
Actively learning to verify safety for FIFO

automata

Abhay Vardhan, Koushik Sen, Mahesh Viswanathan, Gul Agha ⋆

Dept. of Computer Science, Univ. of Illinois at Urbana-Champaign, USA
{vardhan,ksen,vmahesh,agha}@cs.uiuc.edu

Abstract. We apply machine learning techniques to verify safety prop-
erties of finite state machines which communicate over unbounded FIFO
channels. Instead of attempting to iteratively compute the reachable
states, we use Angluin’s L* algorithm to learn these states symbolically
as a regular language. The learnt set of reachable states is then used
either to prove that the system is safe, or to produce a valid execution of
the system that leads to an unsafe state (i.e. to produce a counterexam-
ple). Specifically, we assume that we are given a model of the system and
we provide a novel procedure which answers both membership and equiv-
alence queries for a representation of the reachable states. We define a
new encoding scheme for representing reachable states and their witness
execution; this enables the learning algorithm to analyze a larger class
of FIFO systems automatically than a naive encoding would allow. We
show the upper bounds on the running time and space for our method.
We have implemented our approach in Java, and we demonstrate its
application to a few case studies.

1 Introduction

Infinite state systems often arise as natural models for various software systems
at the design and modeling stage. An interesting class of infinite state systems
consists of finite state machines that communicate over unbounded first-in-first-
out channels, called FIFO automata. FIFO automata are commonly used to
model various communication protocols; languages, such as Estelle and SDL
(Specification and Description Language), in which processes have infinite queue
size; distributed systems and various actor systems. A generic task in the auto-
mated verification of safety properties of any system is to compute a represen-
tation for the set of reachable states. For finite state systems, this is typically
done by an exhaustive exploration of the state-space. However, for infinite state
systems, exhaustive exploration of the state space is impossible; in fact, the
verification problem in general can shown to be undecidable.

In the Lever (LEarning to VERify) project, we are pursuing the goal of using
machine learning techniques for verification of infinite state systems. The idea

⋆ The third author was supported in part by DARPA/AFOSR MURI Award F49620-
02-1-0325 and NSF 04-29639. The other three authors were supported in part by
DARPA IPTO TASK Program (contract F30602-00-2-0586), ONR Grant N00014-
02-1-0715, and Motorola Grant MOTOROLA RPS #23 ANT

is as follows. Instead of computing the reachable states by iteratively applying
the transition relation until a fixpoint is reached (which may not be possible
in a finite number of iterations), we view the identification of the reachable
states as a language inference problem. Naturally, in order for a learner to be
able to learn the reachable region, we have to provide it with some information
about the reachable states. We can easily find examples of reachable states by
executing some sample sequence of transitions. Moreover, given a set of states
as the supposed reachable region, we can check if this set is a fixpoint under the
transition relation. If it is not a fixpoint then clearly it is not the correct reachable
region. However, most learning algorithms also require either negative examples
of the concept being learned or the ability to make membership and equivalence
queries. To provide this information, the algorithm learns an annotated trace

language representing reachable states as well as system executions witnessing
the reachability of these states. If the learning algorithm outputs a set of traces
that is closed under the transition relation of the system and does not reach
any of the unsafe states then clearly the system can deemed to be correct. On
the other hand, unsafe states output by the learning algorithm can be used to
obtain executions (called counter-examples) leading to the unsafe state because
we learn traces which provide witnesses along with the reachable states. Spurious
counter-examples can be used by the learner to refine the hypothesis, and the
process is repeated until either a valid counterexample is found or the system is
shown to be correct. Finally, based on the practical success enjoyed by regular

model checking [6], we assume that the set of annotated traces to be learnt is
regular. Our main observation is that this learning based approach is a complete

verification method for systems whose annotated trace language is regular (for
a precise condition see Section 4). In other words, for such systems, we will
eventually either find a buggy execution that violates the safety property, or
we will successfully prove that no unsafe state is reachable. We have previously
applied the RPNI[11] algorithm for verification of safety properties [14].

This paper presents two main new ideas. Firstly, we give a new scheme for
the annotations on traces. With this annotation scheme, many more practical
FIFO systems have regular annotated trace languages, thus enlarging the class of
systems that can be provably verified by our method. Secondly and more signifi-
cantly, we provide a method to devise a knowledgeable teacher which can answer
membership (whether a string belongs to the target) as well as equivalence-
queries (given a hypothesis, whether it matches the concept being learnt). In the
context of learning annotated traces, equivalence queries can be answered only
to a limited extent. However, we overcome our limitation to answer equivalence
queries exactly and present an approach that is still able to use the powerful
query-based learning framework. Our decision to use Angluin’s L* algorithm [2]
gives us significant benefits. First, the number of samples we need to consider
is polynomial in the size of the minimal automaton representing the annotated
traces. Second, we are guaranteed to learn the minimal automaton that rep-
resents the annotated traces. Finally, we can show that the running time is
bounded by a polynomial in the size of the minimal automaton representing the

annotated traces and the time taken to verify if an annotated trace is valid for
the FIFO system.

We have implemented our algorithm in Java and demonstrated the feasibility
of this method by running the implementation on simple examples and network
protocols, such as the alternating-bit protocol and the sliding window protocol.
Our approach is complementary to previously proposed algorithmic verification
methods; there are examples of FIFO automata that our method successfully
verifies; however other approaches, fail (see [13]). We give the requirements
under which classes of infinite state systems other than FIFO automata can be
verified using the learning approach. Proofs of propositions and the details of
the complexity analysis are available in the full version of the paper [13].

Related Work: For automatic verification of infinite state FIFO systems, the
state space has to be represented by symbolic means. Some common represen-
tations are regular sets [6, 1], Queue Decision Diagrams [4], semi-linear regular
expressions [7], and constrained QDDs [5]. Since an iterative approach of com-
puting the fixpoint for reachability may not terminate, various mechanisms are
used for finding the reachable set. In the approach using meta-transitions and
acceleration [4, 5, 7], a sequence of transitions, referred to as a meta-transition,
is selected, and the effect of its infinite iteration is calculated. Another popular
method for verification of FIFO automata (and parameterized and integer sys-
tems) is regular model checking [6, 1] where reachable states are represented as
regular sets, and a transducer is used to represent the transition relation. An
approach for computing the reachable region that is closely related to ours is
widening given in [6] and extended in [12] for parametric systems. However, in
addition to proving a system correct, our approach can also detect bugs, which
is not possible using widening (except for certain special contexts where it can
be shown to be exact).

We introduced the learning to verify approach in [14], where we used RPNI [11]
to learn the regular set from positive and negative queries without active queries.
Concurrently and independently of our work, Habermehl et al. [8] have also pro-
posed a learning based approach for verification of systems whose transition can
be represented by a length-preserving transducer. They find all strings of a cer-
tain length that can be reached from the initial state and use a state merging
algorithm to learn the regular set representing the reachable region.

A more detailed description of the related work is available from the full
version of this paper [13].

2 Learning framework

We use Angluin’s L* algorithm [2] which falls under the category of active learn-

ing. Angluin’s L* algorithm requires a Minimally Adequate Teacher, which pro-
vides an oracle for membership (whether a given string belongs to a target
regular set) and equivalence queries (whether a given hypothesis matches the
target regular set). If the teacher answers no to an equivalence query, it also

provides a string in the symmetric difference of the hypothesis and the target
sets. The main idea behind Angluin’s L* algorithm is to systematically explore
strings in the alphabet for membership and create a DFA with minimum number
of states to make a conjecture for the target set. If the conjecture is incorrect,
the string returned by the teacher is used to make corrections, possibly after
more membership queries. The algorithm maintains a prefix closed set S repre-
senting different possible states of the target DFA, a set SA for the transition
function consisting of strings from S extended with one letter of the alphabet,
and a suffix closed set E denoting experiments to distinguish between states. An
observation table with rows from (S ∪ SA) and columns from E stores results of
the membership queries for strings in (S ∪ SA).E and is used to create the DFA
for a conjecture. Angluin’s algorithm is guaranteed to terminate in polynomial
time with the minimal DFA representing the target set.

3 FIFO Automata

A FIFO automaton [7] is a 6-tuple (Q, q0, C,M,Θ, δ) where Q is a finite set of
control states, q0 ∈ Q is the initial control state, C is a finite set of channel

names, M is a finite alphabet for contents of a channel, Θ is a finite set of
transitions names, and δ : Θ → Q × ((C × {?, !} × M) ∪ {τ}) × Q is a function
that assigns a control transition to each transition name. For a transition name θ,
if the associated control transition δ(θ) is of the form (q, c?m, q′) then it denotes
a receive action, if it is of the form (q, c!m, q′) it denotes a send action, and if it
is of the form (q, τ, q′) then it denotes an internal action. We use the standard
operational semantics of FIFO automata in which channels are considered to be
perfect and messages sent by a sender are received in the order in which they

were sent. For states s1, s2 ∈ S = Q× (M∗)C , we write s1
θ
→ s2 if the transition

θ leads from s1 to s2. For σ = θ1θ2 · · · θn ∈ Θ∗, we say s
σ
→ s′ when there exist

states s1 . . . sn−1 such that s
θ1→ s1

θ2→ · · · sn−1
θn→ s′. The trace language of the

FIFO automaton is L(F) = {σ ∈ Θ∗ | ∃s. s0
σ
→ s} where s0 = (q0, (ǫ, . . . , ǫ)),

i.e., the initial control state with no messages in the channels.

4 Verification procedure

We assume that we are given a model of the FIFO automata which enables us to
identify the transition relation of the system. To use Angluin’s L* algorithm for
learning, we need to answer both membership and equivalence queries for the
reachable set. However, there is no immediate way of answering a membership
query (whether a certain state is actually reachable or not). Therefore, instead
of learning the set of reachable states directly, we learn a language which allows
us to identify both the reachable states and candidate witnesses (in terms of the
transitions of the system) to these states. The validity of any witness can then
be checked, allowing membership queries to be answered.

For equivalence queries, we can provide an answer in one direction. We will
show that the reachable region with its witness executions can be seen as the
least fixpoint of a relation derived from the transitions. Hence, an answer to the
equivalence query can come from checking if the proposed language is a fixpoint
under this relation. If it is not a fixpoint then it is certainly not equivalent to
the target; but if it is a fixpoint, we are unable to tell if it is also the least
fixed point. However, we are ultimately interested in only checking whether a
given safety property holds. If the proposed language is a fixpoint but does not
intersect with the unsafe region, the safety property clearly holds and we are
done. On the other hand, if the fixpoint does intersect with unsafe states, we
can check if such an unsafe state is indeed reachable using the membership query.
If the unsafe state is reachable then we have found a valid counterexample to
the safety property and are done. Otherwise the proposed language is not the
right one since it contains an invalid trace.

Safety property verified

Is "x" a member?
yes/no

Is hypothesis "L" the target?

Membership
oracle

LearnerIs "L" a
fixpoint?

Does "L"
intersect with
unsafe region?

"L" is not the target,
as shown by string "l"Is path to

unsafe state
valid? (use
membership)

yes

no no

yes

Safety property violated
Counterexample found

Equivalence oracle

yes

no

Fig. 1. Verification procedure

Figure 1 shows the high level view of the verification procedure. The main
problems we have to address now are:

– What is a suitable representation for the reachable states and their wit-
nesses?

– Given a language representation, we need to answer the following questions
raised in Figure 1:

• (Membership Query) Given a string x, is x a valid string for a reachable
state and its witness?

• (Equivalence Query(I)) Is a hypothetical language L a fixpoint under
the transition relation? If not, we need a string which demonstrates that
L is not a fixpoint.

• (Equivalence Query(II)) Does any string in L witness the reachability of
some “unsafe” state?

4.1 Representation of the reachable states and their witnesses

Let us now consider the language which can allow us to find both reachable
states and their witnesses. The first choice that comes to mind is the language

of the traces, L(F). Since each trace uniquely determines the final state in the
trace, L(F) has the information about the states that can be reached. While it

is easy to compute the state s such that s0
σ
→ s for a single trace σ, it is not

clear how to obtain the set of states reached, given a set of traces. In fact, even if
L(F) is regular, there is no known algorithm to compute the corresponding set
of reachable states.1 The main difficulty is that determining if a receive action
can be executed depends non-trivially on the sequence of actions executed before
the receive.

In [14], we overcame this difficulty by annotating the traces in a way that
makes it possible to compute the set of reachable states. We briefly describe
this annotation scheme before presenting the actual scheme used in this paper.
Consider a set Θ of co-names defined as follows:

Θ = {θ | θ ∈ Θ and δ(θ) 6∈ Q × {τ} × Q}

Thus, for every send or receive action in our FIFO automaton, there is a new
transition name with a bar. A barred transition θ in an annotated trace of the
system denotes either a message sent that will later be consumed, or the receipt
of a message that was sent earlier in the trace. Annotated traces of the automaton
are obtained by marking send-receive pairs in a trace exhibited by the system.

The above annotation scheme allowed us to calculate the reachable set for
any regular set of annotated traces by a simple homomorphism. However, one
difficulty we encountered is that for some practical FIFO systems, the annotated
trace language is not regular; the nonregularity often came from the fact that
a receive transition has to be matched to a send which could have happened at
an arbitrary time earlier in the past. To alleviate this problem, we use a new
annotation scheme in which only the send part of the send-receive pair is kept.
This gives an annotated trace language which is regular for a much larger class of
FIFO systems (although we cannot hope to be able to cover all classes of FIFO
systems since they are Turing expressive). We now describe this annotation in
detail.

As before, we have a new set of barred names but this time only for the send
transitions:

Θ = {θ | θ ∈ Θ and δ(θ) ∈ Q × {ci!aj} × Q for some ci, aj}

We also define another set of names TQ = {tq | q ∈ Q} consisting of a symbol
for each control state in the FIFO.

Now let the alphabet of annotated traces Σ be defined as (Θ − Θr) ∪ Θ ∪
TQ where Θr is the set of receive transitions {θr | δ(θr) ∈ Q × {ci?aj} ×
Q for some ci,aj }.

Given a sequence of transitions l in L(F), let A be a function which produces
an annotated string in Σ∗. A takes each receive transition θri

in l and finds the
matching send transition θsi

which must occur earlier in l. Then, θri
is removed

and θsi
replaced by θsi

. Once all the receive transitions have been accounted

1 This can sometimes be computed for simple loops using meta-transitions.

for, A appends the symbol tq ∈ TQ corresponding to the control state q which
is the destination of the last transition in l. Intuitively, for a send-receive pair
which cancel each other’s effect on the channel contents, A deletes the received
transition and replaces the send transition with a barred symbol. As before, a
barred symbol indicates that the message sent gets consumed by a later receive.
Notice that in the old annotation scheme both the send and the receive were
replaced with a barred version; here the receive transition is dropped altogether.
The reason we still keep the send transition with a bar is, as we will show shortly,
that this allows us to decide whether any given string is a valid annotated trace.
The symbol tq is appended to the annotated trace to record the fact that the
trace l leads to the control state q.

q0

q1

q2

θ1(c0!0)

θ2(c0?0)

θ3(c0!0)

Fig. 2. A FIFO automaton

As an example, consider the FIFO automa-
ton shown in Figure 2. For the following traces
in L(F): θ1θ2θ3, θ1θ2θ3θ1θ2, the strings output
by A are respectively: θ1θ3tq0

, θ1θ3θ1tq2
.

Let the language of annotated traces be
AL(F) = {A(t) | t ∈ L(F)} which consists of
all strings in Σ∗ that denote correctly anno-
tated traces of F . Let ALold(F) be the anno-
tated trace language corresponding to the old
annotation scheme described earlier (in which
we keep both parts of a send-receive pair). The following proposition shows that
the new annotation scheme has regular annotated trace language for more FIFO
automata than the old scheme.

Proposition 1. The set of FIFO automata for which AL(F) is regular is strictly

larger than the set of FIFO automata for which ALold(F) is regular.

AL(F) can be seen to represent both the reachable states of the FIFO system and
the annotated traces which in some sense witness the reachability of these states.
Thus, AL(F) is a suitable candidate for the language to use in the verification
procedure shown in Figure 1.

Given a string l in Σ∗, we say that l is well-formed if l ends with a symbol
from TQ and there is no other occurrence of symbols from TQ. We say that a
language L is well-formed if all strings in L are well-formed. For a well-formed
string l ending in symbol tq, let T (l) denote the prefix of l without tq and let
C(l) denote the control state q.

4.2 Answering membership queries

In order to answer a membership query for AL(F), given a string l in Σ∗ we
need to verify if l is a correct annotation for some valid sequence of transitions
l′ in L(F). Let A−1(l) be a function which gives the set (possibly empty) of
all sequences of transitions l′ for which A(l′) = l. First, if l is not well-formed,
A−1(l) = ∅ since all valid annotations are clearly well-formed. Assuming l is
well-formed, if we ignore the bars in T (l), we get a string l′′ which could po-
tentially be in A−1(l) except that the transitions corresponding to any receives

are missing. We can identify the possible missing receive transitions by looking
at the barred symbols in T (l); each barred send can potentially be matched by
a receive transition that operates on the same channel and has the same letter.
However, we do not know the exact positions where these receive transitions
are to be inserted in l′′. We can try all possible (finitely many) positions and
simulate each resulting transition sequence on the fly on the FIFO system. Any
transition sequence which is valid on the FIFO and gives back l on application
of A is then a member of A−1(l). If A−1(l) 6= ∅ then l is a valid annotated trace.

For illustration, let us consider a membership query for the string θ1θ3θ1tq2

for the FIFO automata shown in Figure 2. We identify the possible missing
receive transitions as two instances of θ2. Since a receive can only occur after a
send for the same channel and letter, the possible completions of the input string
with receives are {θ1θ2θ3θ2θ1, θ1θ2θ3θ1θ2, θ1θ3θ2θ2θ1, θ1θ3θ2θ1θ2, θ1θ3θ1θ2θ2}. Of
these, θ1θ2θ3θ1θ2 can be correctly simulated on the FIFO system and gives back
the input string θ1θ3θ1tq2

on application of A. Therefore, the answer to the
membership query is yes. An example for a negative answer is θ1tq0

.

4.3 Answering equivalence queries

For learning AL(F) in the active learning framework, we need a method to verify
whether a supposed language L of annotated traces is equivalent to AL(F). If
not, then we also need to identify a string in the symmetric difference of AL(F)
and L to allow the learner to make progress.

Given a string l ∈ L and a transition θ in the FIFO, we can find if it is
possible to extend l using θ. More precisely, we define a function Post(l, θ) as
follows. If l is well-formed, let source(θ) and target(θ) be the control states
which are respectively the source and the target of θ.

Post(l, θ) =







∅ if l not well-formed or if C(l) 6= source(θ)
{T (l)θ ttarget(θ)} otherwise if δ(θ) = τ or δ(θ) = ci!aj

{deriv(T (l), θ) ttarget(θ)} otherwise if δ(θ) = ci?aj

deriv(T (l), θ) checks the first occurrence of a send θs in T (l) for channel ci and
if the send is for the character aj , replaces θs with θs. deriv(T (l), θ) is empty if
no such θs could be found or if θs outputs a character other than aj . Intuitively,
deriv is similar to the concept of the derivative in formal language theory, except
that we look at only the channel that θ operates upon.

Let Post(l) be
⋃

θ∈Θ Post(l, θ) and Post(L) be
⋃

l∈L Post(l).

Theorem 1. Let F(L) = Post(L) ∪ {tq0
} where q0 is the initial control state.

F(L) is a monotone set operator, i.e. it preserves set-inclusion. Moreover, AL(F)
is the least fixpoint of the functional F(L).

Theorem 1 gives us a method for answering equivalence queries for AL(F)
in one direction. If L is not a fixpoint, it cannot be equivalent to AL(F). In this
case, we can also find a string in L⊕AL(F) as required for Angluin’s algorithm.
Here, A⊕B denotes the symmetric difference of two sets. Consider the following
cases:

1. F(L) − L 6= ∅. Let l be some string in this set. If l is tq0
then it is in

AL(F) ⊕ L. Otherwise, we can check if l is a valid annotation using the
procedure described in Section 4.2. If yes, then l is in AL(F)⊕L. Otherwise,
it must be true that l ∈ Post(l′) for some l′ ∈ L. If l is not valid, l′ cannot
be valid since Post() of a valid annotation is always valid. Hence l′ 6∈ AL(F)
or l′ ∈ AL(F) ⊕ L.

2. F(L) (L. From standard fixpoint theory, since AL(F) is the least fixed
point under F , it must be the intersection of all prefixpoints of F (a set Z

is a prefixpoint if it shrinks under the functional F , i.e. F(Z) ⊆ Z). Now, L

is clearly a prefixpoint. Applying F to both sides of the equation F(L) (L

and using monotonicity of F , we get F(F(L)) (F(L). Thus, F(L) is also a
prefixpoint. Let l be some string in the set L − F(L). Since l is outside the
intersection of two prefixpoints, it is not in the least fixpoint AL(F). Hence,
l is in AL(F) ⊕ L.

3. F(L) = L. Let W(L) be the set of annotated traces in L which can reach
unsafe states (We will describe how W(L) is computed in the next section).
If W(L) is empty, since L is a fixpoint, we can abort the learning procedure
and declare that the safety property holds. For the other case, if W(L) is not
empty then let l be some annotated trace in this set. We check if l is a valid
annotation using the procedure described in Section 4.2. If it is valid, we
have found a valid counterexample and can again abort the whole learning
procedure since we have found an answer (in the negative) to the safety
property verification. Otherwise, l is in AL(F) ⊕ L.

A subtle point to note is that although we attempt to learn AL(F), because
of the limitation in the equivalence query, the final language obtained after the
termination of the verification procedure may not be AL(F). It might be some
fixpoint which contains AL(F) or it might be simply some set which contains
a valid annotated trace demonstrating the reachability of some unsafe state.
However, this is not a cause for concern to us since in all cases the answer for
the safety property verification is correct.

4.4 Finding annotated traces leading to unsafe states

In the previous section, we referred to a set W(L) in L which can reach unsafe
states. We now show how this can be computed.

We assume that for each control state q ∈ Q, we are given a recognizable
set [3] describing the unsafe channel configurations. Equivalently, for each q,
the unsafe channel contents are given by a finite union of products of regular
languages:

⋃

0≤i≤nq
Pq,i where Pq,i =

∏

0≤j≤k Uq(i, cj) and Uq(i, cj) is a regular
language for contents of channel cj . For each Pq,i, an unsafe state su is some
(q, u0, u1, . . . uk) such that uj ∈ Uq(i, cj).

For a channel c, consider a function hc : Σ → M∗ defined as follows:

hc(t) =

{

m if t ∈ Θ and δ(t) = c!m
ǫ otherwise

Let hc also denote the unique homomorphism from Σ∗ to M∗ that extends the
above function.

Let Lq be the subset of an annotated trace set L consisting of all well-formed
strings ending in tq, i.e. Lq = {l | l ∈ L and C(l) = q}.

If an unsafe state su = (q, u0, u1, . . . uk) is reachable, then there must exist a

sequence of transitions lθ ∈ Θ∗ such that s0
lθ→ su, where s0 is the initial state. In

lθ, if the receives and the sends which match the receives are taken out, only the
remaining transitions which are sends can contribute to the channel contents in
su. Looking at the definition of hc, it can be seen that for each channel content
uj in su, uj = hcj

(A(lθ)) (recall that A converts a sequence of transitions into
an annotated trace). Thus, for su to be reachable, there must be some annotated
trace l ∈ AL(F) such that su = (C(l), hc0

(l), hc1
(l), . . . , hck

(l)).
Let h−1

cj
(Uq(i, cj)) denote the inverse homomorphism of Uq(i, cj) under hcj

.

For each Pq,i,
⋂

0≤j≤k h−1
cj

(Uq(i, cj)) gives a set of annotated strings which can
reach the unsafe channel configurations for control state q. Intersecting this with
Lq verifies if any string in L can reach these set of unsafe states. If we perform
such checks for all control states for all Pq,i, we can verify if any unsafe state is
reached by L. Thus, the set of annotated traces in L that can lead to an unsafe
state is given by:

W(L) =
⋃

q∈Q

(
⋃

0≤i≤nq

(Lq ∩
⋂

0≤j≤k

h−1
cj

(Uq(i, cj))))

We summarize the verification algorithm in Figure 3.

Theorem 2. For verifying safety properties of FIFO automata, the learning to

verify algorithm satisfies the following properties:

1. If an answer is returned by algorithm, it is always correct.
2. If AL(F) is regular, the procedure is guaranteed to terminate.
3. The number of membership and equivalence queries are at most as many as

needed by Angluin’s algorithm. The total time taken is bounded by a polyno-

mial in the size of the minimal automaton for AL(F) and linear in the time

taken for membership queries for AL(F).

5 Generalization to other infinite state systems

The verification procedure described for FIFO automata can be generalized to
other infinite state systems. The challenge for each class of system is to identify
the alphabet Σ which provides an annotation enabling the following:

– membership query for the annotated trace language,
– function to compute Post() for a given annotated set, and
– function to find if a string in an annotated set can reach an unsafe state

Notice that in the verification procedure we do not assume anything else about
FIFO automata other than the above functions. In fact, the learning algorithm
does not have to be limited to regular languages; any suitable class of languages
can be used if the required decision procedures are available.

algorithm learner
begin
Angluin’s L

∗ algorithm
end

algorithm isMember
Input: Annotated trace l

Output: is l ∈ AL(F)?
begin

if l not well-formed return no
else

find receives matching barred symbols
find possible positions for receives
simulate resulting strings on FIFO

system on the fly
if any string reaches C(l) with

correct annotation, return yes
return no

end

algorithm Equivalence Check
Input: Annotated trace set L

Output: is L = AL(F)?
If not, then some string in L ⊕ AL(F)
begin
F(L) = Post(L) ∪ {tq0

}
if ∃l ∈ (F(L) − L)

if isMember(l)
return (no, l)

else
return (no, l

′ where l = Post(l′))
else if F(L) (L

return (no, l ∈ (L −F(L)))
else if ∃l ∈ W(L)

if isMember(l)
Print (safety prop. does not hold, l); stop

else
return (no, l)

else
Print (safety prop. holds); stop

end

Fig. 3. Learning to verify algorithm

6 Implementation

We have updated the Lever (LEarning to VERify) tool suite first introduced
in [14] with the active learning based verification procedure for FIFO automata.
The tool, written in Java, is available from [9]. We use a Java DFA package
available from http://www.brics.dk/~amoeller/automaton/.

Size T Sizeold Told Trmc

Producer Consumer 7 0.3s 20 0.4s 3.3s
Alternating Bit 33 2s 104 4.1s 24.7s
Sliding Window 133 54s 665 81.2s 78.4s

Table 1. Running time

We have used Lever to
analyze some canonical FIFO
automata verification prob-
lems: Producer Consumer,

Alternating bit protocol and
Sliding window protocol (win-
dow size and maximum se-
quence number 2). Table 1
shows the results obtained. We compare the number of states of the final au-
tomaton (Size) and the running times (T) using the verification procedure in
this paper with the procedure we used earlier in [14] (columns Sizeold and Told).
It can be seen that there is an improvement using the new procedure (although
the comparison of Size should be taken with the caveat that the annotation in
the two procedures is slightly different). All executions were done on a 1594
MHz notebook computer with 512 MB of RAM using Java virtual machine ver-
sion 1.4.1 from Sun Microsystems. We also report the time taken (Trmc) by the
regular model checking tool [10] on the same examples. Although a complete
comparative analysis with all available tools remains to be done, it can be seen

the running time of Lever is slightly better than the regular model checking
tool.

References

1. P. A. Abdulla, B. Jonsson, M. Nilsson, and J. d’Orso. Algorithmic improvements
in regular model checking. In Computer-Aided Verification (CAV’03), volume 2725
of LNCS, pages 236–248. Springer, 2003.

2. D. Angluin. Learning regular sets from queries and counterexamples. Inform.
Comput., 75(2):87–106, Nov. 1987.

3. J. Berstel. Transductions and Context-Free-Languages. B.G. Teubner, Stuttgart,
1979.

4. B. Boigelot. Symbolic Methods for Exploring Infinite State Spaces. PhD thesis,
Collection des Publications de la Faculté des Sciences Appliquées de l’Université
de Liége, 1999.

5. A. Bouajjani and P. Habermehl. Symbolic reachability analysis of FIFO-channel
systems with nonregular sets of configurations. Theoretical Computer Science,
221(1–2):211–250, June 1999.

6. A. Bouajjani, B. Jonsson, M. Nilsson, and T. Touili. Regular model checking. In
E. A. Emerson and A. P. Sistla, editors, Proceedings of the 12th International Con-
ference on Computer-Aided Verification (CAV’00), volume 1855 of LNCS, pages
403–418. Springer, 2000.

7. A. Finkel, S. Purushothaman Iyer, and G. Sutre. Well-abstracted transition sys-
tems: Application to FIFO automata. Information and Computation, 181(1):1–31,
2003.

8. P. Habermehl and T. Vojnar. Regular model checking using inference of regular
languages. In Proc. of Infinity’04, London, UK (to appear), 2004.

9. LEVER. Learning to verify tool. http://osl.cs.uiuc.edu/˜vardhan/lever.html, 2004.
10. M. Nilsson. http://www.regularmodelchecking.com, 2004.
11. J. Oncina and P. Garcia. Inferring regular languages in polynomial update time. In

Pattern Recognition and Image Analysis, volume 1 of Series in Machine Perception
and Artificial Intelligence, pages 49–61. World Scientific, Singapore, 1992.

12. T. Touili. Regular model checking using widening techniques. In ENTCS, vol-
ume 50. Elsevier, 2001.

13. A. Vardhan, K. Sen, M. Viswanathan, and G. Agha. Actively learning to ver-
ify safety for FIFO automata (full version). http://osl.cs.uiuc.edu/docs/lever-
active/activeFifo.pdf, 2004.

14. A. Vardhan, K. Sen, M. Viswanathan, and G. Agha. Learning to verify safety
properties. In Proc. of ICFEM’04, Seattle, USA (to appear), 2004.

