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Abstract

We present a simple, easily implemented spectral
learning algorithm which applies equally whether
we have no supervisory information, pairwise link
constraints, or labeled examples. In the unsuper-
vised case, it performs consistently with other spec-
tral clustering algorithms. In the supervised case,
our approach achieves high accuracy on the cate-
gorization of thousands of documents given only
a few dozen labeled training documents for the 20
Newsgroups data set. Furthermore, its classifica-
tion accuracy increases with the addition of unla-
beled documents, demonstrating effective use of
unlabeled data. By using normalized affinity ma-
trices which are both symmetric and stochastic, we
also obtain both a probabilistic interpretation of our
method and certain guarantees of performance.

1 Introduction
Spectral algorithms use information contained in the eigen-
vectors of a data affinity (i.e., item-item similarity) matrix
to detect structure. Such an approach has proven effective
on many tasks, including information retrieval[Deerwester
et al., 1990], web search[Pageet al., 1998; Kleinberg, 1998],
image segmentation[Meila and Shi, 2000], word class detec-
tion [Brew and Schulte im Walde, 2002] and data clustering
[Ng et al., 2002]. But while spectral algorithms have been
very useful in unsupervised learning (clustering), littlework
has been done in developing spectral algorithms for super-
vised learning (classification).

In this work, we consider the adaptation of spectral cluster-
ing methods to classification. We first present a method for
combining item similarities with supervision informationto
produce a Markov transition process between data items. We
call this Markov process the “interested reader” model by ap-
peal to the special case of text clustering/classification.Our
algorithm incorporates supervisory information wheneverit
is available, either in the form of pairwise constraints or la-
beled data (or both). Empirically, our algorithm achieves high
accuracy when supplied either small amounts of labeled data
(Section 4) or small numbers of pairwise constraints (Sec-
tion 5).

2 The “Interested Reader” Model
We propose a Markov chain model similar in spirit to the
“random surfer” model of[Pageet al., 1998].1 This descrip-
tion is motivated in the context of text categorization, butthe
model depends only on notions of pairwise data similarity
and is completely general. In the model, there is a collection
of documents, each of which has some (possibly unknown)
topic. A reader begins with some document of interest and
continues to read successive documents. When she chooses
the next document to read, she tries to read another document
on the same topic, and hence will prefer other documents
which are similar to her current document. Some mapping
between similarities and transition probabilities must becho-
sen; we describe a specific choice in Section 3.

These transition probabilities define a Markov chain
among the documents in the collection. If there exist dis-
tinct topic areas in the document set (or, generally, if there
are clusters in the data), this Markov chain will be composed
of subsets that have high intra-set transition probabilities, and
low inter-set transition probabilities. We will refer to these
subsets ascliques. Each of the cliques corresponds to a topic
in the text clustering problem.

Of course, the natural clusters in the data need not be per-
fectly compatible with document labels, and we have said
nothing about the use of supervision information. In Sec-
tion 4, we use supervision to override the similarity-based
transition probilities. For example, we will disallow transition
between two documents which are known to be differently-
labeled, regardless of their pairwise similarity.

3 Spectral Clustering Algorithms
In this section, we discuss the process of turning anaffinity
matrix Aof pairwise document similarities into a normalized
Markov transition processN. The eigenvectors ofN are then
used to detect blocks or or near-blocks inN, which will cor-
respond to clusters of the data.

1Note that there is an important difference between the way these
two models are used; the random surfer model is used for the first
left eigenvector of the transition matrix, which indicatesthe relative
amount of time the process spends at each data item. On the other
hand, we are interested in right eigenvectors of our transition matrix,
which more straightforwardly relate to (near-)block structure in the
transition matrix.



Form spectral representation:

1. Given dataB, form the affinity matrixA ∈ R
n×n = f (B).

2. DefineD to be the diagonal matrix withDi i =
∑

j Ai j .

3. Normalize:N = (A + dmaxI − D)/dmax.
4. Findx1, . . . , xk, thek largest eigenvectors ofN and form the

matrix X = [x1, . . . , xk] ∈ R
n×k−1.

5. Normalize the rows ofX to be unit length.

For clustering:

6. Treating each row ofX as a point inRk, cluster intok clusters
using k-means or any other sensible clustering algorithm.

7. Assign the original pointxi to cluster j if and only if row i of
X was assigned to clusterj .

For classification:

6. Represent each data pointi by the rowXi of X.

7. Classify these rows as points inR
k using any reasonable clas-

sifier, trained on the labeled points.
8. Assign the data pointi the classc that Xi was assigned.

Figure 1: Spectral Learning Algorithm.

Algorithm Normalization ν(A, D)

MNCUT Divisive N = D−1A
NJW Symmetric Divisive N = D−1/2AD−1/2

LSA None N = A
SL Normalized Additive N = (A + dmaxI − D)/dmax

Table 1: Normalizations used by spectral methods.

3.1 Calculating the Transition Matrix
In order to fully specify the data-to-data Markov transition
matrix, we must map document similarities to transition prob-
abilities. LetA be the affinity matrix over documents whose
elementsAi j are the similarities between documentsi and
j . When we are given documentsi as pointsxi and a
distance functiond(xi , x j ), a common definition isAi j =

e−d(xi ,x j )/2σ2
, whereσ is a free scale parameter. In LSA

[Deerwesteret al., 1990], we are given a row-normalized
term-document matrixB, and A is defined to beBT B (the
cosine similarity matrix[Salton, 1989]).

We may map document similarities to transition probabili-
ties in several of ways. We can defineN = D−1A [Meilă and
Shi, 2001], whereD is the diagonal matrix whose elements
Di i =

∑
j Di j . This corresponds to transitioning with proba-

bility proportional to relative similarity values. Alternatively,
we can defineN = (A + dmaxI − D)/dmax [Fiedler, 1975;
Chung, 1997], wheredmax is the maximum rowsum ofA.
Here, transition probabilities are sensitive to the absolute sim-
ilarity values. For example, if a given document is similar to
very few others, the interested reader may keep reading that
document repeatedly, rather than move on to another docu-
ment. While either of these normalizations are plausible, we
chose the latter, since it had slight empirical performanceben-
efits for our data.

In [Meilă and Shi, 2001], it is shown that a probability
transition matrixN for a Markov chain withk strong cliques
will havek piecewise constant eigenvectors, and they suggest
clustering by finding approximately equal segments in the top
k eigenvectors. Our algorithm uses this general method as

Spectral Learning k-means
3 NEWS 0.84 0.20
20 NEWS 0.36 0.07
LYMPHOMA 0.50 0.10
SOYBEAN 0.41 0.34

Table 2: A comparison of Spectral Learning and k-means.

well, but some of the details differ; our algorithm is shown
in Figure 1. This algorithm is most similar to the algorithm
presented in[Ng et al., 2002], which we call NJW after its au-
thors. In fact, the only difference is the type of normalization
used. There are two differences between our algorithm and
MNCUT from [Meilă and Shi, 2001]; the normalization of
A is again different, and, additionally, MNCUT does not row
normalizeX (step 5). Table 1 describes the different types of
normalizations and mentions some algorithms that use them.

It should be noted that for data sets where there are distant
outliers, additive normalization can lead to very poor perfor-
mance. This is because, with additive normalization, the out-
liers become their own clique. Therefore, the clusters will
represent outliers rather than true clusters. In a dataset where
there are distant outliers, divisive normalization is likely to
lead to better performance.

3.2 Parameter Selection
The importance of parameter selection is often overlooked
in the presentation of standard spectral clustering methods.
With different values ofσ , the results of spectral clustering
can be vastly different. In[Ng et al., 2002], the parameterσ
is chosen based on that value ofσ that gives the least distorted
clusters.

In our text experiments, the dataB was a term-document
matrix, and the similarity functionf gave the pairwise cosine
similarities, with an entryAi j set to zero if neitheri was one
of the topk nearest-neighbors ofj nor the reverse. Threshold-
ing the affinity matrix in this manner is very useful, as spectral
methods empirically work much better when there are zeros
in the affinity matrix for pairs of items that are not in the same
class. For our experiments, we chosek = 20; however, one
may learn the optimalk in the same manner that[Ng et al.,
2002] learn the optimal scale factorσ .

3.3 Empirical Results
We compared the spectral learning algorithm in Figure 1 to
k-means on 4 data sets:

• 20 NEWSGROUPSa collection of approximately 1000
postings from each of 20 usenet newsgroups.2

• 3 NEWSGROUPS3 of the 20 newsgroups: sci.crypt,
talk.politics.mideast, and soc.religion.christian.

• LYMPHOMA gene expression profiles of 96 normal and
malignant lymphocyte samples. There are 2 classes:
Diffuse Large B-Cell Lymphoma (42 samples), and
Non-DLCBL (54 samples)[Alizadeh, 2000].

2From http://www.ai.mit.edu/~jrennie/20Newsgroups/; a total of
18828 documents. Documents were stripped of headers, stopwords,
and converted to lowercase. All numbers were discarded. Allwords
that occur in more than 150 or less than 2 documents were removed.



• SOYBEAN is the SOYBEAN-LARGE data set from the
UCI repository. 15 classes.3

The results are shown in Table 2. The numbers reported are
adjusted Rand Index values[Hubert and Arabie, 1985] for
the clusters output by the algorithms. The Rand Index is fre-
quently used for evaluating clusters, and is based on whether
pairs are placed in the same or different clusters in two par-
titionings. The Adjusted Rand Index ranges from−1 to 1,
and its key property is that the expected value for a random
clustering is 0. The result that spectral methods generallyper-
form better than k-means is consistent with the results in[Ng
et al., 2002; Brew and Schulte im Walde, 2002]. In some
cases, the poor performance of k-means reflects its inabil-
ity to cope with noise dimensions (especially in the case of
the text data) and highly non-spherical clusters (in the case
of the composite negative cluster forLYMPHOMA ).4 How-
ever, spectral learning outperforms k-means on theSOYBEAN
dataset as well, which is a low-dimensional, multi-class data
set.

4 Spectral Classification
In the previous section, we describedclusteringa data set by
creating a Markov chain based on the similarities of the data
items with one another, and analyzing the dominant eigenvec-
tors of the resulting Markov matrix. In this section, we show
how toclassifya data set by making two changes. First, we
modify the Markov chain itself by using class labels, when
known, to override the underlying similarities. Second, we
use a classification algorithm in the spectral space rather than
a clustering algorithm.

4.1 Modifying the “Interested Reader” Model
The model described in Section 2 can be modified to incor-
porate labeled data in the following simple manner. If the
interested reader happens to be at a labeled document, the
probability that she will choose another labeled document of
the same category is high, while the probability that she will
choose a labeled document of a different category is low (or
zero). Transition probabilities to unlabeled documents are
still proportional to their similarity to the current source doc-
ument, whether the current document is labeled or not.

We wish to create a Markov matrix that reflects this mod-
ified model. We propose doing this in the following manner,
using the normalization introduced in Section 3. For most
similarity functions, the maximum pairwise similarity value
is 1, and the minimum similarity is 0. Therefore, we would
like to say that two points in the same class are maximally
similar, and two points in different classes are minimally sim-
ilar:

3There are has 562 instances, 35 features, and 15 different
classes. It is nominal; Hamming distance was used.

4For some of these sets, thek-means numbers are low. This
is partially illusory, due to the zeroed expectation of the adjusted
Rand index, and partially a real consequence of the sparse high-
dimensionality of the text data. Betterk-means results on text typ-
ically require some kind of aggressive dimensionality reduction,
(usually LSA, another spectral method) or careful feature selection
(or both).

1. Define the affinity matrixA as in the previous algo-
rithms.

2. First, for each pair of points(i , j ) that are in the same
class, assign the valuesAi j = A j i = 1.

3. Likewise, for each pair of points(i , j ) that are in differ-
ent classes, assign the valuesAi j = A j i = 0.

4. NormalizeN =
1

dmax
(A + dmaxI − D).

This gives us a symmetric Markov matrix describing the
“interested reader” process which uses supervisory infor-
mation when present, and data similarities otherwise. A
strength of this model lies in the fact that it incorporates unla-
beled data, whereas the majority of classification models deal
strictly with the labeled data. A benefit of additive normal-
ization is that, after the affinities are adjusted, same-labeled
pairs will always have a higher (or equal) mutual transition
probability than unlabeled pairs. This will not necessarily be
the case with other normalization schemes.

4.2 A Spectral Classification Algorithm
Again, if natural classes occur in the data, the Markov
chain described above should have cliques. Furthermore, the
cliques will become stronger as the number of labeled doc-
uments increases. Given this model, we wish to categorize
documents by assigning them to the appropriate clique in the
Markov chain. The spectral clustering methods given in Sec-
tion 3 can be adapted to do classification by replacing the final
few steps (clustering in spectral space) with the steps shown
in Figure 1 (which classify in spectral space).

The key differences between the spectral classifier and the
clustering algorithm are (a) that our transition matrixA incor-
porates labeling information, and (b) we use a classifier in the
spectral space rather than a clustering method. What is novel
here is that this algorithm is able to classify documents by
the similarity of their transition probabilities to known sub-
sets ofB. Because the model incorporates both labeled and
unlabeled data, it should improve not only with the addition
of labeled data, but also with the addition of unlabeled data.
We observe this empirically in Section 4.3.

4.3 Empirical Results
Cliques
It was suggested in Section 4.2 that the Markov chain de-
scribed above will have cliques, that is, subsets of nodes in
the graph that are internally fast-mixing, but are not mutu-
ally fast-mixing. Figure 4 shows the thresholded sparsity pat-
tern for the affinity matrices for the 3 Newgroups data set, as
labeled data is added. The left matrix is the affinity matrix
for 1% labeled data. Even the underlying similarities show
block-like behavior, if weakly. To the extent that the unla-
beled data gives a block-like affinity matrix, clusters natu-
rally exist in the data; this is the basis for spectral clustering.
The subsequent matrices have increasing fractions of data la-
beled. The effect of adding labeled data is to sharpen and
coerce the natural clusters into the desired classes. As more
labels are added, the blocks become clearer, the cliques be-
come stronger, and, in the limit of 100% labeled data, the
interested reader will never accidently jump from a document
of one topic to one of another.
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Figure 2: Categorization accuracy on the 3 NEWSGROUPStask as
the number of (a) unlabeled and (b) labeled points increases. In (a),
12 labeled documents and the given number of unlabeled docments
were used as a training set. In (b), the training set is all of 3NEWS-
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for a given run consisted of all documents in 3 NEWSGROUPSwhose
labels were not known during training for that run.
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Figure 3: Categorization accuracy on the 20 NEWSGROUPStask as
the (a) amount of unlabeled data and (b) fraction of labeled data
increases.

Accuracies
To validate the utility of spectral classification, we performed
the following experiments on the 20 NEWSGROUPSdata set.

We built two batch classifiers. The first was a standard
multinomial Naive Bayes (NB) classifier with standard add-
one smoothing. The second was a spectral classifier as de-
scribed above, which used a single-nearest neighbor classifier
to perform the final classification in the spectral space. The
affinity matrix A was the thresholded cosine similarity be-
tween documents.5 We note here that the thresholding is im-
portant, since it weakens the effect of outliers. Furthermore, it
saves space and computation time, since the resulting affinity
matrix is sparse.

We split the data into a labeled training set and an unla-
beled test set. For classification, the spectral classifier pro-
cessed both the training and test set, but was evaluated on the
test set only.

Figure 2(a) shows the effect of using a sample of 12 docu-
ments from the 3 NEWSGROUPSdata as a labeled training
set, with an increasing number of unlabeled documents as
a test set. The accuracy of the NB classifier is, of course,
constant up to sampling variation, since it discards unlabeled
data. The spectral classifier is more accurate than the NB
classifier when given sufficiently many additional unlabeled

5For each document, we take the most similar 20 documents, and
put those similarities in the appropriate row and column. All other
entries are 0.

documents to incorporate.
Figure 2(b) shows the effect of supplying increasingly

large fractions of the 3 NEWSGROUPSdata set as labeled
training instances, and using the remainder of the data set
as test instances. The spectral classifier outperforms Naive
Bayes, more substantially so when there is little labeled data.
Figures 3(a) and (b) show the same graphs for the 20 NEWS-
GROUPS data set. Again, spectral classification performs
well, especially when less than 10% of the data is labeled.
It should be noticed that, for this data set, Naive Bayes out-
performs the spectral classifier in the strongly supervisedcase
(>15% labeled data). The strength of Spectral Learning lies
in incorporating unlabeled data, and, for the strongly super-
vised case, this is of less value.

Spectral Space

To further investigate the behavior of the spectral classi-
fier, we performed the following experiment. We took the
3 NEWSGROUPSdata and labeled various fractions of each
of the 3 classes. We then plotted each document’s position
in the resulting 3-dimensional spectral space (the space of
the rows of the matrixX as defined by our spectral learn-
ing algorithm). Figure 4 shows dimensions 2 and 3 of these
plots. With no labels, the data does not tightly cluster. As
we add labels (circled points), two things happen. First, the
labeled points move close to same-labeled points, away from
different-labeled points, and generally towards the outside,
since they are “hubs” of the Markov process. Second, they
pull the unlabeled points out radially along with them. Thisis
effective in that it seems to pull the classes apart, even though
the classes were not naturally very strong clusters in the un-
labeled data.

4.4 Related Work

In [Yu and Shi, 2001], a spectral grouping method, which
they call “Grouping with Bias”, is presented that allows for
top-level bias, as in labeled data. They formulate the problem
as a constrained optimization problem, where the optimal par-
tition is sought, subject to the constraint that the normalized
cut values of any two nodes that are preassigned to the same
class should be the same.

The main drawback with the algorithm in[Yu and Shi,
2001] is that it only constrains same-labeled data points. The
algorithm we present here benefits from the zeros in the spar-
sity pattern introduced by differently-labeled pairs. Further-
more, it should be noted that, in the multi-class case, labeled
sets combinatorialy tend to embody more differently-labeled
pairs than same-labeled pairs. The other drawback to not us-
ing the information given by differently-labeled points isthat
the trivial partition (all points in one cluster) will satisfy the
constraints, even when many points are labeled. In fact, when
all the data is labeled, it is likely that the partition foundby
the Grouping with Bias algorithm will be the trivial partition.
Figure 6(a) shows that our Spectral Classifier outperforms the
Grouping with Bias algorithm for the 3 NEWSGROUPSdata
set. In fact, Grouping with Bias started performing slightly
worse when a large fraction of the data was labeled.



−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

−0.5 0 0.5 1
−1

−0.5

0

0.5

nz = 5051 nz = 6925 0 50 100 150

0

50

100

150

1% Labeled 50% Labeled 100% Labeled

Figure 4: Three classes of the 20 NEWSGROUPSdata set in spectral space with increasing mounts oflabeleddata. The classes are sci.crypt
(pluses), talk.politics.mideast (dots), and soc.religion.christian (squares). The labeled points are circled. Thebottom graphs show the sparsity
patterns of the associated affinity matrices.

−1 −0.5 0 0.5
−1

−0.5

0

0.5

1

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

0 20 40 60 80

0

20

40

60

80

nz = 2510
0 100 200 300

0

100

200

300

nz = 10574
0 200 400 600

0

200

400

600

nz = 2196992 Unlabeled Docs 366 Unlabeled Docs 732 Unlabeled Docs

Figure 5: Three classes of the 20 NEWSGROUPSdata set in spectral space with increasing amounts ofunlabeleddata. The classes are sci.crypt
(pluses), talk.politics.mideast (dots), and soc.religion.christian (squares). There are 12 labeled documents (circled).

5 Constrained Spectral Clustering

Recently, there has been interest inconstrained clustering
[Wagstaff and Cardie, 2000; Kleinet al., 2002], which in-
volves clustering with two types of pairwise constraints:

1. Must-links: two items are known to be in the same class.
2. Cannot-links: two items are in different classes.
Constrained clustering allows one to do exploratory data

analysis when one has some prior knowledge, but not class la-
bels. The classifier presented in section 4 can be easily modi-
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fied for this kind of prior knowledge: we have been reducing
labeling information to pairwise information during affinity
modification all along.

Specifically, the affinity matrix is now defined as follows:

1. Define the affinity matrixA as before.
2. For each pair of must-linked points(i , j ) assign the val-

uesAi j = A j i = 1.
3. For each pair of cannot-linked points(i , j ) that are in

different classes, assign the valuesAi j = A j i = 0.

4. NormalizeN = 1
dmax

(A + dmaxI − D).

This is equivalent to theimposing constraintsstep in[Klein
et al., 2002]. In this step, must-linked points are made more
similar than any other pair of points in the data set, and
cannot-linked points are made more dissimilar than any pair
of points in the data set.

The spectral constrained clustering algorithm proceeds just
as the other spectral clustering algorithms presented here; the
only difference is that it uses the modified normalized affinity
matrix presented in this section.

Figure 6(b) shows a plot of accuracy vs. number of con-
straints for the 3NEWSGROUPSdata set using spectral con-
strained clustering. The accuracy is measured by the con-
strained Rand index[Klein et al., 2002; Wagstaff and Cardie,
2000]. The accuracy increases with number of constraints,
showing that the spectral constrained clustering can effec-
tively use constraints to better cluster data.

6 Conclusion
We present here a probabilistic model and an associated spec-
tral learning algorithm that is able to work for the unsuper-
vised, semi-supervised, and fully-supervised learning prob-
lems. We show that this algorithm is able to cluster well, and
further is able to effectively utilize prior knowledge, either
given by pairwise constraints or by labeled examples.
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