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Abstract
A formal analysis technique aiming at finding safety er-

rors in multithreaded systems atruntimeis investigated. An
automatic code instrumentation procedure based onmul-
tithreaded vector clocksfor generating the causal partial
order on relevant state update events from a running mul-
tithreaded program is first presented. Then, by means of
several examples, it is shown how this technique can be
used in a formal testing environment, not only to detect,
but especially topredict safety errorsin multithreaded pro-
grams. The prediction process consists of rigorously an-
alyzing other potential executions that are consistent with
the causal partial order: some of these can be erroneous
despite the fact that the particular observed execution is
successful. The proposed technique has been implemented
as part of a Java program analysis tool. A bytecode instru-
mentation package is used, so the Java source code of the
tested programs is not necessary.

1. Introduction and Motivation

A major drawback of testing is its lack of coverage: if an
error is not exposed by a particular test case then that error
is not exposed. To ameliorate this problem, test-case gener-
ation techniques have been developed to generate those test
cases that can reveal potential errors with high probability
[8, 18, 26]. Based on experience with and on the success in
practice of related techniques already implemented inJAVA

PATHEXPLORER (JPAX) [12, 11] and its sub-systemEA-
GLE [4], we have proposed in [23, 24] a complementary
approach to testing, which we call “predictive runtime anal-
ysis” and can be intuitively described as follows.

Suppose that a multithreaded program has a subtle safety
error. Like in testing, one executes the program on some
carefully chosen input (test case) and suppose that, unfor-
tunately, the error is not revealed during that particular ex-
ecution; such an execution is calledsuccessfulwith respect
to that bug. If one regards the execution of a program as a
flat, sequential trace of events or states, like NASA’sJPAX
system [12, 11], University of Pennsylvania’sJAVA -MAC
[17], or Bell Labs’ PET [10], then there is not much left to
do to find the error except to run another test case. However,
by observing the execution trace in a smarter way, namely

as a causal dependency partial order on state updates, one
can predict errors that can potentially occur in other possi-
ble runs of the multithreaded program.

The present work is an advance inruntime verifica-
tion [13], a more scalable and complementary approach to
the traditional formal verification methods such as theorem
proving and model checking [6]. Our focus here is on mul-
tithreaded systems with shared variables. More precisely,
we present a simple and effective algorithm that enables an
external observer of an executing multithreaded program to
detect and predict specification violations. The idea is to
properlyinstrumentthe system before its execution, so that
it will emit relevant events at runtime. No particular specifi-
cation formalism is adopted in this paper, but examples are
given using a temporal logic that we are currently consid-
ering in JAVA MULTI PATHEXPLORER (JMPAX) [23, 24],
a tool for safety violation prediction in Java multithreaded
programs which supports the presented technique.

In multithreaded programs, threads communicate via a
set of shared variables. Some variable updates can causally
depend on others. For example, if a thread writes a shared
variablex and then another thread writesy due to a state-
ment y = x + 1, then the update ofy causally depends
upon the update ofx. Only read-write, write-read and write-
write causalities are considered, because multiple consec-
utive reads of the same variable can be permuted without
changing the actual computation. A state is a map assign-
ing values to shared variables, and a specification consists
of properties on these states. Some variables may be of
no importance at all for an external observer. For exam-
ple, consider an observer which monitors the property “if
(x > 0) then(y = 0) has been true in the past, and since
then(y > z) was always false”. All the other variables ex-
ceptx, y andz are irrelevant for this observer (but they can
clearly affect the causal partial ordering). To minimize the
number of messages sent to the observer, we consider a sub-
set ofrelevant eventsand the associatedrelevant causality.

We present an algorithm that, given an executing mul-
tithreaded program, generates appropriate messages to be
sent to an external observer. The observer, in order to per-
form its more elaborated system analysis, extracts the state
update information from such messages together with the



relevant causality partial order among the updates. This par-
tial order abstracts the behavior of the running program and
is calledmultithreaded computation. By allowing an ob-
server to analyze multithreaded computations rather than
just flat sequences of events, one gets the benefit of not
only properly dealing with potential reordering of delivered
messages (reporting global state accesses), but also ofpre-
dicting errorsfrom analyzing successful executions, errors
which can occur under a different thread scheduling and can
be hard, if not impossible, to find by just testing.

To be more precise, let us consider a real-life example
where a runtime analysis tool supporting the proposed tech-
nique, such asJMPAX, would be able to predict a violation
of a property from a single, successful execution of the pro-
gram. However, like in the case of data-races, the chance
of detecting this safety violation by monitoring only the ac-
tual run is very low. The example consists of a two threaded
program to control the landing of an airplane. It has three
variableslanding , approved , andradio ; their values
are1 when theplane is landing, landing has been approved,
andradio signal is live, respectively, and0 otherwise. The
safety property to verify is “If the plane has started landing,
then it is the case that landing has been approved and since
the approval the radio signal has never been down.”

The code snippet for a naive implementation of this con-
trol program is shown in Fig. 1. It uses some dummy func-
tions, askLandingApproval and checkRadio , which
can be implemented properly in a real scenario. The pro-
gram has a serious problem that cannot be detected easily
from a single run. The problem is as follows. Suppose the
plane has received approval for landing and just before it
started landing the radio signal went off. In this situation,
the plane must abort landing because the property was vio-
lated. But this situation will very rarely arise in an execu-
tion: namely, whenradio is set to 0 between the approval
of landing and the start of actual landing. So a tester or a
simple observer will probably never expose this bug. How-
ever, note that even if the radio goes offafter the landing has
started, a case which is quite likely to be considered during
testing but in which the property isnot violated, JMPAX
will still be able to construct a possible run (counterexam-
ple) in which radio goes off between landing and approval.
In Section 4, among other examples, it is shown howJM-
PAX is able to predict two safety violations from a single
successful execution of the program. The user will be given
enough information (the entire counterexample execution)
to understand the error and to correct it. In fact, this er-
ror is an artifact of a bad programming style and cannot be
easily fixed - one needs to give a proper event-based imple-
mentation. This example shows the power of the proposed
runtime verification technique as compared to the existing
ones inJPAX andJAVA -MAC.

The main contribution of this paper is a detailed presen-

int landing = 0, approved = 0, radio = 1;
void thread1(){

askLandingApproval();
if(approved==1){

print("Landing approved");
landing = 1;
print("Landing started");}

else {print("Landing not approved");}}
void askLandingApproval(){

if(radio==0) approved = 0
else approved = 1;}

void thread2(){
while(radio){checkRadio();} }

void checkRadio(){
possibly change value of radio;}

Figure 1. A buggy implementation of a
flight controller.

tation of an instrumentation algorithm which plays a cru-
cial role in extracting the causal partial order from one flat
execution, and which is based on an appropriate notion of
vector clock inspired from [9, 21], calledmultithreaded vec-
tor clock (MVC). An MVC Vi is associated to each thread
ti, and two MVCsV a

x (access) andV w
x (write) are associ-

ated to each shared variablex. When a threadti processes
evente, which can be an internal event or a shared vari-
able read/write, the code in Fig. 2 is executed. We prove
thatA correctly implements the relevant causal partial or-
der, i.e., that for any two messages〈e, i, V 〉 and〈e′, j, V ′〉
sent byA, e ande′ are relevant ande causally precedese′

iff V [i] ≤ V ′[i]. This algorithm can be implemented in sev-
eral ways. In the case of Java, we prefer to implement it as
an appropriate instrumentation procedure of code or byte-
code, to executeA whenever a shared variable is accessed.
Another implementation could be to modify a JVM. Yet an-
other one would be to enforce shared variable updates via
library functions, which executeA as well. All these can
add significant delays to the normal execution of programs.

ALGORITHM A
INPUT: evente generated by threadti

1. if e is relevant then
Vi[i] ← Vi[i] + 1

2. if e is a read of a shared variablex then
Vi ← max{Vi, V

w
x }

V a
x ← max{V a

x , Vi}
3. if e is a write of a shared variablex then

V w
x ← V a

x ← Vi ← max{V a
x , Vi}

4. if e is relevant then
send message〈e, i, Vi〉 to observer

Figure 2. The vector clock instrumen-
tation algorithm.
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2. Multithreaded Systems
We consider multithreaded systems in which several

threads communicate with each other via a set of shared
variables. A crucial point is that some variable updates can
causally depend on others. We will present an algorithm
which, given an executing multithreaded program, gener-
ates appropriate messages to be sent to an external observer.
The observer, in order to perform its analysis, extracts the
state update information from such messages together with
the causality partial order among the updates.

2.1. Multithreaded Executions

Givenn threadst1, t2, ..., tn, amultithreaded execution
is a sequence of eventse1e2 . . . er, each belonging to one
of then threads and having typeinternal, reador write of a
shared variable. We useej

i to represent thej-th event gen-
erated by threadti since the start of its execution. When the
thread or position of an event is not important we can refer
to it generically, such ase, e′, etc.; we may writee ∈ ti
when evente is generated by threadti. Let us fix an arbi-
trary but fixed multithreaded execution, sayM, and letS
be the set of all shared variables. There is an immediate no-
tion of variable access precedencefor each shared variable
x ∈ S: we saye x-precedese′, written e <x e′, if and
only if e ande′ are variable access events (reads or writes)
to the same variablex, ande “happens before”e′, that is,e
occurs beforee′ in M. This “happens-before” relation can
be realized in practice by keeping a counter for each shared
variable, which is incremented at each variable access.

2.2. Causality and Multithreaded Computations

Let E be the set of events occurring inM and let≺ be
the partial order onE :

• ek
i ≺ el

i if k < l;
• e ≺ e′ if there isx ∈ S with e <x e′ and at least one

of e, e′ is a write;
• e ≺ e′′ if e ≺ e′ ande′ ≺ e′′.

We writee||e′ if e 6≺ e′ ande′ 6≺ e. The partial order≺ onE
defined above is called themultithreaded computationasso-
ciated with the original multithreaded executionM. Syn-
chronization of threads can be easily and elegantly taken
into consideration by just generating appropriate read/write
events when synchronization objects are acquired/released,
so the simple notion of multithreaded computation as de-
fined above is as general as practically needed. A permuta-
tion of all eventse1, e2, ...,er that does not violate the mul-
tithreaded computation, in the sense that the order of events
in the permutation is consistent with≺, is called aconsis-
tent multithreaded run, or simply, amultithreaded run.

A multithreaded computation can be thought of as the
most general assumptionthat an observer of the multi-
threaded execution can make about the system without

knowing its semantics. Indeed, an external observer sim-
ply cannot disregardthe order in which the same variable is
modified and used within the observed execution, because
this order can be part of the intrinsic semantics of the multi-
threaded program. However, multiple causally independent
modifications of different variable can be permuted, and
the particular order observed in the given execution is not
critical. By allowing an observer to analyzemultithreaded
computationsrather than justmultithreaded executionslike
JPAX [12, 11], JAVA -MAC [17], and PET [10], one gets
the benefit of not only properly dealing with potential re-
orderings of delivered messages (e.g., due to using multi-
ple channels to reduce the monitoring overhead), but also
of predicting errorsfrom analyzing successful executions,
errors which can occur under a different thread scheduling.

2.3. Relevant Causality

Some variables inS may be of no importance for an ex-
ternal observer. For example, consider an observer whose
purpose is to check the property “if(x > 0) then(y = 0)
has been true in the past, and since then(y > z) was al-
ways false”; formally, using the interval temporal logic no-
tation notation in [15], this can be compactly written as
(x > 0) → [y = 0, y > z). All the other variables inS
exceptx, y andz are essentially irrelevant for this observer.
To minimize the number of messages, like in [20] which
suggests a similar technique but for distributed systems in
which reads and writes are not distinguished, we consider a
subsetR ⊆ E of relevant eventsand define theR-relevant
causalityonE as the relation/ :=≺ ∩(R×R), so thate/e′

if and only if e, e′ ∈ R ande ≺ e′. It is important to notice
though that the other variables can also indirectly influence
the relation/, because they can influence the relation≺.

3. Multithreaded Vector Clock Algorithm

In this section, inspired and stimulated by the elegance
and naturality of vector clocks [9, 21, 3] in implement-
ing causal dependency in distributed systems, we next de-
vise an algorithm to implement the relevant causal depen-
dency relation in multithreaded systems. Since in multi-
threaded systems communication is realized by shared vari-
ables rather than message passing, to avoid any confusion
we call the corresponding vector-clock data-structuresmul-
tithreaded vector clocksand abbreviate them(MVC). The
algorithm presented next has been mathematically derived
from its desired properties, after several unsuccessful at-
tempts to design it on a less rigorous basis. In this section
we present it also in a mathematically driven style, because
we believe that it reflects an instructive methodology to de-
vise instrumentation algorithms for multithreaded systems.

Let Vi be ann-dimensional vector of natural numbers
for each1 ≤ i ≤ n. Since communication in multi-
threaded systems is done via shared variables, and since
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reads and writes have different weights, we letV a
x andV w

x

be two additionaln-dimensional vectors for each shared
variablex; we call the formeraccess MVCand the latter
write MVC. All MVCs are initialized to0. As usual, for
two n-dimensional vectors,V ≤ V ′ iff V [j] ≤ V ′[j] for
all 1 ≤ j ≤ n, andV < V ′ iff V ≤ V ′ and there is
some1 ≤ j ≤ n such thatV [j] < V ′[j]; also,max{V, V ′}
is the vector withmax{V, V ′}[j] = max{V [j], V ′[j]} for
each1 ≤ j ≤ n. Our goal is to find a procedure that up-
dates these MVCs and emits a minimal amount of events to
an external observer, which can further extract the relevant
causal dependency relation. Formally, the requirements of
such a procedure, sayA, which works as a filter of the given
multithreaded execution, must include the following natural

Requirements forA. AfterA updates the MVCs as a con-
sequence of the fact that threadti generates eventek

i during
the multithreaded executionM, the following should hold:

(a) Vi[j] equals the number of relevant events oftj that
causally precedeek

i ; if j = i and ek
i is relevant then

this number also includesek
i ;

(b) V a
x [j] equals the number of relevant events oftj that

causally precede the most recent event1 that accessed
(read or wrote)x; if i = j andek

i is a relevant read or
write ofx event then this number also includesek

i ;
(c) V w

x [j] equals the number of relevant events oftj that
causally precede the most recent write event ofx; if
i = j andek

i is a relevant write ofx then this number
also includesek

i .

Finally and most importantly,A should correctly implement
the relative causality (stated formally in Theorem 3).

In order to derive our algorithmA satisfying the properties
above, let us first introduce some notation. For an eventek

i

of threadti, let (ek
i ] be the indexed set{(ek

i ]j}1≤j≤n, where
(ek

i ]j is the set{el
j | el

j ∈ tj , el
j ∈ R, el

j ≺ ek
i }whenj 6= i

and the set{el
i | l ≤ k, el

i ∈ R} whenj = i.

Lemma 1 With the notation above, for1 ≤ j ≤ n:

1. (el
j ]j ⊆ (el′

j ]j if l ≤ l′;

2. (el
j ]j ∪ (el′

j ]j = (emax{l,l′}
j ]j for anyl andl′;

3. (el
j ]j ⊆ (ek

i ]j for anyel
j ∈ (ek

i ]j ; and
4. (ek

i ]j = (el
j ]j for some appropriatel.

Thus, by4 above, one can uniquely and unambiguously en-
code a set(ek

i ]j by just a number, namely the size of the cor-
responding set(el

j ]j , i.e., the number of relevant events of
threadtj up to itsl-th event. This suggests that if the MVC
Vi maintained byA stores that number in itsj-th component
then(a) in the list of requirementsA would be fulfilled.

Let us next move to the MVCs of reads and writes of
shared variables. For a variablex ∈ S, let ax(ek

i ) and

1Most recent with respect to the given multithreaded executionM.

wx(ek
i ) be, respectively, the most recent events that ac-

cessedx and wrotex in M, respectively. If such events
do not exist then we letax(ek

i ) and/orwx(ek
i ) undefined; if

e is undefined then we also assume that(e] is empty. We
introduce the following notations for anyx ∈ S:

(ek
i ]ax =

{
(ek

i ] if ek
i is an access tox, and

(ax(ek
i )] otherwise;

(ek
i ]wx =

{
(ek

i ] if ek
i is a write tox, and

(wx(ek
i )] otherwise.

Note that ifA is implemented such thatV a
x andV w

x store
the corresponding numbers of elements in the index sets of
(ek

i ]ax and(ek
i ]wx immediately after eventek

i is processed by
threadti, respectively, then(b) and(c) in the list of require-
ments forA are also fulfilled.

We next focus on how MVCs need to be updated byA
when eventek

i is encountered. With the notation introduced,
one can observe the following recursive properties, where
{ek

i }Ri is the indexed set whose components are empty for
all j 6= i and whosei-th component is either the one ele-
ment set{ek

i } whenek
i ∈ R or the empty set otherwise:

Lemma 2 Given any eventek
i in M such thatek

i is
1. An internal event then

(ek
i ] = (ek−1

i ] ∪ {ek
i }Ri ,

(ek
i ]ax = (ax(ek

i )], for anyx ∈ S,
(ek

i ]wx = (wx(ek
i )], for anyx ∈ S;

2. A read ofx event then

(ek
i ] = (ek−1

i ] ∪ {ek
i }Ri ∪ (wx(ek

i )],
(ek

i ]ax = (ek
i ] ∪ (ax(ek

i )],
(ek

i ]ay = (ay(ek
i )], for anyy ∈ S with y 6= x,

(ek
i ]wy = (wy(ek

i )], for anyy ∈ S;

3. A write ofx event then

(ek
i ] = (ek−1

i ] ∪ {ek
i }Ri ∪ (ax(ek

i )],
(ek

i ]ax = (ek
i ],

(ek
i ]wx = (ek

i ],
(ek

i ]ay = (ay(ek
i )], for anyy ∈ S with y 6= x,

(ek
i ]wy = (wy(ek

i )], for anyy ∈ S with y 6= x.

Since each component set of each of the indexed sets in
these recurrences has the form(el

j ]j for appropriatej andl,
and since each(el

j ]j can be safely encoded by its size, one
can then safely encode each of the above indexed sets by an
n-dimensional MVC; these MVCs are preciselyVi for all
1 ≤ i ≤ n andV a

x andV w
x for all x ∈ S. It is a simple ex-

ercise now to derive2 the MVC update algorithmA given in
Section 1. Therefore,A satisfies all the stated requirements
(a), (b) and(c), so they can be used as properties next:

2An interesting observation here is that one can regard the problem of
recursively calculating(ek

i ] as a dynamic programming problem. As can
often be done in dynamic programming problems, one can reuse space and
derive the AlgorithmA.
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Theorem 3 If 〈e, i, V 〉 and 〈e′, j, V ′〉 are two messages
sent byA, thene / e′ if and only if V [i] ≤ V ′[i] if and
only if V < V ′.
Proof: First, note thate ande′ are both relevant. The case
i = j is trivial. Supposei 6= j. Since, by requirement(a)
for A, V [i] is the number of relevant events thatti gener-
ated before and includinge and sinceV ′[i] is the number
of relevant events ofti that causally precedee′, it is clear
thatV [i] ≤ V ′[i] iff e ≺ e′. For the second part, ife / e′

thenV ≤ V ′ follows again by requirement(a), because any
event that causally precedese also precedese′. Since there
are some indicesi and j such thate was generated byti
ande′ by tj , and sincee′ 6≺ e, by the first part of the the-
orem it follows thatV ′[j] > V [j]; therefore,V < V ′. For
the other implication, ifV < V ′ thenV [i] ≤ V ′[i], so the
result follows by the first part of the theorem.¤

3.1. Synchronization and Shared Variables
Thread communication in multithreaded systems was

considered so far to be accomplished by writing/reading
shared variables, which were assumed to be knowna pri-
ori. In the context of a language like Java, this assumption
works only if the shared variables are declaredstatic; it is
less intuitive when synchronization and dynamically shared
variables are considered as well. Here we show that, under
proper instrumentation, the basic algorithm presented in the
previous subsection also works in the context of synchro-
nization statements and dynamically shared variables.

Since in Java synchronized blocks cannot be interleaved,
so corresponding events cannot be permuted, locks are con-
sidered as shared variables and a write event is generated
whenever a lock is acquired or released. This way, a causal
dependency is generated between any exit and any entry of
a synchronized block, namely the expected happens-before
relation. Java synchronization statements are handled ex-
actly the same way, that is, the shared variable associated to
the synchronization object is written at the entrance and at
the exit of the synchronized region. Condition synchroniza-
tions (wait/notify) can be handled similarly, by generating
a write of a dummy shared variable by both the notifying
thread before notification and by the notified thread after
notification.

To handle variables that are dynamically shared, for
each variablex of primitive type in each class the instru-
mentation program addsaccessandwrite MVCs, namely
_access_mvc_x and_write_mvc_x , as new fields in
the class. Moreover, for each read and write access of a
variable of primitive type in any class, it adds codes to up-
date the MVCs according to the multithreaded vector clock
algorithm.

3.2. A Distributed Systems Interpretation
It is known that the various mechanisms for process in-

teraction are essentially equivalent. This leads to the follow-

ing natural question: could it be possible to derive the MVC
algorithm in this section from vector clock based algorithms
implementing causality in distributed systems, such as the
ones in [3, 7]. The answer to this question is:almost.

Since writes and accesses of shared variables have differ-
ent impacts on the causal dependency relation, the most nat-
ural thing to do is to associate two processes to each shared
variablex, one for accesses, sayxa and one for writes, say
xw. As shown in Fig. 3 right, a write ofx by threadi can be
seen as sending a “request” message to writex to the “ac-
cess process”xa, which further sends a “request” message
to the “write process”xw, which performs the action and
then sends an acknowledgment messages back toi. This is
consistent with step 3 of the algorithm in Fig. 2; to see this,
note thatV w

x ≤ V a
x at any time.

However, a read ofx is less obvious and does not seem
to be interpretable by message passing updating the MVCs
the standard way. The problem here is that the MVC ofxa

needs to be updated with the MVC of the accessing thread
i, the MVC of the accessing threadi needs to be updated
with the current MVC ofxw in order to implant causal de-
pendencies between previous writes ofx and the current
access, but the point here is that the MVC ofxw doesnot
have to be updated by reads ofx; this is what allows reads
to be permutable by the observer. In terms of message pass-
ing, like Fig. 3 shows, this says that the access processxa

sends ahiddenrequest message toxw (after receiving the
read request fromi), whose only role is to “ask”xw send an
acknowledgment message toi. By hidden message, marked
with dotted line in Fig. 3, we mean a message which is
not considered by the standard MVC update algorithm. The
role of the acknowledgment message is to ensure thati up-
dates its MVC with the one of the write access processxw.

a w a wi x x i x x

Figure 3. A distributed systems interpre-
tation of reads (left) and writes (right).

4. The Vector Clock Algorithm at Work
In this section we propose predictive runtime analysis

frameworks in which the presented MVC algorithm can
be used, and describe by examples how we use it inJAVA

MULTI PATHEXPLORER (JMPAX) [23, 24, 16].
The observer therefore receives messages of the form

〈e, i, V 〉 in any order, and, thanks to Theorem 3, can ex-
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tract the causal partial order/ on relevant events, which is
its abstraction of the running program. Any permutation
of the relevant events which is consistent with/ is called
a multithreaded run, or simply arun. Notice that each run
corresponds to some possible execution of the program un-
der different execution speeds or scheduling of threads, and
that the observed sequence of events is just one such run.
Since each relevant event contains global state update infor-
mation, each run generates a sequence of global states. If
one puts all these sequences together then one gets a lattice,
called computation lattice. The reader is assumed famil-
iar with techniques on how to extract a computation lattice
from a causal order given by means of vector clocks [21].
Given a global property to analyze, the task of the observer
now is to verify it against every path in the automatically ex-
tracted computation lattice.JPAX andJAVA -MAC are able
to analyze only one path in the lattice. The power of our
technique consists of its ability to predict potential errors in
other possible multithreaded runs.

Once a computation lattice containing all possible runs is
extracted, one can start using standard techniques on debug-
ging distributed systems, considering both state predicates
[25, 7, 5] and more complex, such as temporal, properties
[2, 5, 1, 4]. Also, the presented algorithm can be used as
a front-end to partial order trace analyzers such as POTA
[22]. Also, since the computation lattice acts like an abstract
model of the running program, one can potentially run one’s
favorite model checker against any property of interest. We
think, however, that one can do better than that if one takes
advantage of the specific runtime setting of the proposed
approach. The problem is that the computation lattice can
grow quite large, in which case storing it might become a
significant matter. Since events are received incrementally
from the instrumented program, one can buffer them at the
observer’s side and then build the lattice on a level-by-level
basis in a top-down manner, as the events become available.
The observer’s analysis process can also be performed in-
crementally, so that parts of the lattice which become non-
relevant for the property to check can be garbage-collected
while the analysis process continues.

If the property to be checked can be translated into
a finite state machine (FSM) or if one can synthesize
online monitors for it, like we did for safety properties
[24, 14, 15, 23], then one can analyze all the multithreaded
runsin parallel, as the computation lattice is built. The idea
is to store the state of the FSM or of the synthesized monitor
together with each global state in the computation lattice.
This way, in any global state, all the information needed
about the past can be stored via a set of states in the FSM
or the monitor associated to the property to check, which is
typically quite small in comparison to the computation lat-
tice. Thus only one cut in the computation lattice is needed
at any time, in particular one level, which significantly re-

duces the space required by the proposed predictive analysis
algorithm.

Liveness properties apparently do not fit our runtime ver-
ification setting. However, stimulated by recent encourag-
ing results in [19], we believe that it is also worth exploring
techniques that canpredict violations of liveness properties.
The idea here is to search for paths of the formuv in the
computation lattice with the property that the shared vari-
able global state of the multithreaded program reached by
u is the same as the one reached byuv, and then to check
whetheruvω satisfies the liveness property. The intuition
here is that the system can potentially run into the infinite
sequence of statesuvω (u followed by infinity many repe-
titions of v), which may violate the liveness property. It is
shown in [19] that the testuvω |= ϕ can be done in poly-
nomial time and space in the sizes ofu, v andϕ, typically
linear inuv, for almost any temporal logic.

4.1. Java MultiPathExplorer (JMPaX)
JMPAX [23, 24] is a runtime verification tool which

checks a user defined specification against a running pro-
gram. The specifications supported byJMPAX allow any
temporal logic formula, using an interval-based notation
built on state predicates, so our properties can refer to the
entire history of states. Fig. 4 shows the architecture ofJM-
PAX. An instrumentation module parses the user specifica-
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Compile


Instrumentor


Instrumented
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LTL
 Monitor
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Computation Lattice


Monitor


Execution

Program Execution


JVM


Instrument


Event Stream


Instrumentation


Module

Monitoring


Module


Figure 4. The Architecture of JMPAX.

tion, extracts the set of shared variables it refers to, i.e., the
relevant variables, and theninstrumentsthe multithreaded
program (which is assumed in bytecode form) as follows.
Whenever a shared variable is accessed the MVC algorithm
A in Section 3 is inserted; if the shared variable is relevant
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and the access is a write then the event is considered rel-
evant. When the instrumented bytecode is executed, mes-
sages〈e, i, V 〉 for relevant eventse are sent via a socket to
an external observer.

The observer generates the computation lattice on a
level by level basis, checking the user defined specification
against all possible multithreaded runs in parallel. Note that
only one of those runs was indeed executed by the instru-
mented multithreaded program, and that the observer does
not know it; the other runs arepotentialruns, they can occur
in other executions of the program. Despite the exponential
number of potential runs, at most two consecutive levels in
the computation lattice need to be stored at any moment.
[23, 24] gives more details on the particular implementa-
tion of JMPAX. We next discuss two examples whereJM-
PAX can predict safety violations from successful runs; the
probability of detecting these bugs only by monitoring the
observed run, asJPAX andJAVA -MAC do, is very low.

Example 1. Let us consider the simple landing controller
in Fig.1, together with the property “If the plane has started
landing, then it is the case that landing has been approved
and since then the radio signal has never been down.” Sup-
pose that a successful execution is observed, in which the
radio goes downafter the landing has started. After instru-
mentation, this execution emits only three events to the ob-
server in this order: a write ofapproved to 1, a write of
landing to 1, and a write ofradio to 0. The observer
can now build the lattice in Fig.5, in which the states are
encoded by triples<landing,approved,radio> and the
leftmost path corresponds to the observed execution. How-
ever, the lattice contains two other runs both violating the
safety property. The rightmost one corresponds to the sit-

<1,1,1>

<1,1,0>

<0,0,1>

<0,1,1> <0,0,0>

<0,1,0>

Figure 5. Computation lattice
for the program in Fig. 1.

uation when the radio goes down right between the test
radio==0 and the actionapproved=1 , and the inner one
corresponds to that in which the radio goes down between
the actionsapproved=1 andlanding=1 . Both these erro-
neous behaviors are insightful and very hard to find by test-
ing. JMPAX is able to build the two counterexamples very
quickly, since there are only 6 states to analyze and three
corresponding runs, so it is able to give useful feedback.

Example 2. Let us now consider an artificial example in-

tended to further clarify the prediction technique. Suppose
that one wants to monitor the safety property “if(x > 0)
then (y = 0) has been true in the past, and since then
(y > z) was always false” against a multithreaded pro-
gram in which initially x = −1, y = 0 and z = 0,
with one thread containing the codex++; ...; y = x + 1
and another containingz = x + 1; ...; x++. The dots
indicate code that is not relevant, i.e., that does not ac-
cess the variablesx, y and z. This multithreaded pro-
gram, after instrumentation, sends messages toJMPAX’s
observer whenever the relevant variablesx, y, z are up-
dated. A possible execution of the program to be sent to
the observer can consist of the sequence of program states
(−1, 0, 0), (0, 0, 0), (0, 0, 1), (1, 0, 1), (1, 1, 1), where
the tuple(−1, 0, 0) denotes the state in whichx = −1, y =
0, z = 0. Following the MVC algorithm, we can deduce
that the observer will receive the multithreaded computation
shown in Fig. 6, which generates the computation lattice
shown in the same figure. Notice that the observed multi-
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Figure 6. Computation lattice with three runs.

threaded execution corresponds to just one particular multi-
threaded run out of the three possible, namely the leftmost
one. However, another possible run of the same computa-
tion is the rightmost one, which violates the safety property.
Systems likeJPAX and JAVA -MAC that analyze only the
observed runs fail to detect this violation.JMPAX predicts
this bug from the original successful run.
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5. Conclusion

A simple and effective algorithm for extracting the relevant
causal dependency relation from a running multithreaded
program was presented in this paper. This algorithm is sup-
ported byJMPAX, a runtime verification tool able to detect
and predict safety errors in multithreaded programs.
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