Heuristics for Scalable Dynamic Test Generation

Jacob Burnim Koushik Sen
EECS, UC Berkeley EECS, UC Berkeley
Email: jburnim@cs.berkeley.edu Email: ksen@cs.berkeley.edu

Abstract—Recently there has been great success in usingthat could quickly cover a significant portion of the branghe
symbolic execution to automatically generate test inputsol small in a test program despite searching only a small fraction of
software systems. A primary challenge in scaling such appezhes the program’s path space.

to larger programs is the combinatorial explosion of the pah . . .
space. It is likely that sophisticated strategies for seating this We propose a search strategy that is guided by the static

path space are needed to generate inputs that effectively ge Structure of the program under test, namely the control flow
large programs (by, e.g., achieving significant branch covage). graph (CFG). In this strategy, we choose branches to negate

We present several such heuristic search strategies, inding a for the purpose of test generation based on their distance in
novel strategy guided by the control flow graph of the program e CEG to currently uncovered branches. We experimentally

under test. We have implemented these strategies inREST, our h that thi d ht Lo the b h
open source concolic testing tool for C, and evaluated thermawo ~ SNOW that this greedy approach to maximizing thé branc

widely-used software tools, grep 2.2 (15K lines of code) andm ~ coverage helps to improve such coverage faster, and tovachie

5.7 (150K lines). On these benchmarks, the presented heuiiss greater final coverage, than the default depth-first search

achieve significantly greater branch coverage on the samesting strategy of concolic testing.

budget than concolic testing with a traditional depth-first search We further propose two random search strategies. While in

strategy. traditional random testing a program is run on random inputs

these two strategies test a program along random execution

paths. The second attempts to sample uniformly from theespac
Testing with manually generated inputs is the predominagt possible program paths, while the third is a variant weehav

technique in industry to ensure software quality — suchrtgst found to be more effective in practice.

accounts for 50-80% of the typical cost of software develop-we have implemented these search strategiesRBsg, an

ment. But manual test generation is expensive, error-paoTe gpen-source prototype test generation tool for C, and éxper

rarely exhaustive. Thus, several techniques have beewggdp mentally validated the strategies on three benchmarksmgng

to automatically generate test inputs. up to 150K lines of code. Our experiments demonstrate that
A simple and effective technique for automated test generiese search strategies can more effectively search tie pat

tion is random testind1], [2], [3], [4]. In random testing, the space of a test program than either random testing or depth-

program under test is simply executed on randomly-gengraf@gst concolic search.

inputs. A key advantage of random testing is that it scalds we

I. INTRODUCTION

in the sense that random test input generation takes nieigligi Il. CONCOLIC SEARCH STRATEGIES
time. However, random testing is extremely unlikely to @kt In this section, we contrast our three proposed concolic
possible behaviors of a program search strategies with a traditional depth-first searche Du

A number of symbolic techniques for automated test gete space constraints, we describe these search strategies b
eration [5], [6] have been proposed to address the limitatioexample, leaving the formal details to the accompanying
of random testing. Such techniques attempt to symbolicatigchnical report. Also omitted are the now standard details
execute a program under test along all possible prograrhconcolic execution [7], [8].
paths, generating and solving constraints to produce etacr Figure 1 contains a short program in a C-like imperative
inputs that test each path. Recentigncolic testing[7], [8] language. We use this program as our running example to
and a related technique [9] have been proposed which rillastrate the concolic search strategies, treating its itvteger
symbolic execution simultaneously with concrete exeatio inputsz andy as symbolic. For a conditional statement, we
These approaches are generally more scalable in practedl the first statement in the true and false blocks a pair of
because they can use the concrete program values to redsamches Thus, in the example program the pairs of branches
precisely about complex data structures as well as to diynplare (i1, 12), (Is,17), (l10,113), and(l11,112).

intractable constraints. A concolic search strategy operates on full,
Although symbolic and concolic techniques have bearoncrete executions through the test program - e.g.

shown to be very effective in testing smaller programs,eheg), l1, 15, 17,1s, 13, lo, 113,114,014, coOrresponding to a run

approaches fail to scale to larger programs in which onlpy tion inputsz = 1, y = 0 — along with symbolic path

fraction of the huge number of possible program paths can tenstraints — egz > y Ay < 0 Az # 4. For such an
explored. A natural question is how to devise search stiegegexecution, a strategy must select one of the alternate beanc

. mal ri‘(fx'(xy)> {) o g(a,i fb)(a{ - 4 a conditional to its two branches weight one and all other
l? ;= f(;/); l?(;: if (2_*_b > 9) edges weight zero. In the example program, the four methods
el se li1: ABORT: have edges:(lo,ll)*, (10712)*, (11713), (12713), (13714) and
lo2: zZ =Y, el se (15,16)*, (15717)*, (l7,lg), and (nglo)*, (lg,llg)*, (l107lll)*a
ls: a(x, z); li2: ; (1107 ll12)*: (112, 114), (113, 114) and (115, 116)- (1163 117), with
ba: return; . el se b a the starred edges having weight one. Additionally, we add a
} éi; relerzf "a zero-weight edge from each call site to the called function:
int f(a) { } (I, 15), (I3, o), and (l15, 15).
l5: if (a>0) For some set of uncovered or target branches, we can
ls: ABORT; not _call ed(a) { compute with a breadth-first search the minimum distance
- el se 515f br |:nI (gz b from every branch to one of the targets. Given an execution of
l; return - a: lij; Pet urn: ' the test program, CfgDirectedSearch tries to force exeauti
} } down the branches with smallest distances, leading thelsear
Fig. 1. Example program. towards the uncovered/target branches.

For example, if only branchl;; remained uncovered we
would assign distance 0 fg;, distance 1 td;g, distance 2 to

the path could have taken — elg, s, andl;o — and then try l1 andl,, and infinite distance t&;, I, l12, andl;3. Note that

to solve modified path constraints to find inputs which ledff€ Pranches ifi have infinite distance because there are no
the program down the new branch. edges from called functions back to their call sites — we make

the simplifying assumption that all called functions retand

A. Bounded Depth-First Search. that we can ignore the branches traversed inside a function
Suppose our initial execution is on inputs= 0, y = 0, When trying to reach a later branch.

yielding the concrete executioRy = lo, lo, I3, 9, 13, 114, l4. Given the above distances and executios 1, y = 0 with

This execution passes through two conditional statemants, PathPy = lo, l1,15,17,1s, 13,9, l13, l14, [4 With path constraints

has path constraints < y A x # 4. x>yANy <0Ax #4, the CFG-directed search immediately

The depth-first search (DFS) first attempts to force the firétes to force brancti; to l1o becausd;o has the minimum
branchi, to I;, by solving path constraint > y, yielding, distance, 1, among the possible alternate branthes, and
e.g.,z = 1, y = 0. Executing on these inputs gives concretbo. Solvingz > yAy < 0Ax = 4 yields e.gz = 4,y = 0 and
pathP1 =lo,l1,15,17,1s,13,1l9, 113,114, 4 with path constraints P1 = 107 lla 157 l77 187 l37 197 1107 1127 li4 andz > yAy < 0Nz =
r>yAy<0Ax#4 4N\ —2y < 9. The search will then forchs to l1;, becausé;;

The DFS recurses of;, forcing the second branch alonghas distance 0. It will solve > yAy < 0Az = 4A—2y > 9to
P, from I; to I by solvingz > y Ay > 0, perhaps yielding get, €.9.,x = 4, y = —5, which drive the program tABORT
x = 2, y = 1. These inputs give executioh, = Iy, 1,15,l5, atlii.
which reaches thé\BORT at ls. The DFS recurses o, Unlike depth-first search, the search can skip over the
but there are no further branches to explore, so this secdi@nches immai n andf because it uses the static structure
recursive call immediately returns. Continuing to procgs of the program to guide the search more directly towards a
the DFS will attempt to forcé;s to 159, and will recurse on relevant part of the path space.
the resulting path. As presented so far, the CFG-directed search is greedy,

The search ends when all feasible program paths have bebmays forcing execution down the branch with minimal
explored. For a bound > 0, we can also restrict the search ta@listance to a target. In practice, however, the search may
forcing the firstd feasible branches along any path. (A brancfirive execution through a branéhwith some distancd, but
along a path ifeasibleif we can solve for inputs for which then find that none of the paths frohto a target branch are
the branch is and is not taken.) Such a search will exfitére feasible. We need mechanisms both for revising our distance
execution paths, as long as all paths have at lédsiasible for branches —i.e. heuristically updating our local estasdor

branches. how hard it is to reach a target branch — and for backtracking
_ or restarting the search. These details can be found in the
B. Control-Flow Directed Search. technical report.

The goal of the control-flow directed search strategy is to)
use the static structure of the program under test to guiele th- Uniform Random Search.
dynamic search of the program’s path space. In particudar, t Taking inspiration from the effectiveness of widely-used
achieve high coverage of the test program, we want to guicdendom testing, in which a program is executedrandom
the search towards paths which reach previously uncoveiaduts we propose a search strategy which executes a program
branches. along random paths Such a strategy avoids the problem in
Thus, we construct a weighted, static call and control flovandom testing that often many inputs are used that lead to
graph for the program under test. First, we build the contrtie same execution paths and are tredundant Further, for
flow graph (CFG) for each function, giving the edges frorhranches that are reachable by only a very small fractioheof t

inputs, random execution paths can often cover such branche
with much higher probability than random inputs.

Given some pathP, the UniformRandomSearch strategy
will walk down the path, forcing each branch with proba-
bility 1/2. For example, suppose the initial path & =

lo,l2,13,19, 113,114, 14, cOrresponding to inputs = 0, y = 0. ks
The search considers the first branghand flips a coin — g
if the result is heads it will force the execution froim to § E
l,. Suppose it is heads. Then, solving the path constraints g 80 1 random testing
will give, e.g,z = 1, y = 0 and new pathP, = 5 60 oo RandomBenroh -
loyl1,15,17,1s, 13,19, l13, l1a, L. ey Raﬁ%&ﬁﬁﬁsggggggiﬂ -
The search will then move on to the second bramigh
(of P;). Suppose the coin is tails this time, and then heads 2°[
for the third branch;3. Solving the path constraints yields, 0 L L L L L)
eg.,z = 4, y = 0, and path P, through l1o: P, = 0 500 1000 ite:;?oons 2000 2500 3000

lo,l1,15,17,18,13, 19,110, 12, l14. Finally, suppose the coin is
tails for the final branchs.

It can be shown that UniformRandomSearch will produce
some particular execution with feasible branches with prob-
ability 2%, running the solver and test program an expected
L/2 times.

1600
1400

D. Random Branch Search. 21200

Although the previous strategy in a certain sense samples 2

the path space uniformly at random, it requires many runs of §1000 ;

the program under test to do so. We found, after trial-amdrer
an even simpler random search strategy that is more eféectiv
in practice.

branch

In this strategy, RandomBranchSearch, we simply pick one 600
of the branches along the current path at random, and then
force the execution to not take the branch. The strategy just 400
repeats this step over and over, possibly with random testar
taking some random walk through the path space. ©) ar ep

branches

I1l. EVALUATION AND IMPLEMENTATION

800 ¥

(a) r epl ace, with 40 symbolic characters as input (30 for DFS). Contains
200 branches, all of which are reachabl&REST runs 50+ iterations/sec.

.......

random testing
o BoundedDFS (depth 12) --
- UniformRandomSearch

RandomBranchSearch
B CfgDirectedSearch -

L L L L L L L J
500 1000 1500 2000 2500 3000 3500 4000
iterations

2.2, with 60 characters as input (45 for DFS). Contains 4184

, an estimated 2854 of which are reachable givertesting.

CRESTruns 40 iterations/sec.

We have implemented our search strategies REET, a

prototype test generation tool for CREST uses CIL [10] to 8000
instrument C source files and to extract control-flow graphs, 7g00
and Yices [11] to solve path constraintsRESTis open source
software and is available at http://crest.googlecode/com , 6000
We experimentally evaluated the effectiveness of our searc
strategies by running €EsT on r epl ace (600 lines of C g 5000
code), the largest program in the Siemens Benchmark Suite,g4000
and two popular open-source applicatiogs,ep 2.2 (15K 5
Q

lines) andvi m5.7 (150K lines).

For each benchmark, we compare the performance of the
different search strategies over a fixed number of iteratien
i.e. runs of the instrumented program. We believe this is an
appropriate measure for the testing budget, because, rfgerla
programs, we expect the cost of concrete and symbolic execu-

3000 [
2000

1000
0

random testing
BoundedDFS (depth 12)
UniformRandomSearch ---
RandomBranchSearch

CfgDirectedSearch

500 1000 1500 2000 2500 3000 3500 4000

iterations

tion to dpmlnate processing done by the strategies themel_v (c) Vi m5.7, with 20 characters as input. Contains 39166 branches, a
Experiments were run on 2GHz Core2 Duo servers witlestimated 23400 of which are reachable given our testirgys@e/iteration.

2GB of RAM and running Debian GNU/Linux. All uncon-
strained variables are initially set to zero.

Fig. 2. Branch coverage achieved on the three benchmarkisebglifferent
search strategies and by random testing over a fixed numberations. All

For bothgr ep and Vi m the way we instrument and runplots are averages over three runs.

the tested programs (e.g. with fixed-size inputs and fixed

command-line arguments) restricts the set of possiblerarog obtain coverage very rapidly, achieving at iterations 186 a
behaviors. Thus, in addition to reportingbsolute branch 150, respectively, greater coverage than the other steatelg
coverage, we reporelative coverage — the (estimated) fracin 4000 iterations.

tion of reachablebranches covered. We estimate the number

of reachable branches by summing the branches from each IV. CoNcLUSIONS

function that was reached by any test run. We believe that a combination of static and dynamic anal-
yses can help automated test generation to achieve significa
A. Replace. branch coverage on large software systems. Our experiinenta

r epl ace is a 600-line text processing program, the largestsults suggest that sophisticated search strategiaybary
in the Siemens Benchmark Suite [12]. We raepl ace those driven by static information such as a programs cbntro
with 10-symbolic-character source and destination pagt€s flow graph, can enable concolic execution to achieve greater
for bounded DFS) and a 20-symbolic-character line of tegbverage on larger, real-world programs.
in which to substitute. A minor optimization is needed for
the CFG-directed search on this benchmark, to handle the
small program size, the details of which are omitted for spac We would like to thank Caltech UGCS, of the Student
reasons. Computing Consortium, for providing the computing resesrc
As can be seen in Figure 2(a), in a single minute of testintged in this work. This work is supported in part by the NSF
all concolic search strategies were able to cover 80% of thgants CNS-0720906, CCF-0747390, and a gift from Toyota.
branches inr epl ace. In fact, in an additional couple of REFERENCES

minutes of testing the best concolic runs achieve 85% or even _ _ _
[1] D. Bird and C. Munoz, “Automatic Generation of Random fSel

ACKNOWLEDGMENTS

0
90% branch coverage. Checking Test CasedBM Systems Journalol. 22, no. 3, pp. 229-245,
1983.
B. GNU Grep 2.2 [2] J. E. Forrester and B. P. Miller, “An Empirical Study ofettiRobustness

GNU ar ep is a 15K-line open source C program for text of Windows NT Applications Using Random Testing,” Rroceedings
gr ep P prog of the 4th USENIX Windows System Sympos2000.

search with regl'”ar eXpre$SionS' We inStrun@nep 2210 _ [3] C. Csallner and Y. Smaragdakis, “JCrasher: an autonatiwistness
match a length-20 symbolic pattern (length-5 for DFS) agfain tester for Java,Software: Practice and Experienceol. 34, pp. 1025-

40 symbolic characters, using all the default matchingomysti 1050, 2004.
Y 9 C. Pacheco and M. D. Ernst, “Eclat: Automatic generatiomd classi-

: . . 4]
Figure Z(b) ShOWS_that in only a couple of minutes thé fication of test inputs,” in19th European Conference Object-Oriented
most effective strategies are able to cover nearly 60% of the Programming 2005.

estimated reachable branches. In particular, note thatfi@ [J.ch Kiﬂg}\;sy’rblog"ic Exe7°““°” ;;‘g ggzgriq‘?geﬁi”@ﬁmm“”icaﬁons
. of the vol. 19, no. 7, pp. —394, .
directed search and the random branch search outperfoigm L. Clarke, “A system to generate test data and symbdjicakecute

both random testing and a depth-first concolic search by a programsIEEE Trans. Software Engvol. 2, pp. 215-222, 1976.

significant marain. [7] P. Godefroid_, N. _Klarlund, and K. Sen, “DART: Directed tamated
9 9 random testing,” inProc. of the ACM SIGPLAN 2005 Conference on
C. Vim 5.7 Programming Language Design and Implementation (PLR0O05.

[8] K. Sen, D. Marinov, and G. Agha, “CUTE: A concolic unit teg
Vi m5.7 is a 150K-line open source text editor. We replace engine for C,” inSth joint meeting of the European Software Engineering

; ; ; Conference and ACM SIGSOFT Symposium on the Foundations of
the saf e_vget c and vget ¢ functions with one which Software Engineering (ESEC/FSE'0S)ACM. 2005,

returns up to 40 characters of symbolic input. These funstio [9] c. cadar, V. Ganesh, P. Pawlowski, D. Dill, and D. EnglEXE:
provide the inputs to most, but not all modes in Vim. We Automatically generating inputs of death,” iIACM Conference on

Computer and Communications Security (CCS 2006)6.
were thus unable to test Ex mode and several other parts[l%] G. Nzcula S. McPeak, S. Rahul, and ¥Al(Weimtgr “?:IL: tntediate

the .editor-)] language and tools for analysis and transformation of Crarog,” in
Figure 2(c) shows that in 2-3 hours of testing the most Proceedings of Conference on Compiler Constructi®d02.

; ; ;] B. Dutertre and L. M. de Moura, “A fast linear-arithmetsolver for
e.ffeCtlve search strategies covered '?ea”y a third of t_he éjsl DPLL(T),” in Computer Aided Verificatigrser. LNCS, vol. 4144, 2006,
timated reachable branches. In particular, the CFG-dickct pp g1-94.
search and random branch search achieve more than twicel[tBe J. Harrold and G. Rothermel, “Siemens programs, HRavisi" http:

coverage of the other methods. Further, these two strategie /Www.cc.gatech.edu/aristotle/Tools/subjects/.

