
Concurrent Breakpoints

Chang-Seo Park
EECS Department, UC Berkeley, USA

parkcs@cs.berkeley.edu

Koushik Sen
EECS Department, UC Berkeley, USA

ksen@cs.berkeley.edu

Abstract
In program debugging, reproducibility of bugs is a key requirement.
Unfortunately, bugs in concurrent programs are notoriously diffi-
cult to reproduce because bugs due to concurrency happen under
very specific thread schedules and the likelihood of taking such
corner-case schedules during regular testing is very low. We pro-
pose concurrent breakpoints, a light-weight and programmatic way
to make a concurrency bug reproducible. We describe a mechanism
that helps to hit a concurrent breakpoint in a concurrent execu-
tion with high probability. We have implemented concurrent break-
points as a light-weight library for Java and C/C++ programs. We
have used the implementation to deterministically reproduce sev-
eral known non-deterministic bugs in real-world concurrent Java
and C/C++ programs with almost 100% probability.

1. Motivation
A key requirement in program debugging is reproducibility. Devel-
opers require that a bug can be reproduced deterministically so that
they can confirm the bug and run the buggy execution repeatedly
with the aid of a debugger and find the cause of the bug. For se-
quential programs, a bug can be reproduced deterministically by
replaying the program with the recorded inputs and other sources
of non-determinism. Bugs in sequential programs can be reported
easily to a bug database because a user only needs to report the
input on which the sequential program exhibits the bug.

Unfortunately, bugs in concurrent programs happen under very
specific thread schedules and are often not reproducible during reg-
ular testing. Such non-deterministic bugs in concurrent programs
are called Heisenbugs. One could argue that Heisenbugs could be
made reproducible if the thread schedule is recorded along with
program inputs during a program execution. Recording and replay-
ing a thread schedule poses several problems: 1) It requires to ob-
serve the exact thread schedule either through program instrumen-
tation or by using some specialized hardware. Instrumentation of-
ten incurs huge overhead and specialized hardware are often not
readily available. 2) Replaying a thread schedule requires a special
runtime which could again incur huge overhead.

Nevertheless, we need some information about the thread
schedule along with the program inputs to reproduce a Heisen-
bug. We would like the information about thread schedules to be
portable so that we do not need a special runtime to reproduce
the bug. In this paper, we propose a simple light-weight technique
called concurrent breakpoints, to specify enough information about
a Heisenbug so that it can be reproduced with very high probability
without requiring a special runtime or a full recording of the thread
schedule.

Our technique for reproducibility is based on the observation
that Heisenbugs can often be attributed to a small set of program

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PPoPP’12, February 25–29, 2012, New Orleans, Louisiana, USA
Copyright c© 2012 ACM 978-1-4503-1160-1/12/02. . . $10.00

states, called conflict states. A program execution is said to be in a
conflict state if there exists two threads that are either 1) trying to
access the same memory location and at least one of the accesses is
a write (i.e. a data race), or 2) they are trying to operate on the same
synchronization object (e.g. contending to acquire the same lock).
Depending on how a conflict state is resolved, i.e. which thread is
allowed to execute first, a concurrent program execution could end
up in different states. Such difference in program states often lead
to Heisenbugs. Therefore, in order to reproduce a Heisenbug, one
should be able to reach those small set of conflict states and control
the program execution from those states.
2. Concurrent Breakpoints
In this paper, we propose concurrent breakpoints, a light-weight
and programmatic tool that facilitates reproducibility of Heisen-
bugs in concurrent programs. A concurrent breakpoint is an object
that defines a set of program states and a scheduling decision that
the program needs to take if a state in the set is reached. Typically,
the states described by a concurrent breakpoint would be a set of
conflict states.

Formally, a concurrent breakpoint is a tuple (`1, `2, φ), where
`1 and `2 are program locations and φ is a predicate over the
program state. A program execution is said to have triggered a
concurrent breakpoint (`1, `2, φ) if the following conditions are
met
• the program reaches a state that satisfies the predicate: ∃t1, t2 ∈
Threads.(t1.pc = `1) ∧ (t2.pc = `2) ∧ (t1 6= t2) ∧ φ, and

• from the above state, the program executes the next instruction
of thread t1 before the next instruction of thread t2.
That is, we say that a concurrent breakpoint (`1, `2, φ) is trig-

gered if the program reaches some program state and takes an ac-
tion from the state. The state is such that it satisfies the predicate
φ and there exists two threads t1 and t2 such that t1 and t2 are at
program locations `1 and `2 in the state, respectively. The action at
the state executes the thread t1 before the thread t2.

Note that in our definition, a concurrent breakpoint involves two
threads. The definition can be easily extended to involve more than
two threads. For example, a concurrent breakpoint (`1, `2, `3, φ)
involves three threads.
Example. We can trigger a feasible data race in a program, i.e.
reach a state in which two threads are about to access the same
memory location and at least one of them is a write, using a con-
current breakpoint as follows. Consider the program in Figure 1.
The concurrent breakpoint (2, 5, t1.p1 == t2.p2) represents the
state where two threads are at lines 2 and 5, respectively, and are
about to access the same memory location denoted by the field x
of the object referenced by both p1 and p2 and at least one of
the accesses is a write. (If v is a local variable of thread t, then
we denote the variable using t.v.) Such a racy state described by
the concurrent breakpoint could be reached if foo and bar are
executed in parallel by different threads on the same Point ob-
ject. The concurrent breakpoint also specifies that if the racy state
is ever reached, then the thread reaching line number 2 must exe-
cute its next instruction before the thread reaching line number 5
executes its next instruction. This forces the program to resolve the
data race in a particular order. The commented out code represents
the concurrent breakpoint in terms of library function calls. Inter-

1: void foo (Point p1) {
// (new ConflictBreakpoint("bp11",p1)).

breakHere(false,Global.TIMEOUT);
2: p1.x = 10;
3: }
4: void bar (Point p2) {

// (new ConflictBreakpoint("bp1",p2)).
breakHere(true,Global.TIMEOUT);

5: t = p2.x;
6: }

Figure 1. Example with data race

ested readers are referred to our technical report [4] for full details
of the library and its implementation.

Concurrent breakpoints could represent all conflict states, i.e.
they could represent data races and lock contentions. Concurrent
breakpoints could represent other buggy states, such as a deadlock
state or a state where an atomicity violation or a missed notification
happens. We argue in [4] that the necessary information about a
buggy schedule could be represented using a small set of concurrent
breakpoints: if a program execution could be forced to reach all
the concurrent breakpoints in the set, then the execution hits the
Heisenbug.

Given a concurrent breakpoint (`1, `2, φ), it is very unlikely that
two threads will reach statements labelled `1 and `2, respectively,
at the same time in a concurrent execution, even though each thread
could reach the statements independent of the other threads several
times during the execution. Therefore, a concurrent breakpoint
could be difficult to hit during a normal concurrent execution.

We describe a mechanism called BTRIGGER that tries to force
a program execution to a concurrent breakpoint. We rewrite the
predicate for a concurrent breakpoint as: ∃t1, t2 ∈ Threads. (t1 6=
t2) ∧ φt1 ∧ φt2 ∧ φt1t2 , where φt1 only refers to local variables
of thread t1, φt2 only refers to local variables of thread t2, and
φt1t2 refers to local variables of both t1 and t2. BTRIGGER works
as follows. During the execution of a program, whenever a thread
reaches a state satisfying the predicate φti where i ∈ {1, 2}, we
postpone the execution of the thread for T time units and keep
the thread in a set Postponedti for the postponed period. We
continue the execution of the other threads. If another thread, say
t, reaches a state satisfying the predicate φtj where j ∈ {1, 2}
then we do the following. If there is a postponed thread, say t′,
in the set Postponedti where i 6= j and local states of the two
threads t and t′ satisfy the predicate φt1t2 , then we report that the
concurrent breakpoint has been reached. Otherwise, we postpone
the execution of the thread t by T time units and keep the thread in
the set Postponedtj for the postponed period. If the concurrent
breakpoint is reached, we also order the execution of threads t
and t′ according to the order given by the concurrent breakpoint.
Note that we do not postpone the execution of a thread indefinitely
because this could result in a deadlock if all threads reach either `1
or `2 and none of the breakpoint predicates are satisfied by any pair
of postponed threads.

BTRIGGER ensures that if a thread reaches a state satisfying
the concurrent breakpoint partially (i.e. reaches a state satisfying
the predicate φt1 or φt2), it is paused for a reasonable amount
of time, giving a chance to other threads to catch up and create
a state that completely satisfies the concurrent breakpoint. This
simple mechanism significantly increases the likelihood of hitting
a concurrent breakpoint.

Our idea about concurrent breakpoints is motivated by recent
testing techniques for concurrent programs, such as CalFuzzer [3],
CTrigger [5], and PCT [1]. IMUnit [2], which is also closely re-
lated to this work, proposes a novel language to specify and exe-
cute schedules for multithreaded tests based on temporal logic and
instrumentation of code.

Runtime (seconds)
Benchmark LoC1 Normal w/ ctr OVH2 Breakpoint type Prob.3

cache4j 3897 1.992 2.089 4.9 race 1.00
2.051 3.0 atomicity 1.00

hedc 30K 1.780 3.835 115.4 race1 1.00

log4j 1.2.13 32K 0.190 0.208 9 deadlock 1.00
0.135 - - missed-notify 1.00

logging 4250 0.140 0.140 0 deadlock 1.00
lucene 171K 0.136 0.159 17 deadlock 1.00
moldyn 1290 1.098 1.204 9.7 race 1.00
montecarlo 3560 1.841 2.162 17.4 race 1.00
raytracer 1860 1.097 1.274 16.1 race 1.00
stringbuffer 1320 0.131 0.159 21 atomicity 1.00
swing 422K 0.902 12.003 1230 deadlock 0.99

syncList 7913 0.134 0.142 6 atomicity 1.00
0.131 0.134 2 deadlock 1.00

Table 1. Experimental results for Java programs (1Lines of code.
2Overhead(%). 3Empirical probability of triggering bug.)

3. Results
We have implemented concurrent breakpoints and BTRIGGER as
a light-weight library (containing a few hundreds of lines code)
for Java and C/C++ programs. We have used the implementation
to reproduce several known Heisenbugs in real-world Java and
C/C++ programs involving 1.6M lines of code. The breakpoints are
inserted as extra code in the program under test using bug reports
produced by CalFuzzer [3] and actual bug reports in bug databases.
We ran each program with the breakpoints 100 times to measure the
empirical probability of hitting the breakpoint. In our experiments,
concurrent breakpoints made these non-deterministic bugs almost
100% reproducible.

Table 1 summarizes the results for our experiments on Java
programs. For most of the benchmarks, the overhead of running the
program with the concurrent breakpoint library was within 40% of
the normal runtime. However, in some cases where we increased
the waiting time to achieve a higher probability of hitting the
breakpoint, the overhead became as large as 13x. Interested readers
are referred to our technical report [4] for more detail on the results,
including the results for C/C++ programs, and the methodology for
inserting concurrent breakpoints.
4. Conclusion
Traditionally, programmers have used various ad-hoc tricks, such
as inserting sleep statements and spawning a huge number of
threads, to make a Heisenbug reproducible. These tricks are often
found in various bug reports that are filed in open bug databases. We
proposed a more scientific and programmatic technique to make a
Heisenbug reproducible.

Acknowledgements
Research supported by Microsoft (Award #024263) and Intel (Award
#024894) funding and by matching funding by U.C. Discovery (Award
#DIG07-10227), by NSF Grants CCF-101781, CCF-0747390, CCF-
1018729, and CCF-1018730, and by a DoD NDSEG Graduate Fellowship.
The last author is supported in part by a Sloan Foundation Fellowship. Ad-
ditional support comes from Par Lab affiliates National Instruments, Nokia,
NVIDIA, Oracle, and Samsung.
References
[1] S. Burckhardt, P. Kothari, M. Musuvathi, and S. Nagarakatte. A ran-

domized scheduler with probabilistic guarantees of finding bugs. In
ASPLOS ’10, pages 167–178, New York, NY, USA, 2010. ACM.

[2] V. Jagannath, M. Gligoric, D. Jin, Q. Luo, G. Rosu, and D. Marinov.
Improved multithreaded unit testing. In ESEC/FSE ’11, pages 223–
233, New York, NY, USA, 2011. ACM.

[3] P. Joshi, M. Naik, C.-S. Park, and K. Sen. CalFuzzer: An extensible
active testing framework for concurrent programs. In CAV ’09, pages
675–681, Berlin, Heidelberg, 2009. Springer-Verlag.

[4] C.-S. Park and K. Sen. Concurrent triggers. Technical Report
UCB/EECS-2011-156, EECS Department, UC Berkeley, Dec 2011.

[5] S. Park, S. Lu, and Y. Zhou. CTrigger: exposing atomicity violation
bugs from their hiding places. In ASPLOS, pages 25–36. ACM, 2009.

	Motivation
	Concurrent Breakpoints
	Results
	Conclusion

