Overview

Classic optimal experiment design methods consider linear systems and thus cannot account for a computational imaging system's non-linearities. We propose a new method, **Physics-based Learned Design** [1], that incorporates system model non-linearities and prior information in the design process.

Introduction

Conventional microscopes image only a sample’s absorption. However, when staining is not possible, phase can provide a mechanism for contrast and quantitative information.

The LED array microscope [2] is a computational imaging system that marries hardware and software design to enable quantitative phase, super-resolution, and volumetric imaging.

Physics-based Network

Conventional Image Reconstruction:

\[
x^* = \arg \min_x \sum_{k=1}^{K} ||y_k - A_k(x)||^2_2 + \mathcal{P}(x)
\]

Usually solved with proximal gradient descent (PGD) [3].

Given, \((y_k)_{k=1}^{K}, x^{(0)}, \mu \in [0, 1]

For \(n \) in range(1, \(N\)):

\[
x^{(n)} = x^{(n-1)} - \alpha \nabla_x \mathcal{D}(x^{(n-1)}); (y_k)^{K}_{k=1}
\]

\[
w^{(n)} = \text{prox}_\mu(w^{(n)})
\]

\[
x^{(n)} = \mu w^{(n)} + (1 - \mu) w^{(n-1)}
\]

PGD is unrolled to form a neural network that incorporates known quantities such as the system model and the prior.

Learned Design

We use supervised learning to design the LED brightnesses for each measurement to maximize the overall performance of the system.

\[
C^* = \arg \min_c \frac{1}{L} \sum_{l=1}^{L} ||x^{(N)}(C) - x||^2_2
\]

s.t. \(c_{ij} \geq 0, ||c_i||_1 = 1, m^T_i c_i = 0 \forall i
\]

Experimental Results

Remarks

We propose a new method that learns the experiment design for a computational imaging system:

+ **Physics-based Network**: Incorporates known quantities such as the system model and prior information.

+ **Efficiency**: Network is completely parameterized by only a few design variables and thus we do not require a large number of training examples.

+ **Generality**: We are able to learn context-specific designs using simulated data that test well in experiment.

References

M. Kellman is supported by the National Science Foundation (NSF) under grant DGE 1106400.