision diagrams to represent and analyse
continuous-time Markov chains. Workshop on the Numer-
ical Solution of Markov Chains (NSMC’99)999.

J. Hillston. A Compositional Approach to Performance Mod-
elling. Cambridge University Press, 1996.

R. V. Hogg and A. T. Craig.Introduction to Mathematical
Statistics Macmillan, New York, NY, USA, 1978.

C. Kermorvant and P. Dupont. Stochastic grammatical infer-
ence with multinomial tests. IGrammatical Inference: Al-
gorithms and Applicationsolume 2484 of ecture Notes in
Artificial Intelligence Springer, 2002.

M. Z. Kwiatkowska, G. Norman, and D. Parker. PRISM:
Probabilistic symbolic model checker. @omputer Per-
formance Evaluation, Modelling Techniques and Tools
(TOOLS’02) volume 2324 o NCS pages 200—204.

W. Nelson.Applied Life Data AnalysisWiley, 1982.

J. Oncina and P. Garcia. Inferring regular languages in poly-
nomial update time. IPattern Recognition and Image Anal-
ysis volume 1 ofSeries in Machine Perception and Artificial
Intelligence pages 49-61. 1992.

D. Ron, Y. Singer, and N. Tishby. On the learnability and us-
age of acyclic probabilistic finite automatiournal of Com-
puter and System Scien¢&6(2):133-152, 1998.

K. Sen, M. Viswanathan, and G. Agha. Statistical model
checking of black-box probabilistic systems.16th confer-
ence on Computer Aided Verification (CAV'QANCS (To
Appear). Springer, July 2004.

W. J. Stewart. Introduction to the Numerical Solution of
Markov Chains Princeton, 1994.

W. Wei, B. Wang, and D. Towsley. Continuous-time hidden
Markov models for network performance evaluati®erfor-
mance Evaluatiopd9(1-4):129-146, September 2002.

H. L. S. Younes, M. Kwiatkowska, G. Norman, and
D. Parker. Numerical vs. statistical probabilistic model
checking: An empirical study. Ifiools and Algorithms for
the Construction and Analysis of Systems (TACAS\azl)
ume 2988 oLLNCS Springer, 2004.

