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Abstract—Writing correct multithreaded programs is difficult. ~ a finite state automaton. A state in the automaton represents
Existing tools for finding bugs in multithreaded programs pri-  typestate. At any state in an execution, an object can betlgxac
marily focus on finding generic concurrency problems such as in one typestate, with the typestate of the object beingcset t

data races, atomicity violations, and deadlocks. Howevethese L . . .
generic bugs may sometimes be benign and may not help to catchthe initial state of the automaton when the object is being

other functional errors in multithreaded programs. In this paper, created. Each edge of the typestate is labeled by a method
we focus on a high-level programming error, called typesta defined by the object type. The invocation of a method during

error, which happens when a program does not follow the corret  an execution changes the typestate of an object according to
usage protocol of an object. We present a novel technique tha ji5 tyhestate automaton. If a typestate in the automaton has

finds typestate errors in multithreaded programs by lookingat a - . .
successful execution. An appealing aspect of our techniquethat no edge corresponding to a method, then an invocation of the

it not only finds typestate errors that occur during a program Method during an execution on an object in the typestateslead
execution, but also many other typestate errors that could Ave to a violation of the typestate property. Dynamically chiagk

occurred in a different execution. We have implemented this a typestate property [22] of an object simply involves cliegk
technique in a prototype tool for Java and have experimentedt 4,5+ the sequence of method calls made on the object is a
with a number of real-world Java programs. .
sequence accepted by the object’s typestate automaton.

We present PRETEX, a dynamic and predictive typestate
checking technique for multithreaded program executions.

Multithreaded programs often exhibit wrong behaviors dUBRETEX instruments a multithreaded program to observe
to unintended interaction between concurrent threadsh Su@rious events in a multithreaded execution such as method
errors are very difficult to detect because they happen undeaitls and thread creations. The observed execution need not
very specific thread schedules. Existing research on findiniglate a typestate property (i.e. a successful execytipet)
bugs in multithreaded programs has primarily focused @®RETEX can predict if some other concurrent execution could
developing techniques to find violations of generic invat$a violate the typestate property. Specifically, PRETEX cotepu
such as data races [1], [2], [3], [4], [5], [6], [7], [8], [9110], a dependency relation, callduappens-beforaelation [23],
[11], [12] and violations of atomicity [13], [14], [15], [16 between various events generated by a multithreaded exe-
[17], [18], [19], [20]. However, it has been found that thecution. The happens-before relation, which is also a gartia
violations of these low-level invariants do not always isnplorder relation, is then used to create various interleaviofy
that there is a bug in a program. For example, a recent tool [ observed events so that they do not violate the observed
on classifying harmful races from benign races showed th@ppens-before relation. Each such interleaving reptesen
90% of real data races are benign. Moreover, many timesatential concurrent execution of the multithreaded paogr
multithreaded program may satisfy all these low-level giene All the computed interleavings of events are then checked
invariants; yet, it can violate some functional invariamtls as against typestate properties. As such, although the obderv
a thread cannot read from a file handler that has already besecution may not violate a typestate property, PRETEX can
closed by another thread. Nevertheless, techniques fdnfindpredict typestate violations in other concurrent execigtithat
violations of these generic invariants are popular becthese “came close to happening”.
do not need a specification from the programmer. PRETEX has the same flavor as some dynamic race detec-

In this paper, we focus on a dynamic technique to detetadn [3], [6], [24] and atomicity checking [14], [13] techmies.
violations of a class of high-level properties called typés These techniques look at a multithreaded execution anatry t
properties. Typestate [21] is a temporal extension of typpsedict if a data race or an atomicity violation can happen in
where a user can effectively express the usage patternssome other concurrent execution. [25] is another apprdeath t
many common libraries and application programming irextracts a causality relation from an execution trace, awbu
terfaces (APIs). For example, a typestate property on d#rto predict data races and atomicity violations. Unlikesl
| nput St r eamobject in Java is that one cannot read from atechniques, PRETEX focuses on typestate properties whose
I nput St r eamobject after it has been closed. The typestatgolations imply a definite bug in a multithreaded program.
property of an object type can be conveniently represenged ®ther techniques [26] have been proposed to predict vislati

I. INTRODUCTION



of safety properties in multithreaded programs which can legample has two threadghi nThr ead andChi | dThr ead.
expressed using temporal logic. Temporal logic might not i nThr ead creates a nevisocket object, connects it to
sufficient to express many typestate properties, and thierefan address, and then stafsi | dThr ead. Mai nThr ead
these techniques will not be able to check multithreadedtains an input stream for the socket, and reads from it a
programs against those typestate properties. number of times. FinallyMai nThr ead closes the socket.

Predictive typestate checking for concurrent programeo<Chi | dThr ead obtains an output stream for the socket, and
three problems. First, checking typestate property forheawrites a string to it.
object type is expensive and time-consuming. Second, @pmin The example program is buggy and can throw an exception.
up with the valid typestate property for each object typBuch an exception is thrown ¥&i nThr ead is executed
requires a lot of manual effort. Third, checking typestate® completion beforeChi | dThr ead executes its first state-
property efficiently against all “nearby” concurrent exeans ment. This is because at the completion of its execution,
could be expensive. PRETEX aims to solve these probledsi nThr ead closesnySocket and thenChi | dThr ead
by combining three techniques in three stages. In the ficslls get Qut put St ream on the closed socket. In fact,
stage, PRETEX performs object race detection [5] to idesuch an execution violates the typestate property that the
tify the object types whose methods could be concurrentyet Qut put St r eammethod of aSocket object cannot be
invoked by multiple threads. Racing object types could onlalled after calling the methodl ose on the same object.
cause a typestate violation due to different interleavimga However, in a normal execution it is very unlikely that
concurrent execution; therefore, PRETEX only considegseh Chi | dThr ead will be called after the completion of the
object types in the next two stages. This helps PRETEX &xecution ofVai nThr ead. This is because the execution of
significantly prune the object types whose typestate neelis t Mai nThr ead will take a long time due to the presence of the
checked predictively. Second, PRETEX observes a sucdes#fiop and a fair thread scheduler will schedGle | dThr ead
concurrent execution, that is, an execution that does motth long beforeMai nThr ead completes its execution. Neverthe-
an exception, and tries to infer the likely typestate properless, the exception can happen under some schedule and the
of an object type by using an existing dynamic specificatidiug in the program should be fixed.
mining technique [27]. There are static methods to mineispec A naive way to find this bug would be to execute the
fications [28] too, which cover all possible ways an objepety program many times with the hope that the thread scheduler
can be used and not only the ways that were observed durimig create the buggy thread interleaving in some execution
an execution, but are usually not very scalable. Although oWe propose a technique where we can discover this types-
inferred typestate properties may not be accurate, thgy h&dte bug by looking at a single successful execution of the
to reduce the burden of specifications writer who can furtherultithreaded program. We next explain how we predict the
help to refine the inferred specifications rather than tryimg occurrence of the bug by looking at a successful execution (o
write them from scratch. Third, PRETEX efficiently checkgxception-free execution) where we exec@d | dThr ead
the inferred typestate properties by constructing an abstrbeforeMai nThr ead calls the methodyet | nput St r eam
model of a concurrent execution, called computation lattic The interleaving is shown in Figure 1.

We have implemented PRETEX in a prototype tool for Java. Our technique works in three stages. In the first stage,
We have applied PRETEX on a number of open-source Java compute the types of the objects whose method calls
programs containing 500K lines of code. We have detecteduld potentially race with each other. Only the object g/pe
a previously unknown typestate bug in a Java applicati¢hat could potentially race are considered for typestagzich
webl ech. Our experiments show that PRETEX can rumg in the next two stages. This is because the objects
efficiently on large programs. that could potentially race are likely to violate a typestat

The paper makes the following important contributions. property due to lack of synchronization. Note that the first

1) It proposes a dynamic technique to predict typestate &fage is only meant for optimization. In the example pro-

rors in multithreaded programs. This helps us to impro@am, theSocket object,mySocket , is in race, since the
the coverage of traditional testing. method invocationgget | nput St r eam() in Mai nThr ead,

2) It combines predictive typestate checking with obje@ndget Qut put St r ean() in Chi | dThr ead, can occur in

race detection and specification mining to reduce tt@ither order.
runtime overhead and to reduce the burden of writing Our second stage is the typestate specification mining stage
specifications, respectively. We use the typestate properties mined in this stage to predic

3) It presents an implementation and its evaluation onifathey could have been violated in some concurrent exegutio
number of real-world Java programs. The results of Oltjpat was not observed but that could have occurred. In this

experiments are encouraging. stage, we infer the likely typestate property of each oltjgm
by observing a successful concurrent execution. Spedyfical
Il. OVERVIEW for each type obtained from the previous stage, we obtain

In this section, we give a gentle introduction to predictivehe sequence of method calls invoked on each object of that
typestate checking of multithreaded programs. We explan ttype. We pass these sequences of method calls to an off-the-
technique using the multithreaded program in Figure 1. Tlséelf machine learning procedure [29] to learn an automaton



Mai nThr ead Chi | dThr ead

I net Address ad = | net Addr ess. get ByNane("testsite.cont');
Socket nySocket = new Socket ();

mySocket . connect (new | net Socket Addr ess(ad, 80));

Chi | dThread. start();

Qut put Stream os = Mai nThr ead. mySocket .
get Qut put Stream() ;

PrintWiter out = new PrintWiter(os,true);
out.println("testString");

I nput Streamis = nySocket. getlnputStream);

Buf f er edReader ibr =

new Buf f er edReader (new | nput St r eanReader (i s));
for (n =0; n < 100; n++)
String line = ibr.readLine();
nmySocket . cl ose();

Fig. 1. Predicting an IOException bug that is thrown wherOggputStream() is invoked on a closed Socket object

getinputStream
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getlnputStream close
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Fig. 2. The likely typestate specification automaton ledontSocket objects

that contains all the observed sequences. Such an automadbe property against a number of concurrent executiorts tha
represents the likely typestate property of the object type “came close to happening”, we call thigedictive typestate
the valid sequence of method calls on that object type.  checking. An advantage of predictive typestate checking is

For example, the sequence of calls omSocket, the that we can predict violations of a typestate property that
only Socket object, isconnect, get Qut put St r eam could potentially happen in other concurrent executionly on
get | nput Stream close in a successful run whereby analyzing a successful concurrent execution. In order
Chi | dThr ead terminates beford/gi nThr ead. From this [0 compute the concurrent executions “near” the successful
sequence, we can infer the likely typestate property th@ecution, we compute an abstract model from the sucessful
get | nput Stream or get Qut put Stream cannot be concurrent execution, called thmultithreaded computation
called on &Socket object afterc! ose() has been invoked on lattice. Each path in such a computation lattice denotes a
it. Typically, in our benchmarks, we have a number of objecg@ncurrent execution that could potentially happen if we
for each type in race, and hence, the automaton that descrig@ange the thread interleaving slightly. We then check the
the union of the sequences observed for these objects d¥Restate property against all paths in this lattice using a
close to the correct typestate specification automatonhiatr t dynamic programming algorithm.
type. Figure 2 gives a typestate specification automatoh tha

can be inferred foSocket objects from our example. Figure 3 gives the lattice for the observed execution in our

Our third stage is the predictive typestate checking stagexample. The solid lines describe the observed concurrent
Once we have a likely typestate property for each type aedecution from which we have computed the computation
a successful concurrent execution, we predictively chedhe lattice, whereas the dotted lines trace the concurrenugioss
typestate property against the successful concurrentiigec that could have been observed. The program stafein the
That is, by looking at the causal dependence among the \aridattice shows that the typestate property of 8wcket type
events in the successful concurrent execution, we compgtn be violated. This is because the socket is already closed
other concurrent executions that can be obtained from timethis state, when the methoget Qut put St rean{() is
successful concurrent execution by reordering indepandé@wvoked on it. Note that we do not observe this state in the
events. We then check each typestate property against #lstual concurrent execution, but we predicted this erroseo
computed concurrent executions. Since we check each typstste by analyzing the computation lattice.
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Fig. 3. The multithreaded computation lattice for FigureThe left-hand side diagram depicts the partial order ofeseduring program execution. Each
event is a pair of the thread name in which it occurred, andvéiwtor clock of the thread when it occurred. The stafa 33! in the computation lattice is
the bad state in the typestate specification automatosdaiket . Any transition that is not possible in the specificationoauhton leads to the bad stdte

[1l. PREDICTIVE TYPESTATECHECKING OF o If ¢; is the sending of the messageand ¢; is the
MULTITHREADED PROGRAMS reception of the messagge thene; < e;.

We describe the different stages of our technique in thise Ifeventse;, e;, ande, are such that; < e; ande; < ey,
section. The first stage executes the program and finds the thene; < ex.
types of objects that are involved in race in those execstion The happens-before relatior is computed at runtime by
The second stage executes the program again, once for eaelintaining a vector clock [30], [31], [24] with every thka
type that was identified to be in race in the previous stageach thread; maintains a vector clock indexed by thread IDs.
and obtains the sequence of method calls for each objecttd$ vector clock entry for; indicates the last event ity that
that type. PRETEX then constructs a typestate specificatiopuld have affected;. The details of how we maintain vector
automaton for each type of object in race from the methaiocks is standard and can be found in [24].
sequences. The third and final stage predictively checks théVe next describe the notion of a multithreaded computation
inferred typestate specifications against a multithresgledt  that we use in our predictive checking algorithm. This ¢atti
cution. is computed from the execution of a multithreaded program
as in [32], [26], [33], [34]. We denote by;*, the k-th event

A. Background Definitions . ]
) 9 o ) that occurred in the-th thread¢;. Then the program state
We introduce some standard definitions that we will use iger events: ¥ ex2 ... e,k is denoted byskikz--kn | A state

explain the different stages of our technique. The exenudfo s kik2..k. is called consistent [34] if and only if for any 4 i
a multithreaded program can be seen as a sequence of eV%‘%and anyl; < k;, I; < k; holds for any 1< j < n and any
where an event could be one of the following types. l; such thak;'i < e;'i. In other words, a consistent state is one
« MEM(o.t,L,m) denotes that threadinvoked the method \which can be formed by an interleaving of events that respect
m on objecto while holding the set of locké. L is also  the happens-before relation. LEf--0 be the initial program
called as the lockset held by thread state. A feasible interleaving of everts,es,...e,,, generates
» SND(g,t) denotes the sending of a message with unigqesequence of program statg&°,$%1,... 5= for which the
ID g by threadt. following two conditions hold. Eack”+ is consistent, and for
+ RCV(g,t) denotes the reception of a message with uniqggy two consecutive stateE - and L5+, K, and K,

ID g by threadt. differ in exactly one index by one. If the index in which
Given an event sequende;), we can define a happensthe two differ isi, then thei-th element ofK,, is larger
before relation< as follows. < is the smallest relation by one than the-th element of K,.. A sequence of states
satisfying the following conditions: YKo w1 3= thus identifies an interleaving of events, or
» If ¢; ande; are events in the same thread anccomes a run of the program. We say thatleads tox’, written asy

beforee; in the sequencée;), thene; < e;. ~ %" if there is a run in whiclt andx." are consecutive states.



The set of all program states together with the partial order during the execution of the program. Thus, we get as many
forms a lattice. For a stat&*1%2-*» we call k;+ko+...+k, Sequences as the numberSdcket objects that were used
as its level in the computation lattice. during the execution of the program. For each such set of
sequences, we learn a finite state automaton (FSA) thattaccep
the sequences in the set, and rejects most of those outgide th
This stage finds the types of objects whose method calls st. The automaton so learnt can be thought of as the typestat
different threads are in race. Our algorithm to detect thjeadd specification of that object type because it captures all the
that are in race is a combination of the dynamic race detectidifferent ways objects of that type were used during program
techniques proposed in [5], [24]. Specifically, at runtim&, execution. Moreover, since the execution does not throw an
check the following condition for each pair of events,{;). exception, we can assume that the observed sequences of
method calls are valid.
(j\i(t_- ;\EAE'\)AXOZ(’;[L;’TR) (ALe%_L ME%/;(27;t(7e’Li ’:1)9 ) The FSA that we learn is a deterministic finite automaton
/\ﬁze_ je_) vt v v (DFA), the edges of which are labeled with method names.
J e We use an off-the-shelf PFSA (Probabilistic Finite State Au
The above condition essentially states that two events @aoenaton) learner [29]. The learner infers a PFSA that ascept
in race if they are events on different threads, they are dthe set of method call sequences presented to it, plus some
to method calls on the same object, and the two evemi®re sequences that get added as it generalizes. The PFSA
are not related by the happens-before relation (i.e. the themrner first constructs a prefix tree or a trie from the set of
events are concurrent). If the above condition holds, we sagquences. Each arc of the trie is labelled with a frequératy t
that the objecto; could be in race, and we record its typereflects how many times that arc was traversed while creating
We use vector clock to track. The following SNDg,t) the trie. The trie can be seen as a FSA that accepts the set
and RCVg,t) events are considered in the above conditioof sequences from which it was built. Since prefix trees are
If thread ¢; starts a thread,, then events SND(t;) and usually very large in size, the PFSA learner uses the skegstri
RCV(g,t2) are generated, wherg is a unique message ID.method [29] to merge states in the prefix trees. The sk-gtring
If thread t; calls 5.j 0i n() and ¢t terminates, then eventsmethod is a variation of the k-tails method [35] for stochast
SND(g,t2) and RCV(,t,) are generated, whekgis a unique automata. It constructs a non-deterministic finite automat
message ID. If a.noti fy() or o.notifyAll () in thread (NFA) by successively merging those states of the trie which
t; signals av.wai t () in threadt., then events SNID(t;) and are sk-equivalent. LeE be the set of method names in the
RCV(g,t2) are generated, wherg is a unique message ID.set of sequences) be the set of states in the trig,: @ x
Objects which are in race are more likely to result in typiestax* — 2% be the transition function of the trie, add: be the
errors. Therefore, we concentrate on building the typestdinal states of the trie. The set of k-strings of states then
specification automaton for such objects in subsequenestaglefined to be the sdtz|z € %, 2| = kA d(g,2) CQV |z| <
kNé(q, z)NF. # 0}. Each k-string has a probability associated
with it which is equal to the product of the probabilities bét
Typestate [21] can be used to express the correct usages traversed to form that string. The k-strings of a stete a
rules for many application programming interfaces (APIsarranged in decreasing order of their probabilities. Therto
For example, one can use typestate to express thatstdngs, whose probabilities add up4% or more, are retained
j ava. net . Socket object cannot be read from after itand the rest discarded. Two states are said to be sk-equtivale
has been closed. A typestate specification uses a finite siathe sets of the tom strings of both are equal. The process of
automaton (FSA) to encode the correct usage protocol. & staterging sk-equivalent states is repeated until no morestat
in the FSA is called a typestate, and an object is in one okthasan be merged. The resulting PFSA accepts a superset of the
typestates at any point of time during program executiore Timethod call sequences that was presented to it, due to the
edges in the automaton are labeled with method names. Wigemeralizations performed during merging. The final stage i
a method is invoked on an object, it follows that outgoingeedghe learning process converts the NFA into a DFA.
from its typestate which is labeled with the method name, andThe DFA learned in this stage for each object type can be
transitions to a new typestate (which might be the same asutsed as the likely typestate specification for the type. Note
old typestate). If no such edge exists in its current tygestathat we use this stage to reduce the burden on users so that
then we say that a typestate error has occurred. In thisosectithey do not have to write tedious typestate specification for
we briefly describe how we obtain the typestate specificatiosach type from scratch. However, they can take a look at the
for object types that we identified to be in race in the presiounferred typestate automata and refine them as required.
stage.
Fgor each type in race, we collect the sequence of methBg Predictive checking against typestate specifications
calls invoked on each object of that type. For example, if After we infer the likely typestate specification automata,
we find that objects of typg ava. net. Socket are in we predictively check them against a multithreaded exenuti
race, then for each object of typeava. net . Socket, we Using the multithreaded execution, we generate a mutittaga
record the sequence of method calls that was invoked onc@mputation lattice for each automaton based on method invo

B. Object race detection

C. Inferring likely typestate specifications



cation events that are relevant to that automaton. The eltsmeapplying the transition represented by the method invonati
of the lattice consist of program states, where a prograswente to the set of states that each object is mapped to in
state is a mapping from objects of the type whose typestdle program state.
specification is represented by the automaton to sets @fsstat The functioni sNext St at e() checks if the program state
in the typestate specification automaton. The algorithm 0 and the method invocation eveatcan give rise to a new
generate the lattice is very similar to the one presente8@4i [ feasible state. If a new feasible state is possible, then the
except for the happens-before relation employed by thefanctioncr eat eSt at e() creates the new statg.takes the
The happens-before relation in [34] considers shared Mariaset of stateobj (e) is mapped to in: and met hodl d(e),
reads and writes, and lock acquires and releases, along wdfiplies the transition corresponding i@t hodl d(e) in the
the synchronization eventstart (), join(), wait(), typestate specification automaton to the set of states, and
notify() andnotifyAll (). We do not consider sharedreturns the resultant set of states. If the bad didagepresent
variable reads and writes, and lock aquires and releasesrtahe resultant set of states, then we report a typestabe. err
avoid the overhead that would be incurred if we kept track @iny transition that is not possible in a typestate specificat
them. The happens-before relation that we employ is, thus, @automaton is considered to lead to the bad siatéthe new
over-approximation of the exact happens-before relati@ t state that is created has a vector clock equivalent to that of
exists between the events in a multithreaded executionif butate already in the next level, we merge the two states. We
helps us in verifying more thread interleavings, some ofolvhi merge the mappings of the corresponding objects in the two
might be feasible, but not possible under the more conseevatstates.
happens-before relation in [34]. We generate states for the next level until the predicate
We generate the lattice on-the-fly during the execution pkLevel Conpl et e is satisfied. Upon the completion of a
the program, and analyze it level-by-level. After the staita |evel, all the events in the event que@ewhich can no longer
level have been analyzed, we discard them. Storing allsstagfive rise to feasible states in subsequent levels are disdar
in a level may also lead to a number of states exponentiglis is done by the functionenoveUsel essEvent s(),
in the number of levels being stored. Therefore, we empl@yhich creates a vector clock’C,,;,, each component of
the causality cone heuristic [34]. Instead of generatifg &lhich is the minimum of the corresponding components of
possible states in a level, the heuristic considers a level the vector clocks of the states in the current level. All ésen
be complete aftew states in the level are generated, where in the event queue which have a vector clock less than or equal
is a pre-determined parameter. However, a level may contay/ C,,;,, are removed, because they cannot generate feasible
less thanw states. The level construction algorithm would ggirogram states any more.
stuck in that case. Also, one cannot determine if there & le
thanw states in a level unless one sees all the events in the IV. | MPLEMENTATION
complete computation. This is because the total number of
threads is not known until the end of the execution. To avoid We have implemented our technique for Java in a proto-
this, another parametérs introduced, which is the length oftype tool. We instrument Java bytecode to observe various
the current event queu@. We consider the construction ofevents. Bytecode instrumentation allows us to analyze any
a level to be complete if we have used all the event€)in Java program for which the source code is not available.
for the construction of the states in the current level ared thVe use the Soot compiler framework [36] to insert probes
length of queue is at least or if we have generated states into the bytecodes of the Java programs. These probes call
in the current level. Algorithms 1 and 2 outline these. methods in our analyses which are also written in Java.
In the functionst hr eadl d(e) returns the thread where For the first stage of the analysis, the object race detector,
the evente has occurred. For a method invocation evemte add instrumentation to keep track of the locksets and
MEM(o,t,L,m), obj (e) returnso, andnet hodl d(e) returns vector clocks. For maintaining vector clocks, we instruimen
m. We maintain vector clocks for each program statend the method callsstart (),join(),wait(),notify(),
each event. The vector clock of a program stafereflects the and noti fyAl | (). We maintain a database of method
latest event that has occurred in each thread when the pnogiavocation events and the locksets and vector clocks assaki
state is reached. The vector clock of an evemd the vector with them. Moreover, since storing each possible event in
clock of its thread when it occurre®/C(X%) gives the vector the database would stress the memory requirement of the
clock associated with program stafe and VC(e) gives the application, we implement the following optimization. Bed
vector clock associated with event adding an event to the database, we first search the database
The function construct Level () constructs feasible to see if such an event already exists. If it does, then we
states from the states in the current level and events invéiret e do not add the current event to the database, or else we add
queueQ. A stateY in the current level and an eveatin the it to the database. Since we track the thread dependencies
event queue can give rise to a feasible state if and onytias arising out ofstart (), join(), wait(), notify(),
all the information about the events in the current executib and noti f yAl' | () and ignore other dependencies present
the program and the happens-before relation between trem tietween the threads, a considerable number of events that
e has, except for the eveantitself. A new state is created byoccurs on an object in a thread occurs with the same vector



Algorithm 1 Level-by-level traversal of the computation latof the automata are labeled with method call names. These

tice

while not end of conputation do
Q := enqueue( Q, Next Event ())
while construct Level () do
NOP
end while
end while

bool ean constructLevel ()
for each e € Q do
if ¥ € CurrLevel and isNext State(X,e)then
Next Level := NextLevel W createState(X,e)
if i sLevel Conpl et e( Next Level, e, Q) then
Q :=renoveUsel essEvent s(Curr Level ,Q)
CurrlLevel := Next Level
return true
end if
end if
end for
return fal se

bool ean i sNext St at e(X,e)

i := t hreadl d(e)

IJ’] (Vg # i VOB > VCe)l5] and VCE)[{]+1 = VC(e)[4])
en
return true

else
return fal se

end if

St,ate createState(X,e)
3 :=new copy of X
j=t hr eadl d(e)
V()] == VCE)[] + 1
3 := X [obj (e) := p(X(obj (e)),met hodl d(e))]
if b € p(2(obj (e)),met hodl d(e)) then
print ‘typestate error observed’
endif
return X

Algorithm 2 isLevelComplete predicate

bool ean i sLevel Conpl et e(Next Level ,e,Q)
if si ze(Next Level ) > w then
return true
elseife is the | ast event
then
return true
else
return fal se
end if

in @Q and size(Q) > 1

automata are used in the next stage for typestate checking.
For each automaton that we generate, we instrument the
program at each point where a method call present in one of
the edges of the automaton is invoked. The instrumentation
uses the method invocation events to build the levels of
the multithreaded computation lattice. We also track ttirea
dependencies by instrumenting the method caltsart (),
join(),wait(),notify(),andnotifyAl().

V. EMPIRICAL EVALUATION

A. Experimental setup

We evaluated our prototype tool on a number of bench-
mark programs. We ran our experiments on a laptop with
a 2GHz Intel Core 2 Duo processor and 2GB RAM. We
considered the following benchmark prograinedc, a meta-
crawler application kernel developed at ETH [Bgbl ech,

a website download toolt or nado, a multithreaded web
servercached4j , a fast thread-safe implementation of a cache
for Java objectsj spi der, a web spider enging,i gsaw

2. 2.6, W3C’'s web server, andpache ftpserver. The
eighth column of table | gives the LOC count for these
benchmarks. The last column in the table is the number of
threads that were spawned for the benchmark applications.
All of these were closed programs except fargsaw and

t or nado. Forj i gsawandt or nado, we wrote harnesses
that spawned a number of threads and queried the web server
for different urls.

B. Results

Table | summarizes the average execution time of the
various benchmarks for the different stages of the analysis
The second column gives the average execution time of the
unmodified benchmark. The third column is the average time
taken for obtaining the method call sequences for objects of
particular type. The fourth column gives the average tinre fo
the PFSA builder to build a PFSA from a set of method call
sequences. The fifth column is the average execution time to
run the predictive typestate checker using a single autmmat
All of the execution time is in milliseconds. The sixth colam
gives the total number of typestate errors reported by aulr to
An error that is reported more than once is counted only once,
and not the number of times it was reported. We manually
inspect all the errors that are reported, and provide thebeum

clock and lockset. Therefore, for all of these events, weehauf real errors that we find in the seventh column.
to add only a single entry to the database. As can be seen from the table, the execution time of an
For the second stage of the analysis, the method cafiplication after being instrumented to print the metholll ca
sequence extractor, we instrument the program to keep tragquences is less than 3 times the execution time of thenaligi
of the method calls invoked on objects of a certain type, twhi@application, except in the case ofche4j . The execution
is provided as a parameter to the instrumented program. YWee of an application after being instrumented to predict
run the instrumented program for each type that is identifiéghestate errors is less than 2 times the execution time of
to be in race in the previous stage. For each such run, ti® uninstrumented application, except foache4j . The
collect the sequences of method calls invoked on objects mferhead of instrumentation is thus very small. The PFSA
that type. We then use an off-the-shelf PFSA builder [29] douilder takes almost constant time to build a PFSA from a set
the sequences of method calls for each type in race. The edgemethod sequences. We manually examined the errors that



Benchmark | Normal Exec Time| Exec Time Exec Time Exec Time # errors | # actual LOC Threads
(in ms) (method segs) (PFSA) (typestate errors) reported | errors
(in ms) (in ms) (in ms)
tornado 4141 4125 1235 4140 6 0 1326 40
cache4j 4250 90421 1228 99609 3 0 3897 10
hedc 2813 2829 1352 2766 5 0 29948 5
weblech 1079 2641 1353 1609 6 1 35175 3
jspider 641 922 1233 781 7 0 64933 5
ftpserver 4890 8109 152 8125 8 0 127297 40
jigsaw 39031 39000 1352 39000 12 0 381348 30
TABLE |

Execution time for typestate checking

were reported, and found one real errorwabl ech which are observed during a certain execution of the program, they
we describe next. do not capture all legitimate sequences of method calls on

In webl ech, the URLs to be examined are queued in a@bjects of the type concerned. Thus, some of the errors that a
instance of the clasBownl oadQueue. In Spi der. j ava, reported are caused by legitimate interactions with theabj
due to insufficient synchronization, a thread might try tthat were not observed during the building of the typestate
retrieve a URL fromDownl oadQueue even if there is no specification automata.

URL in it. The relevant portion of the code is shown below.
VI. CONCLUSION

if eueSi ze() == 0 && downl oadsl nProgress > 0 . . .
' T (queueSi ze() g ) We proposed a dynamic technique to predictively check

o typestate violations in multithreaded programs. An appgal
conti nue; aspect of our approach is that we can predict a typestate
violation by analyzing a multithreaded execution that does

el se if(queuesSize() == 0) not directly violate the typestate specification. This kelp

br eak: us to improve the coverage of traditional testing and check
} properties that are more high-level than data race and aitymi
ce violation. We also showed how to combine predictive typesta
synchroni zed(queue) checking with object race detection and specification ngjnin
{ next URL = queue. get Next | nQueue() : to reduce the runtime overhead and to reduce the burden of
downl oads| nPr ogr ess++; writing specifications, respectively. Thus, our technitgi@lly
} automated. We presented an implementation and its evafuati

on a number of real-world Java programs. The results of our
experiments are encouraging.

When queue. get Next I nQueue() is called in VII. ACKNOWLEDGMENTS
the above code, the condition thagueueSi ze() ) ) )
4 0 could have become false. The execution of This work is supported in part by the NSF Grant CNS-

gueue. get Next | nQueue() can result in an exception 0720906.
being thrown if the size ofqueue is 0. The typestate
automaton inferred foDownl oadQueue by our analysis
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