
Actively learning to verify safety for FIFO automata

Abhay Vardhan, Koushik Sen, Mahesh Viswanathan, Gul Agha
Dept. of Computer Science, Univ. of Illinois at Urbana-Champaign, USA

{vardhan,ksen,vmahesh,agha}@cs.uiuc.edu

Abstract. We apply machine learning techniques to verify safety properties of
finite state machines which communicate over unbounded FIFO channels. Instead
of attempting to iteratively compute the reachable states, we use Angluin’s L*
algorithm to learn these states. The learnt set of reachable states is then used
either to prove that the system is safe, or to produce a valid execution of the system
that leads to an unsafe state (i.e. to produce a counterexample). Specifically, we
assume that we are given a model of the system and we provide a novel procedure
which answers both membership and equivalence queries for a representation of
the reachable states. We define a new encoding scheme for representing reachable
states and their witness execution; this enables the learning algorithm to analyze
a larger class of FIFO systems automatically than a naive encoding would allow.
We show the upper bounds on the running time and space for our method. We
have implemented our approach in Java, and demonstrate its application to a few
case studies.

1 Introduction

Infinite state systems often arise as natural models for various software systems at the
design and modeling stage. In particular, finite state machines that communicate over
unbounded first-in-first-out channels, called FIFO automata, are a popular model for
various communication protocols, languages such as Estelle and SDL (Specification and
Description Language) in which processes have infinite queue size, distributed systems
and various actor systems. A generic task in the automated verification of safety proper-
ties of any system is to compute a representation for the set of reachable states. For finite
state systems, this is typically accomplished by doing an exhaustive exploration of the
state-space. However, for infinite state systems, except in a few special classes [15], ex-
haustive exploration of the state space is impossible; and in fact the verification problem
in general can shown to be undecidable.

In the Lever (LEarning to VERify) project, we are pursuing the goal of using ma-
chine learning for verification of infinite state systems. The idea is as follows. Instead
of computing the reachable states by iteratively applying the transition relation until a
fixpoint is reached (which may not be possible in a finite number of iterations), we view
the identification of the reachable states as a machine learning problem. Naturally, in
order for a learner to be able to learn the reachable region, we have to provide it with
some information about the reachable states. We can easily find examples of reachable
states by executing some sample sequence of transitions. Moreover, given a set of states
as the supposed reachable region, we can check if this set is a fixpoint under the transition
relation. If it is not a fixpoint then clearly it is not the correct reachable region. However,
typically learning algorithms also require either negative examples of the concept being
learned or the ability to make membership and equivalence queries. In order to provide
this information, we learn what we call annotated trace language representing not only
the reachable states but also system executions witnessing the reachability of these states.

Another crucial problem in the application of the learning based verification approach
is to identify the point when we have sufficient information to provide an answer to the
verification problem. If the learning algorithm outputs a set of traces that is closed under
the transition relation of the system and does not reach any of the unsafe states, then
clearly the system can deemed to be correct. On the other hand, unsafe states in the set
output by the learning algorithm can be used to obtain executions (counter-examples)
leading to the unsafe state. Notice that this relies on the fact that we learn traces which
provide witnesses along with the reachable states. Spurious counterexamples can be used
by the learner to refine the hypothesis and the process repeated until either a valid coun-
terexample is found or the system shown to be correct. Finally, based on the practical
success enjoyed by regular model checking [9], we assume that the set of annotated traces
to be learnt is in fact regular. Our main observation is that this learning based approach
is a complete verification method for systems whose annotated trace language is regular
(for a precise condition see Section 3). In other words, for such systems we will eventually
either find a buggy execution that violates the safety property, or will successfully prove
that no unsafe state is reachable. We have previously applied the RPNI[20] algorithm
for verification of safety properties (see Section 6 on related work).

This paper presents two main new ideas. Firstly, we give a new scheme for the anno-
tations on traces. With this annotation scheme, many more practical FIFO systems have
regular annotated trace languages, thus enlarging the class of systems that can be prov-
ably verified by our method. Secondly and more significantly, we provide a method to
devise a knowledgeable teacher which can answer membership (whether a string belongs
to the target) as well as equivalence-queries (given a hypothesis, whether it matches the
concept being learnt). In the context of learning annotated traces, equivalence queries
can be answered only to a limited extent. However, we overcome our limitation to answer
equivalence queries exactly and present an approach that is still able to use the powerful
query-based learning framework. As mentioned earlier, we assume the annotated traces
of the system to form a regular language and use Angluin’s L* algorithm [3] which is
a well-known algorithm for learning regular sets. Using the L* algorithm gives us sig-
nificant benefits. First, the number of samples we need to consider is polynomial in the
size of the automaton representing the annotated traces. Second, we are guaranteed to
learn the minimal automaton that represents the annotated traces. Finally, we can show
that the running time is bounded by a polynomial in the size of the minimal automaton
representing the annotated traces and the time taken to verify if an annotated trace is
valid for the FIFO system.

We have implemented our algorithm in Java, and demonstrated the feasibility of
this method by running the implementation on simple examples and network protocols
such as the alternating-bit protocol and the sliding window protocol. Our approach is
complementary to previous methods for algorithmic verification that have been proposed,
and there are examples of FIFO automata that our method successfully verifies but on
which other approaches fail (see Section 6 on related work). We also give the requirements
under which classes of infinite state systems other than FIFO automata can be verified
using the learning approach.

2 Preliminaries

In this section, we describe machine learning framework that we use and recall the
definition of FIFO automata.

2.1 Learning framework

A learning algorithm is usually set in a framework which describes the types of input
data and queries available to the learner. We use the active learning framework in which
the learner is allowed to make both membership and equivalence queries to a teacher.
As in [24], we focus on learning of regular languages; based on the experience of regular
model checking [9], regular languages are often sufficient to capture the behavior of an
interesting class of infinite state systems. The learning algorithm that we use for regular
sets is Angluin’s L* algorithm [3].

Angluin’s L* algorithm requires what is called a Minimally Adequate Teacher which
provides an oracle for membership (whether a given string belongs to a target regu-
lar set) and equivalence queries (whether a given hypothesis matches the target regular
set). In case the teacher answers no to an equivalence query, it also provides a string in
the symmetric difference of the hypothesis and the target sets. The main idea behind
Angluin’s L* algorithm is to systematically explore strings in the alphabet for member-
ship and create a DFA with minimum number of states to make a conjecture for the
target set. If the conjecture is incorrect, the string returned by the teacher is used to
make corrections, possibly after more membership queries. The algorithm maintains a
prefix closed set S representing different possible states of the target DFA, a set SA
for the transition function consisting of strings from S extended with one letter of the
alphabet and a suffix closed set E denoting experiments to distinguish between states.
An observation table with rows from (S ∪ SA) and columns from E stores results of
the membership queries for strings in (S ∪ SA).E and is used to create the DFA for a
conjecture. Angluin’s algorithm is guaranteed to terminate in polynomial time with the
minimal DFA representing the target set.

2.2 FIFO Automata

A FIFO automaton [14] is a 6-tuple (Q, q0, C,M,Θ, δ) where Q is a finite set of control
states, q0 ∈ Q is the initial control state, C is a finite set of channel names, M is a
finite alphabet for contents of a channel, Θ is a finite set of transitions names, and
δ : Θ → Q× ((C×{?, !}×M)∪{τ})×Q is a function that assigns a control transition to
each transition name. For a transition name θ, if the associated control transition δ(θ) is
of the form (q, c?m, q′) then it denotes a receive action, if it is of the form (q, c!m, q′) it
denotes a send action, and if it is of the form (q, τ, q′) then it denotes an internal action.
The channels are considered to be perfect and messages sent by a sender are received in
the order in which they were sent. The formal operational semantics, given by a labelled
transition systems, is defined below.

A FIFO automaton F = (Q, q0, C,M,Θ, δ) defines a labelled transition system L =
(S,Θ,→) where

– The set of states S = Q×(M∗)C ; in other words, each state of the labelled transition
system consists of a control state q and a C-indexed vector of words w denoting the
channel contents.

– If δ(θ) = (q, c?m, q′) then (p,w)
θ
→ (p′, w′) iff p = q, p′ = q′ and w = w′[c 7→ m ·w′[c]]

– If δ(θ) = (q, c!m, q′) then (p,w)
θ
→ (p′, w′) iff p = q, p′ = q′ and w′ = w[c 7→ m ·w[c]]

– If δ(θ) = (q, τ, q′) then (p,w)
θ
→ (p′, w′) iff p = q, p′ = q′ and w′ = w.

Here w[i 7→ s] stand for the C-indexed vector which is identical to w for all channels
except i, where it is s; w[i] denotes the contents of the channel i. We say (p,w) → (p′, w′)

provided there is some θ such that (p,w)
θ
→ (p′, w′). As usual, →∗ will denote the reflexive

transitive closure of →. For σ = θ1θ2 · · · θn ∈ Θ∗, we say (p,w)
σ
→ (p′, w′) when there exist

states (p1, w1) . . . (pn−1, wn−1) such that (p,w)
θ1→ (p1, w1)

θ2→ · · · (pn−1, wn−1
θn→ (p′, w′).

The trace language of the FIFO automaton is

L(F) = {σ ∈ Θ∗ | ∃s = (p,w). s0
σ
→ s}

where s0 = (q0, (ǫ, . . . , ǫ)), i.e., the initial control state with no messages in the channels.

3 Verification procedure

We assume that we are given a model of the FIFO automata which enables us to identify
the transition relation of the system. The central idea in our approach is to learn a rep-
resentation for the set of reachable states instead of computing it by iteratively applying
the transition relation. Once the set of reachable states is learned, we can verify if the
safety property is violated by checking if an unsafe state is among the set of reachable
states. To use Angluin’s L* algorithm for learning, we need to answer both membership
and equivalence queries for the reachable set. However, there is no immediate way to ver-
ify if a certain state is really reachable or not. A solution to this problem is to also keep a
candidate witness (in terms of the transitions of the system) to a reachable state. It can
then be checked if this witness can ever be exhibited by the system. Using this, given a
purported reachable state and its witness, we can answer a query about its membership
in the actual reachable region. Therefore, instead of learning the set of reachable states
directly, we learn a language which allows us to identify both the reachable states and
their witnesses.

For equivalence queries, we can provide an answer in one direction. We will show
that the reachable region with its witness executions can be seen as the least fixpoint of
a relation derived from the transitions. Hence, an answer to the equivalence query can
come from checking if the proposed language is a fixpoint under this relation. If it is not
a fixpoint then it is certainly not equivalent to the target; but if it is a fixpoint, we are
unable to tell if it is also the least fixed point. However, we are ultimately interested
in only checking whether a given safety property holds. If the proposed language is a
fixpoint but does not intersect with the unsafe region, the safety property clearly holds
and we are done. On the other hand, if the fixpoint does intersect with unsafe states,
we can check if such an unsafe state is indeed reachable using the membership query. If
the unsafe state is reachable then we have found a valid counterexample to the safety
property and are done. Otherwise the proposed language is not the right one since it
contains an invalid trace.

Figure 1 shows the high level view of the verification procedure. The main problems
we have to address now are:

– What is a suitable representation for the reachable states and their witnesses?
– Given a language representation, we need to answer the following questions raised in

Figure 1:
• (Membership Query) Given a string x, is x a valid string for a reachable state

and its witness?
• (Equivalence Query(I)) Is a hypothetical language L a fixpoint under the tran-

sition relation? If not, we need a string which demonstrates that L is not a
fixpoint.

Safety property verified

Is "x" a member?
yes/no

Is hypothesis "L" the target?

Membership
oracle

LearnerIs "L" a
fixpoint?

Does "L"
intersect with
unsafe region?

"L" is not the target,
as shown by string "l"Is path to

unsafe state
valid? (use
membership)

yes

no no

yes

Safety property violated
Counterexample found

Equivalence oracle

yes

no

Fig. 1. Verification procedure

• (Equivalence Query(II)) Does any string in L witness the reachability of some
“unsafe” state?

3.1 Representation of the reachable states and their witnesses

Let us now consider the language which can allow us to find both reachable states and
their witnesses. The first choice that comes to mind is the language of the traces, L(F).
Since each trace uniquely determines the final state in the trace, L(F) has the information
about the states that can be reached. While it is easy to compute the state s such that
s0

σ
→ s for a single trace σ, it is not clear how to obtain the set of states reached, given

a set of traces. In fact, even if L(F) is regular, there is no known algorithm to compute
the corresponding set of reachable states of the labelled transition system.1 The main
difficulty is that determining if a receive action can be executed depends non-trivially on
the sequence of actions executed before the receive.

In [24], we overcame this difficulty by annotating the traces in a way that makes
it possible to compute the set of reachable states. We briefly describe this annotation
scheme before presenting the actual scheme used in this paper. Consider a set Θ of
co-names defined as follows:

Θ = {θ | θ ∈ Θ and δ(θ) 6= τ}

Thus, for every send or receive action in our FIFO automaton, there is a new transition
name with a bar. The intuition of putting the annotation of a bar on some transitions of a
trace is to indicate that the message sent or received as a result of this transition does not
play a role in the channel contents of the final state. In other words, a barred transition
θ in an annotated trace of the system denotes either a message sent that will later be
consumed, or the receipt of a message that was sent earlier in the trace. Annotated traces
of the automaton are obtained by marking send-receive pairs in a trace exhibited by the
system.

The above annotation scheme allowed us to calculate the reachable set for any reg-
ular set of annotated traces by a simple homomorphism. However, one difficulty we
encountered is that for some practical FIFO systems, the annotated trace language is
not regular; the nonregularity often came from the fact that a receive transition has to
be matched to a send which could have happened at an arbitrary time earlier in the
past. To alleviate this problem, we use a new annotation scheme in which only the send
part of the send-receive pair is kept. This gives an annotated trace language which is

1 This can sometimes be computed for simple loops using meta-transitions.

regular for a much larger class of FIFO systems (although we cannot hope to be able
to cover all classes of FIFO systems since they are Turing expressive). We now describe
this annotation in detail.

As before, we have a new set of barred names but this time only for the send transi-
tions:

Θ = {θ | θ ∈ Θ and δ(θ) = ci!aj for some ci, aj}

We also define another set of names TQ = {tq | q ∈ Q} consisting of a symbol for each
control state in the FIFO.

Now let the alphabet of annotated traces Σ be defined as (Θ − Θr) ∪ Θ ∪ TQ where
Θr is the set of receive transitions {θr | δ(θr) = ci?aj for some ci,aj }.

Given a sequence of transitions l in L(F), let A be a function which produces an
annotated string in Σ∗. A takes each receive transition θri

in l and finds the matching
send transition θsi

which must occur earlier in l. Then, θri
is removed and θsi

replaced
by θsi

. Once all the receive transitions have been accounted for, A appends the symbol
tq ∈ TQ corresponding to the control state q which is the destination of the last transition
in l. Intuitively, for a send-receive pair which cancel each other’s effect on the channel
contents, A deletes the received transition and replaces the send transition with a barred
symbol. As before, a barred symbol indicates that the message sent does not play a role
in the channel contents of the final state. Notice that in the old annotation scheme both
the send and the receive were replaced with a barred version; here the receive transition is
dropped altogether. The reason we still keep the send transition with a bar is, as we will
show shortly, that this allows us to decide whether any given string is a valid annotated
trace. The symbol tq is appended to the annotated trace to record the fact that the trace
l leads to the control state q.

As an example, consider the FIFO automaton shown in Figure 2. For the following
traces in L(F): θ1θ2θ3, θ1θ2θ3θ1θ2, the strings output by A are respectively: θ1θ3tq0

,
θ1θ3θ1tq2

.

q0

q1

q2

θ1(c0!0)

θ2(c0?0)

θ3(c0!0)

Fig. 2. Example FIFO automata

Let the language of annotated traces be AL(F) = {A(t) | t ∈ L(F)} which consists
of all strings in Σ∗ that denote correctly annotated traces of F . Let ALold(F) be the
annotated trace language corresponding to the old annotation scheme described earlier
(in which we keep both parts of a send-receive pair). The following proposition (for proof
see the Appendix) shows that the new annotation scheme has regular annotated trace
language for more FIFO automata than the old scheme.

Proposition 1. The set of FIFO automata for which AL(F) is regular is strictly larger
than the set of FIFO automata for which ALold(F) is regular.

AL(F) can be seen to represent both the reachable states of the FIFO system and
the annotated traces which in some sense witness the reachability of these states. Thus,
AL(F) is a suitable candidate for the language to use in the verification procedure shown
in Figure 1.

Given a string l in Σ∗, we say that l is well-formed if l ends with a symbol from
TQ and there is no other occurrence of symbols from TQ. We say that a language L is
well-formed if all strings in L are well-formed. For a well-formed string l ending in symbol
tq, let T (l) denote the prefix of l without tq and let C(l) denote the control state q.

3.2 Answering membership queries

In order to answer a membership query for AL(F), given a string l in Σ∗ we need to
verify if l is a correct annotation for some valid sequence of transitions l′ in L(F). Let
A−1(l) be a function which gives the set (possibly empty) of all sequences of transitions
l′ for which A(l′) = l. First, if l is not well-formed, A−1(l) = ∅ since all valid annotations
are clearly well-formed. Assuming l is well-formed, if we ignore the bars in T (l), we get a
string l′′ which could potentially be in A−1(l) except that the transitions corresponding
to any receives are missing. We can identify the possible missing receive transitions by
looking at the barred symbols in T (l); each barred send can potentially be matched by a
receive transition that operates on the same channel and has the same letter. However,
we do not know the exact positions where these receive transitions are to be inserted in
l′′. We can try all possible (finitely many) positions and simulate each resulting transition
sequence on the fly on the FIFO system. Any transition sequence which is valid on the
FIFO and gives back l on application of A is then a member of A−1(l). If A−1(l) 6= ∅
then l is a valid annotated trace.

For illustration, let us consider a membership query for the string θ1θ3θ1tq2
for

the FIFO automata shown in Figure 2. We identify the possible missing receive tran-
sitions as two instances of θ2. Since a receive can only occur after a send for the
same channel and letter, the possible completions of the input string with receives are
{θ1θ2θ3θ2θ1, θ1θ2θ3θ1θ2, θ1θ3θ2θ2θ1, θ1θ3θ2θ1θ2, θ1θ3θ1θ2θ2}. Of these, θ1θ2θ3θ1θ2 can be
correctly simulated on the FIFO system and gives back the input string θ1θ3θ1tq2

on
application of A. Therefore, the answer to the membership query is yes. An example for
a negative answer is θ1tq0

.

3.3 Answering equivalence queries

For learning AL(F) in the active learning framework, we need a method to verify whether
a supposed language L of annotated traces is equivalent to AL(F). If not, then we also
need to identify a string in the symmetric difference of AL(F) and L to allow the learner
to make progress.

Given a string l ∈ L and a transition θ in the FIFO, we can find if it is possible
to extend l using θ. More precisely, we define a function Post(l, θ) as follows. If l is
well-formed, let source(θ) and target(θ) be the control states which are respectively the
source and the target of θ.

Post(l, θ) =

∅ if l not well-formed or if C(l) 6= source(θ)
{T (l)θ ttarget(θ)} otherwise if δ(θ) = τ or δ(θ) = ci!aj

{deriv(T (l), θ) ttarget(θ)} otherwise if δ(θ) = ci?aj

deriv(T (l), θ) checks the first occurrence of a send θs in T (l) for channel ci and if the
send is for the character aj , replaces θs with θs. deriv(T (l), θ) is empty if no such θs

could be found or if θs outputs a character other than aj . Intuitively, deriv is similar to

the concept of the derivative in formal language theory, except that we look at only the
channel that θ operates upon.

Let Post(l) be
⋃

θ∈Θ Post(l, θ) and Post(L) be
⋃

l∈L Post(l).

Theorem 1. Let F(L) = Post(L) ∪ {tq0
} where q0 is the initial control state. F(L) is

a monotone set operator, i.e. it preserves set-inclusion. Moreover, AL(F) is the least
fixpoint of the functional F(L).

The proofs can be found in the Appendix. Theorem 1 gives us a method for answering
equivalence queries for AL(F) in one direction. If L is not a fixpoint, it cannot be
equivalent to AL(F). In this case, we can also find a string in L⊕AL(F) as required for
Angluin’s algorithm. Here, A⊕B denotes the symmetric difference of two sets. Consider
the following cases:

1. F(L) − L 6= ∅. Let l be some string in this set. If l is tq0
then it is in AL(F) ⊕ L.

Otherwise, we can check if l is a valid annotation using the procedure described in
Section 3.2. If yes, then l is in AL(F)⊕L. Otherwise, it must be true that l ∈ Post(l′)
for some l′ ∈ L. If l is not valid, l′ cannot be valid since Post() of a valid annotation
is always valid. Hence l′ 6∈ AL(F) or l′ ∈ AL(F) ⊕ L.

2. F(L) (L. From standard fixpoint theory, since AL(F) is the least fixed point under
F , it must be the intersection of all prefixpoints of F (a set Z is a prefixpoint if
it shrinks under the functional F , i.e. F(Z) ⊆ Z). Now, L is clearly a prefixpoint.
Applying F to both sides of the equation F(L) (L and using monotonicity of F ,
we get F(F(L)) (F(L). Thus, F(L) is also a prefixpoint. Let l be some string in
the set L − F(L). Since l is outside the intersection of two prefixpoints, it is not is
in the least fixpoint AL(F). Hence, l is in AL(F) ⊕ L.

3. F(L) = L. Let W(L) be the set of annotated traces in L which can reach unsafe
states (We will describe how W(L) is computed in the next section). If W(L) is
empty, since L is a fixpoint, we can abort the learning procedure and declare that
the safety property holds. For the other case, if W(L) is not empty then let l be some
annotated trace in this set. We check if l is a valid annotation using the procedure
described in Section 3.2. If it is valid, we have found a valid counterexample and
can again abort the whole learning procedure since we have found an answer (in the
negative) to the safety property verification. Otherwise, l is in AL(F) ⊕ L.

A subtle point to note is that although we attempt to learn AL(F), because of the
limitation in the equivalence query, the final language obtained after the termination of
the verification procedure may not be AL(F). It might be some fixpoint which contains
AL(F) or it might be simply some set which contains a valid annotated trace demon-
strating the reachability of some unsafe state. However, this is not a cause for concern
to us since in all cases the answer for the safety property verification is correct.

3.4 Finding annotated traces leading to unsafe states

In the previous section, we referred to a set W(L) in L which can reach unsafe states.
We now show how this can be computed.

We assume that for each control state q ∈ Q, we are given a recognizable set [6]
describing the unsafe channel configurations. Equivalently, for each q, the unsafe channel
contents are given by a finite union of products of regular languages:

⋃

0≤i≤nq
Pq,i where

Pq,i =
∏

0≤j≤k Uq(i, cj) and Uq(i, cj) is a regular language for contents of channel cj . For
each Pq,i, an unsafe state su is some (q, u0, u1, . . . uk) such that uj ∈ Uq(i, cj).

For a channel c, consider a function hc : Σ → M∗ defined as follows:

hc(t) =

{

m if t ∈ Θ and δ(t) = c!m
ǫ otherwise

Let hc also denote the unique homomorphism from Σ∗ to M∗ that extends the above
function.

Let Lq be the subset of an annotated trace set L consisting of all well-formed strings
ending in tq, i.e. Lq = {l | l ∈ L and C(l) = q}.

If an unsafe state su = (q, u0, u1, . . . uk) is reachable, then there must exist a se-

quence of transitions lθ ∈ Θ∗ such that s0
lθ→ su, where s0 is the initial state. In lθ,

if the receives and the sends which match the receives are taken out, only the remain-
ing transitions which are sends can contribute to the channel contents in su. Look-
ing at the definition of hc, it can be seen that for each channel content uj in su,
uj = hcj

(A(lθ)) (recall that A converts a sequence of transitions into an annotated
trace). Thus, for su to be reachable, there must be some annotated trace l ∈ AL(F) such
that su = (C(l), hc0

(l), hc1
(l), . . . , hck

(l)).
Let h−1

cj
(Uq(i, cj)) denote the inverse homomorphism of Uq(i, cj) under hcj

. For each

Pq,i,
⋂

0≤j≤k h−1
cj

(Uq(i, cj)) gives a set of annotated strings which can reach the unsafe
channel configurations for control state q. Intersecting this with Lq verifies if any string
in L can reach these set of unsafe states. If we perform such checks for all control states
for all Pq,i, we can verify if any unsafe state is reached by L. Thus, the set of annotated
traces in L that can lead to an unsafe state is given by:

W(L) =
⋃

q∈Q

(
⋃

0≤i≤nq

(Lq ∩
⋂

0≤j≤k

h−1
cj

(Uq(i, cj))))

We summarize the verification algorithm in Figure 3.

Theorem 2. For verifying safety properties of FIFO automata, the learning to verify
algorithm satisfies the following properties:

1. If an answer is returned by algorithm, it is always correct.
2. If AL(F) is regular, the procedure is guaranteed to terminate.
3. The number of membership and equivalence queries are at most as many as needed

by Angluin’s algorithm. The total time taken is bounded by a polynomial in the size
of the minimal automaton for AL(F) and linear in the time taken for membership
queries for AL(F).

For the proof and the details of the complexity analysis, the reader is referred to the
Appendix.

4 Generalization to other infinite state systems

The verification procedure described for FIFO automata can be easily generalized to
other infinite state systems. The challenge for each class of system is to identify the
alphabet Σ which provides an annotation enabling the following:

algorithm learner
begin
Angluin’s L∗ algorithm
end

algorithm isMember
Input: Annotated trace l

Output: is l ∈ AL(F)?
begin

if l not well-formed return no
else

find receives matching barred symbols
find possible positions for receives
simulate resulting strings on FIFO

system on the fly
if any string reaches C(l) with

correct annotation, return yes
return no

end

algorithm Equivalence Check
Input: Annotated trace set L

Output: is L = AL(F)?
If not, then some string in L ⊕ AL(F)
begin
F(L) = Post(L) ∪ {tq0

}
if ∃l ∈ (F(L) − L)

if isMember(l)
return (no, l)

else
return (no, l′ where l = Post(l′))

else if F(L) (L

return (no, l ∈ (L −F(L)))
else if ∃l ∈ W(L)

if isMember(l)
Print (safety prop. does not hold, l); stop

else
return (no, l)

else
Print (safety prop. holds); stop

end

Fig. 3. Learning to verify algorithm

– membership query for the annotated trace language
– function to compute Post() for a given annotated set
– function to find if a string in an annotated set can reach an unsafe state

Notice that the verification procedure does not assume anything else about FIFO au-
tomata other than the above functions. In fact, the learning algorithm does not have to
be limited to regular languages; any suitable class of languages can be used if the needed
decision procedures are available.

5 Implementation

We have updated the Lever (LEarning to VERify) tool suite first introduced in [24] with
the active learning based verification procedure for FIFO automata. The tool is written
in Java and is available from [17]. For general automata related decision procedures, we
use the Java package dk.brics.automata available from [18].

We have used Lever to analyze some canonical FIFO automata verification problems:
Producer Consumer, Alternating bit protocol and Sliding window protocol (window size
and maximum sequence number 2). The above examples are fairly well-known in the
FIFO research community; for details the reader is referred to [22]. Table 1 shows the
results obtained. We compare the number of states of the final automaton (Size) and the
running times (T) using the verification procedure in this paper with the procedure we
used earlier in [24] (columns Sizeold and Told). It can be seen that there is an improvement
using the new procedure (although the comparison of Size should be taken with the
caveat that the annotation in the two procedures is slightly different). All executions
were done on a 1594 MHz notebook computer with 512 MB of RAM using Java virtual
machine version 1.4.1 from Sun Microsystems. We also report the time taken (Trmc)
by the regular model checking tool [19] on the same examples. Although a complete

comparative analysis with all available tools remains to be done, it can be seen the
running time of Lever is slightly better than the regular model checking tool.

Size T Sizeold Told Trmc

Producer Consumer 7 0.3s 20 0.4s 3.3s

Alternating Bit 33 2s 104 4.1s 24.7s

Sliding Window 133 54s 665 81.2s 78.4s

Table 1. Running time

6 Related Work

Verification of infinite state systems: For automatic verification of infinite state FIFO
systems, the state space has to be represented by symbolic means. Some common rep-
resentations are: regular sets [9, 1], Queue Decision Diagrams [7], semi-linear regular
expressions [14] and constrained QDDs [8]. Since an iterative approach of computing the
fixpoint for reachability does not terminate for most cases, various mechanisms are used
for finding the reachable set. We now discuss some of these techniques and show their
relation to our learning approach.

In the approach using meta-transitions and acceleration [7, 8, 14], a sequence of tran-
sitions, referred to as a meta-transition, is selected and the effect of its infinite iteration
calculated. This is complementary to our learning approach, since meta-transitions can
be also be incorporated into our learning algorithm. Another popular approach is that
of regular model checking [9, 1]. A regular set is used to represent the states and a trans-
ducer is used to represent the transition relation. The problem is reduced to finding a
finite transducer representing the the infinite composition of this relation. However, there
are some examples for which even if such a finite transducer exists, the procedure may
not be able to converge to it. One such FIFO automaton is shown in Figure 2. We used
the regular model checking tool from [19] to analyze this example, but the tool failed to
terminate even after two hours. On the other hand, our learning-based tool is able to
automatically find the reachable set in less than half a second. It is certainly possible
that in other examples, transducer construction may be able to find the reachable region
faster. Thus, our approach can be seen as complementary and seen to extend the range
of systems that can be automatically analyzed.

An approach for computing the reachable region that is closely related to ours is
widening. In this approach, the transition relation is applied to the initial configuration
some number of times and then by comparing the sets thus obtained, the limit of the
iteration is guessed. A simple widening principle in the context of regular model checking
is given in [9] which is extended in [23] for parametric systems. Bultan [10] and Bartzis
et al. [5] present widening procedures for Presburger formulas and arithmetic automata
respectively. At a very high level, both widening and our approach use similar ideas. In
both methods, based on certain sample points obtained using the transitions, a guess
is made for the fixpoint being searched for. One important difference between widening
and our approach is that widening (except for certain special contexts where it can be
shown to be exact) is a mechanism to prove the correctness of a system and cannot be
used to prove a system to be incorrect. On the other hand, the approach presented here
allows one to both prove a system to be correct and to detect bugs.

Use of machine learning for verification: We introduced the learning to verify approach
in [24]. In that work, we learned the reachable set from sample runs of the FIFO system
using an algorithm for learning regular sets called RPNI [20]. We were restricted to a
learning framework which cannot answer queries but instead simply presents positive
and negative examples of the concept to be learnt. The active learning framework that
we have used in this paper has some advantages over the framework used earlier. First,
we need only polynomial number of samples as opposed to exponential that we needed
before, significantly reducing the space requirements of the algorithm. Second, we learn
the optimal automaton for the annotated traces. Our experiments also show that the
new method uses less running time. Finally, an important advantage of the present work
is in the annotation scheme used to collect traces witnessing reachability; with the new
annotation scheme many more FIFO systems have regular set of annotated traces, thus
enlarging the class of systems that can be provably verified.

In other work applying machine learning to verification, Peled et al. [21] give a method
called Black Box Checking which is extended by Groce et al. [16] as Adaptive Model
Checking. Briefly, in this method, one starts with a possibly inaccurate model and in-
crementally updates it using Angluin’s [3] query based learning of regular sets. Cobleigh
et al. [11] also use a variant of Angluin’s algorithm to learn the assumptions about the
environment to aid compositional verification. Boigelot et al. [4] present a technique for
constructing a finite state machine that simulates all observable operations of a given re-
active program. Ammons et al. [2] use machine learning to discover formal specifications
of the protocols that a client of an application program interface must observe. Edelkamp
et al. [12] consider the problem of finding “bad” states in a model as a directed search
problem and use AI heuristic search methods to attempt to find these states. Ernst et
al. [13] have developed a system called Daikon which attempts to discover likely invari-
ants in a program by analyzing the values taken by its variables while the program is
exercised in a test suite.

Our approach in using the machine learning techniques for verification is unique in
that we are not trying to learn an unknown system model but rather the behavior of
a system which is already fully described. This is closest in spirit to Ernst et al. [13],
although the domain of application and objective are completely different.

7 Conclusion

We have presented a machine learning based approach to verify finite state machines com-
municating over unbounded FIFO channels. We use Angluin’s L* algorithm for learning
a regular representation of the reachable states and their witnesses. We show that the
verification procedure is sound and also complete if the annotated trace language is
regular and provide bounds for the running time and space.

The learning to verify approach may be applied to other infinite systems such as: au-
tomata with unbounded integers; real-time and hybrid systems; parameterized systems;
counter automata; probabilistic systems; and push-down automata with multiple stacks.
Another interesting direction is to extend this approach to verifying liveness properties.

References

1. P. A. Abdulla, B. Jonsson, M. Nilsson, and J. d’Orso. Algorithmic improvements in regular
model checking. In Computer-Aided Verification (CAV’03), volume 2725 of LNCS, pages
236–248. Springer, 2003.

2. G. Ammons, R. Bod́ık, and J. R. Larus. Mining specifications. ACM SIGPLAN Notices,
37(1):4–16, Jan. 2002.

3. D. Angluin. Learning regular sets from queries and counterexamples. Inform. Comput.,
75(2):87–106, Nov. 1987.

4. B. Boigelot and P. Godefroid. Automatic synthesis of specifications from the dynamic
observation of reactive programs. In E. Brinksma, editor, Tools and Algorithms for the
Construction and Analysis of Systems, pages 321–334, Enschede, The Netherlands, 1997.
Springer Verlag, LNCS 1217.

5. C. Bartzis and T. Bultan. Widening arithmetic automata. In Computer Aided Verifica-
tion’04 (to appear), 2004.

6. J. Berstel. Transductions and Context-Free-Languages. B.G. Teubner, Stuttgart, 1979.
7. B. Boigelot. Symbolic Methods for Exploring Infinite State Spaces. PhD thesis, Collection

des Publications de la Faculté des Sciences Appliquées de l’Université de Liége, 1999.
8. A. Bouajjani and P. Habermehl. Symbolic reachability analysis of FIFO-channel systems

with nonregular sets of configurations. Theoretical Computer Science, 221(1–2):211–250,
June 1999.

9. A. Bouajjani, B. Jonsson, M. Nilsson, and T. Touili. Regular model checking. In E. A.
Emerson and A. P. Sistla, editors, Proceedings of the 12th International Conference on
Computer-Aided Verification (CAV’00), volume 1855 of LNCS, pages 403–418. Springer,
2000.

10. T. Bultan. Automated symbolic analysis of reactive systems. PhD thesis, Dept. of Computer
Science, University of Maryland, College Park, Md., 1998.

11. J. M. Cobleigh, D. Giannakopoulou, and C. S. Pasareanu. Learning assumptions for com-
positional verification. In Proceedings of the 9th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS), pages 331–346, 2003.

12. S. Edelkamp, A. Lafuente, and S. Leue. Protocol verification with heuristic search. In AAAI
Symposium on Model-based Validation of Intelligence, 2001.

13. M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin. Dynamically discovering likely
program invariants to support program evolution. In International Conference on Software
Engineering (ICSE’99), pages 213–224, 1999.

14. A. Finkel, S. Purushothaman Iyer, and G. Sutre. Well-abstracted transition systems: Ap-
plication to FIFO automata. Information and Computation, 181(1):1–31, 2003.

15. A. Finkel and P. Schnoebelen. Well-structured transition systems everywhere! Theoretical
Computer Science, 256(1–2):63–92, 2001.

16. A. Groce, D. Peled, and M. Yannakakis. Adaptive model checking. In Tools and Algorithms
for the Construction and Analysis of Systems (TACAS’02), volume 2280 of LNCS, pages
357–371, 2002.

17. LEVER. Learning to verify tool. http://osl.cs.uiuc.edu/˜vardhan/lever.html, 2004.
18. A. Møller. dk.brics.automaton. http://www.brics.dk/˜amoeller/automaton/, 2004.
19. M. Nilsson. Regular model checking tool. http://www.regulalrmodelchecking.com, 2004.
20. J. Oncina and P. Garcia. Inferring regular languages in polynomial update time. In Pattern

Recognition and Image Analysis, volume 1 of Series in Machine Perception and Artificial
Intelligence, pages 49–61. World Scientific, Singapore, 1992.

21. D. Peled, M. Y. Vardi, and M. Yannakakis. Black box checking. In FORTE/PSTV, Beijing,
China, 1999.

22. A. S. Tanenbaum. Computer Networks, 2nd Ed. Prentice-Hall, Englewood Cliffs, NJ, 1989.
23. T. Touili. Regular model checking using widening techniques. In ENTCS, volume 50.

Elsevier, 2001.
24. A. Vardhan, K. Sen, M. Viswanathan, and G. Agha. Learning to verify

safety properties. Technical Report UIUCDCS-R-2004-2445, UILU-ENG-2004-1747,
http://osl.cs.uiuc.edu/docs/sub2004vardhan/cfsmLearn.pdf, Department of Computer Sci-
ence, University of Illinois at Urbana-Champaign, 2004.

A Proofs

Proposition 1. The set of FIFO automata for which AL(F) is regular is strictly larger
than the set of FIFO automata for which ALold(F) is regular.

Proof (Sketch). If ALold(F) is regular, let D be the DFA for it. Now create a new DFA
D′ by making a copy of D and adding one more state snew. Further, for any final state
sfinal in D′ add a transition tq from sfinal to snew. Here, q is the target control state for
all transitions incoming on sfinal (with bars ignored) and tq is the symbol in TQ for q.
Make snew the only final state in D′. It is easy to see that D and D′ are essentially the
same except that we have explicitly added symbols for the control state that any trace
accepted by D ends with. We can now create a finite automaton for AL(F) by replacing
all barred receives in D′ with ǫ transitions. This shows that AL(F) is regular.

It can be shown that AL(F) for the automaton in Figure 2 is regular while ALold(F)
is not. Thus, the set of FIFO automata for which AL(F) is regular is strictly larger.

Lemma 1. Each string in AL(F) is either tq0
or in Post(l) for some l ∈ AL(F)

Proof (Sketch). A string l′ is in AL(F) because it is the annotation of at least one
sequence of transitions ρ in L(F), i.e. l′ = A(ρ). If ρ is the empty string then l′ =
A(ǫ) = tq0

. Otherwise, let ρ−1 be the prefix of ρ without the last transition. Consider
l = A(ρ−1). From the definition of Post(), it is easy to see that l′ = Post(l).

Theorem 1. Let F(L) = Post(L) ∪ {tq0
} where q0 is the initial control state. F(L) is

a monotone set operator, i.e. it preserves set-inclusion. Moreover, AL(F) is the least
fixpoint of the functional F(L).

Proof (Sketch). Since Post(L) is simply the union of Post() of all strings in L, mono-
tonicity of F is immediate.

From the definition of Post(), we can see that if l ∈ AL(F), it is also true that
Post(l) ∈ AL(F). This implies F(AL(F)) ⊆ AL(F) since a string in F(AL(F)) is either
tq0

or Post(l) for some l ∈ AL(F). By Lemma 1, F(AL(F)) ⊇ AL(F) since any string
in AL(F) has to be Post(l) for some other l ∈ AL(F). Thus, AL(F) is a fixpoint for F .

To see that AL(F) is also the least fixpoint, by way of contradiction assume a (strictly)
smaller fixpoint L′. Applying Post() to some string either increases its length by one or
increases the number of barred symbols in it. Therefore, given a finite string l it is not
possible to have an infinite chain l0, l1, l2, . . . with l = l0 such that Post(li+1) = li Let l

be some string in AL(F) which is not in L′. By Lemma 1, there must be some l1 such
that Post(l1) = l. Now l1 can be tq0

or be Post(l2) some l2. Since this chain of l1, l2 . . .

cannot be infinite, it has to end in tq0
. Clearly, tq0

is in any fixpoint, hence tq0
∈ L′.

Consider the smallest i for which li in the chain is not in L′. But since li−1 = Post(li),
li−1 has to be in L′ giving a contradiction. Hence, AL(F) is the least fixpoint of F .

Theorem 2. For verifying safety properties of FIFO automata, the learning to verify
algorithm satisfies the following properties:

1. If an answer is returned by algorithm, it is always correct.
2. If AL(F) is regular, the procedure is guaranteed to terminate.
3. The number of membership and equivalence queries are at most as many as needed

by Angluin’s algorithm. The total time taken is bounded by a polynomial in the size
of the minimal automaton for AL(F) and linear in the time taken for membership
queries for AL(F).

Proof (Sketch). Soundness of the procedure is straightforward. We declare that the safety
property holds only when we have found a fixpoint L which does not intersect with the
“unsafe” traces. Since L is a fixpoint, it must be larger or equal to AL(F) which is the
least fix point. If W(L) is empty then W(AL(F)) must also be empty implying that no
execution of the system can reach an unsafe state.

If we say that the safety property does not hold and provide a path leading to an
unsafe state, this counterexample has to be valid since we always first check it against
the FIFO system.

For showing completeness, assuming that AL(F) is regular, we can rely on the ter-
mination guarantees of Angluin’s algorithm. The only caveat is our limited ability to
answer equivalence queries. Consider a hypothetical teacher which can answer all mem-
bership and equivalence queries for AL(F) correctly. For an equivalence query, whenever
our teacher says no the hypothetical teacher must also say no; however our teacher is
unable to decide when to say yes. Notice that a yes answer to an equivalence query
is only given once and marks the end of the algorithm. Imagine a session of a learner
with the hypothetical teacher and a parallel session of another learner with our limited
teacher. Further, assume that in case the answer to the equivalence query is no, the hy-
pothetical teacher returns the same string (for the symmetric difference) as our teacher.
Both learners start off by making identical queries and proceed in lock step since both
teachers provide the same answers. Let us say that at some point, our teacher declares
that it has solved the verification problem and aborts the learning procedure. Consider
the two cases possible:

– Our teacher finds some fixpoint which does not intersect with the unsafe states. In
this case, the hypothetical teacher might still continue if the fixpoint is not the least
fixpoint (AL(F)) or say yes if is the least fixpoint. The hypothetical teacher could
not have said yes earlier, since if the learner proposed AL(F), our teacher would
have found it as a fixpoint which does not intersect with the unsafe states.

– Our teacher finds a valid counterexample to the safety property. Again the hypo-
thetical teacher could not have said yes earlier. If AL(F) had been proposed by the
learner, since the safety property does not hold, some string in AL(F) is a valid
counterexample to the safety property and our teacher would have found it.

Thus, in all cases our teacher will end the learning procedure sooner or at the same time
as the hypothetical teacher.

Complexity analysis: As shown in [3], Angluin’s algorithm makes O(|Σ|mn2) membership
queries and O(n) equivalence queries. Here m is the size of the longest string returned
by the teacher in a negative answer to an equivalence query and n is the size of the
minimal automaton representing AL(F) (assuming AL(F) is regular). When we answer
an equivalence query for a hypothesis L, we search for a string in L ∩ (¬Post(L)),
Post(L) ∩ (¬L) and W(L). The size of Post(L) is bounded by O(|Θ|n), hence L ∩
(¬Post(L)) and Post(L)∩ (¬L) are at most of size O(|Θ|n2). Assuming that the unsafe
states are described by an automaton smaller than the minimal one for AL(F), |W(L)|
is bounded by O(n2). Therefore, the longest string that can be returned as an answer to
the equivalence query is O(|Θ|n2). Hence, m = O(|Θ|n2).

Let T (l, k) be the time taken for a membership query for a string of length l on a FIFO
automata with k receive transitions. The running time for the verification procedure is
dominated by the cost of equivalence and membership queries. Let us now consider these
in turn.

1. Equivalence queries: Each equivalence query can also result in a membership query.
Following the reasoning in the previous paragraph, the cost of one equivalence query
is bounded by O(m + T (m, k)) which can be simplified to O(T (|Θ|n2, k)). For max-
imum of n such queries, the total cost is O(nT (|Θ|n2, k))

2. Membership queries from learner: For O(|Σ|mn2) membership queries with the maxi-
mum length of a string being O(m+n), the bound on the cost is O(|Σ||Θ|n4T (|Θ|n2, k))

The cost of answering the membership queries from learner clearly dominates the
total cost. Thus, the running time is O(|Σ||Θ|n4T (|Θ|n2, k)) which is a polynomial in
the size of the minimal automata for AL(F) and the time needed for a membership
query for AL(F). The longest string for which membership may need to be checked is
quadratic in the size of the minimal automata.

The space requirements for the verification procedure consist of the observation table
and the space requirement for membership queries. As shown in [3], the observation table
needs O(|Θ|(m2n2 + mn3)) space which reduces to O(|Θ|3n6).

Let us now consider T (l, k), the cost of a membership query for a string of length l.
This depends strongly on the annotation scheme used. For instance, in the old annotation
scheme (which keeps both parts of a send-receive pair) this is simply O(l). For the new
annotation scheme, we drop the receive part to allow more FIFO systems to have regular
annotated trace languages (making them amenable to automatic analysis). However,
this forces us to do more work for the membership query. There can be at most l receive
transitions that have to be inserted in the queried string to get a trace that can be
simulated on the FIFO system. A trivial upper bound for T (l, k) can be derived as
follows. For a query string of length l, we may have to add l more receives. The receives
can be put in the l + 1 positions in (l + 1)l or O(ll) ways. For each place, the number of
choices for receives is at most equal to the minimum of k and l. Let p = min(k, l). Then,
the cost of a membership query is O(plll). The bound could possibly be improved but
this is deferred for future work. It is also easy to see that the space requirement for a
membership query is simply O(log(plll)).

