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Multi-armed Bandits: optimise an unknown system
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Bandit problems are usually formulated in terms of the
number of arm pulls (sample complexity)
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Examples:
» Cumulative regret after T pulls: Rt = Z;l (w* — pt)

» Best arm identification: Minimise number of pulls to identify
the optimal arm p* with probability at least 1 — §.
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A resource consumption

= cost, time, ethical concerns etc.



Bandit problems are usually formulated in terms of the
number of arm pulls (sample complexity)

Usual assumption:
number of arm pulls (samples collected)
A resource consumption

= cost, time, ethical concerns etc.

We usually care about time and cost, and often, the number of
samples does translate to these considerations under practical
constraints.

- Formulating bandit problems directly in terms of time and
resource constraints give rise to new algorithms, theory, and
better empirical results.



Setting 1: Systems with sublinear scaling
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What is the best way to allocate the GPUs to different
hyperparameters to identify the optimal hyperparameter in the
shortest time?



Setting 1: Systems with sublinear scaling

Given a set of resources, what is the best way to allocate them to
arm pulls to identify the optimal arm in the shortest possible time?
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Given a set of resources, what is the best way to allocate them to
arm pulls to identify the optimal arm in the shortest possible time?
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Setting 2: Elastic resources
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Other natural applications outside of cloud-based experiments.
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1. Review: Best Arm ldentification (BAI)

2. BAI with fixed amount of resources & sublinear scaling
- Thananjeyan, Kandasamy, Stoica, Jordan, Goldberg, Gonzalez, Resource Allocation in Multi-armed
Bandit Exploration: Overcoming Sublinear Scaling with Adaptive Parallelism, ICML 2021
3. BAI with elastic resources

- Thananjeyan, Kandasamy, Stoica, Jordan, Goldberg, Gonzalez, PAC Best Arm Identification under

a Deadline, Under review

4. Hyperparameter tuning with elastic resources
- Misra, Liaw, Dunlap, Bhardwaj, Kandasamy, Gonzalez, Stoica, Tumanov, Rubberband:
Cloud-based Hyperparameter Tuning, EuroSys 2021
- Dunlap, Misra, Liaw, Kandasamy, Gonzalez, Jordan, Stoica, Rubberband: Hyperparameter Tuning

on the Cloud, Under review
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Best Arm Identification

» Given a bandit problem v = (v4,...,v,) of n arms.

» When we pull arm i, you observe a reward from a distribution
vi. Arm i has mean Ex.,, [X] = pi.

- Each arm is a candidate/configuration to be tested. Pulling an
arm corresponds to an experiment.

> Let pu) > p2y > ) = 0 > (n)- Arm (1) is the best arm.
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Best Arm Identification

» Given a bandit problem v = (v4,...,v,) of n arms.

» When we pull arm i, you observe a reward from a distribution
vi. Arm i has mean Ex.,, [X] = pi.

- Each arm is a candidate/configuration to be tested. Pulling an
arm corresponds to an experiment.

> Let pu) > p2y > ) = 0 > (n)- Arm (1) is the best arm.
» BAI: Given 0 € (0,1), identify the best arm with probability

at least 1 — 4, by pulling arms to collect information about
their mean values.

- Keep the number of arm pulls to a minimum.

» (¢,0)-PAC BAI: Given ¢ > 0 and § € (0, 1), identify an ¢
optimal arm with probability at least 1 — §.

an e-optimal arm it p; > p) — €
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Racing Algorithms for BAI

(Maron & Moore 1993, Kaufmann & Kalyanakrishnan 2013, Jun et al. 2016)
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Theoretical Results

Theorem (Informal) *: Number of samples required for BAI,

# samples € © (H(z/) - log (%))

M) =3 L. where A, = {F ~Ha FI=()
= A p) — Hi  otherwise.

* Hiding some details and caveats.
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Theoretical Results

Theorem (Informal) *: Number of samples required for BAI,

# samples € © (H(z/) - log (%))

M) =3 L. where A, = {F ~Ha FI=()
= A p) — Hi  otherwise.

For (e, 0)-PAC BAI,
1

P (A,’ + 6)2 ’

H(v) =

* Hiding some details and caveats.
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2. BAI with fixed amount of resources & sublinear scaling
- Thananjeyan, Kandasamy, Stoica, Jordan, Goldberg, Gonzalez, Resource Allocation in Multi-armed

Bandit Exploration: Overcoming Sublinear Scaling with Adaptive Parallelism, ICML 2021

13



BAI with a fixed amount of resources & sublinear scaling

Given a set of resources, what is the best way to allocate them to
arm pulls to identify the best arm in the shortest possible time?
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BAI with a fixed amount of resources & sublinear scaling

Tradeoffs: Parallelising arm pulls do not scale linearly (due to
communication, synchronisation costs etc.)

Time taken to complete an arm pull

sublinear scaling

1
T

linear (ideal) scaling
Amount of resources &

» More resources per arm pull: arm pull finishes faster, and we

can use that information to make better subsequent decisions.

However resource usage is inefficient.

» Fewer resources per arm pull: vice versa.
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BAI with a fixed amount of resources & sublinear scaling

Tradeoffs: Parallelising arm pulls do not scale linearly (due to
communication, synchronisation costs etc.)

A3

Time taken to complete an arm pull

sublinear scaling
X

linear (ideal) scaling

Amount of resources &

» More resources per arm pull: arm pull finishes faster, and we

can use that information to make better subsequent decisions.

However resource usage is inefficient.

» Fewer resources per arm pull: vice versa.

Tradeoff between information accumulation and resource efficiency.
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Adaptive Parallel Racing (APR)

Arm 3 eliminated

>

Time

» Racing style: pull arms on each round, and at the end of the
round, eliminate arms based on confidence intervals.

» Increase number of pulls for surviving arms in the next round.

Rate at which the number of pulls are increased depends on
the scaling function A.
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Theoretical Results

T =T> ({A;?}7_,) is given via the following dynamic program,

T (i) =, min (Mg = 2)) + T (12} s) )
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Theoretical Results

Theorem (Informal): Number of samples required for BAI with
a fixed amount of resources and sublinear scaling,

# samples € © (T- log (%))

T="T ({Ai_2 ,’-’:2) is given via the following dynamic program,
T ({z4) = min  (MK(z = 2e00) + Ters ({20 k) )-

» Upper bound: via our algorithm APR.

» Lower bound: integrates the scaling funtion into hypothesis
testing techniques.
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Simulations

Used a scaling function of the form, A (%) x Xiq for g € (0, 1].
When q is large, the scaling is good.

: Runtime vs. Smallest Arm Gap, g =0.9 , __Runtime vs. Smallest Arm Gap, g = 0.25
10°4 _ Batch Racing (1) O patch Racing (1)
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—— Batch Racing (1000) 4 104 — Batch Racing (1000)
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APR is able to match the best fixed amount of parallelization for a
problem without knowledge of the gap values.
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3. BAI with elastic resources
- Thananjeyan, Kandasamy, Stoica, Jordan, Goldberg, Gonzalez, PAC Best Arm Identification under

a Deadline, Under review
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BAI with elastic resources

Current literature on (e, §)-PAC BAL:

> Sequential setting: pull arms one at a time.
# samples € © (H(v) - log (%)), where,

n _ .f- .: 1
HE) =3 (D)2, where A= ® e 1Fi=(1),
P M) — pgiy  otherwise.
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BAI with elastic resources

Current literature on (e, §)-PAC BAL:

> Sequential setting: pull arms one at a time.
# samples € © (H(v) - log (%)), where,

n _ .f- .: 1
HE) =3 (D)2, where A= ® e 1Fi=(1),
P M) — pgiy  otherwise.

> Passive setting: Pull all arms at one go and identify the best
arm. # samples € © (ne~2log (})).

Sequential algorithms can adapt to problem difficulty, and have
better sample complexity.

» Our work: Given a deadline of T rounds.
Can execute multiple arm pulls per round.
(Prior work: Agarwal et al 2017, Jin et al 2019)
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BAI with elastic resources
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» Passive (T = 1): requires a lot of samples even on easy
problems.

» Sequential (T = oo): small sample complexity as it can adapt
to the problem, but can take a long time.
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» Passive (T = 1): requires a lot of samples even on easy
problems.

» Sequential (T = o0): small sample complexity as it can adapt
to the problem, but can take a long time.

> 1< T < oo: “best of both worlds” — short time, intermediate
sample complexity.
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Applications for elastic bandits

» Cloud-based experiments for hyperparameter tuning, scientific
simulations etc.

» Clinical trials: identify the best treatment/vaccine among
multiple candidates over a few rounds trials.
- Reduce number of trials to reduce costs and for ethical reasons.

P Laboratory experiments: high-throughput experimentation

platforms can be used to conduct several trials at a time.
- Reduce number of experiments to reduce the cost of reagents.
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Applications for elastic bandits

» Cloud-based experiments for hyperparameter tuning, scientific
simulations etc.

» Clinical trials: identify the best treatment/vaccine among
multiple candidates over a few rounds trials.

- Reduce number of trials to reduce costs and for ethical reasons.

P Laboratory experiments: high-throughput experimentation

platforms can be used to conduct several trials at a time.
- Reduce number of experiments to reduce the cost of reagents.

Standard assumption of a single resource or a fixed amount of
parallel resources often does not hold true in practice.
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Elastic Batch Racing (EBR)

[ |
[ | .
| » Racing style: pull arms on each round,
Slrifnei?]:t:?j I and at the end of the round, eliminate
\= arms based on confidence intervals.
== > Pull each surviving arm O(e=2t/T) times
I on round t.
) » If an arm survives until round T, it gets
—r pulled O(e~2) times.
>

T=3
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Theoretical results 1: minimax optimality over subclasses

> Passive setting: #samples € © (ne2log (671)).

> Sequential setting: # samples € © (’H(V) -log (5_1)), where,
H(v) =3, (Ai+e)2
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Theoretical results 1: minimax optimality over subclasses

> Passive setting: #samples € © (ne2log (671)).
> Sequential setting: # samples € © (H(V) -log (5_1)), where,
Hv) =2y (Ai+e)2
How well can we adapt to problem difficulty with only limited
rounds of adaptivity?

We partition all the problems P = J, cy; . 73» Py based on their
{A;}; values. Here, P, = {v;v(v) = v}, where,

When v is “small” (e.g. v =1[1,...,1]), the problems in P, are
“easy” (i.e A; values are large).
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Theoretical results 2: relative to sequential setting

P> Passive setting: #samples € 6 (n6_2 log (5_1)).

> Sequential setting: # samples € © (H(v) - log (671)), where,
H(v) =2, (A +e)72
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Theoretical results 2: relative to sequential setting
P> Passive setting: #samples € 6 (n6_2 log (5_1)).

> Sequential setting: # samples € © (H(v) - log (671)), where,
H(v) =2, (A +e)72

Upper bound 2: EBR on any problem v € P,

# samples € O (e_2/T “H(v) - Iog(é_l))

26



Theoretical results 2: relative to sequential setting

P> Passive setting: #samples € 6 (ne_2 log ((5‘1)).

> Sequential setting: # samples € © (H(v) - log (671)), where,
H(v) =2, (A +e)72

Upper bound 2: EBR on any problem v € P,

# samples € O (6_2/T “H(v) - |0g(5_1))

Lower bound 2 *:

: # samples _ ~ / /1
f ————cQ
Ae(e,lg)—PAc Sgg H(v) < (6 )

* With some caveats.
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Simulations

Number of Pulls Nt
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Hyperparameter tuning with elastic resources
- Misra, Liaw, Dunlap, Bhardwaj, Kandasamy, Gonzalez, Stoica, Tumanov, Rubberband:
Cloud-based Hyperparameter Tuning, EuroSys 2021
- Dunlap, Misra, Liaw, Kandasamy, Gonzalez, Jordan, Stoica, Rubberband: Hyperparameter Tuning

on the Cloud, Under review
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Hyperparameter Tuning with Elastic Resources

Goal: identify the optimal hyperparameters for a machine learning
model under a deadline and resource-time budget.
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Hyperparameter Tuning with Elastic Resources

Goal: identify the optimal hyperparameters for a machine learning
model under a deadline and resource-time budget.
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Elasticity helps circumvent undesirable effects of sublinear

scaling
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Experiments

Image classification

METHOD MODEL DATASET DEADLINE GPU MINUTES ACCURACY STD-ERROR
RANDOM VGG16 SVHN 15 4x15 0.19 0.028
ASHA VGG16 SVHN 15 4x15 0.819 0.053
HYPERSCHED VGGl16 SVHN 15 4x15 .92 0.021
E-HYPERBAND VGGl16 SVHN 15 4x15 .92 0.015
E-GRID SEARCH VGG16 SVHN 15 4x15 A 0.010
SEER VGG16 SVHN 15 4x15 . 0.005
RANDOM RESNETI8 CIFAR10 60 16 x 60 B 0.101
ASHA RESNETI8 CIFAR10 60 16 x 60 N 0.006
HYPERSCHED RESNETI8 CIFARI10 60 16 x 60 .93 0.005
BOHB RESNETI8 CIFAR10 60 16 x 60 N 0.000

" E-HYPERBAND  RESNETIS | CIFARIO 60 16x60 0914 0.005
E-GRID SEARCH RESNETI8 CIFAR10 60 16 x 60 3 0.001
SEER RESNETI18 CIFARI10 60 16 x 60 . 0.001
RANDOM RESNET50 TINYIMAGENET 60 16 x 60 N 0.064
ASHA RESNET50 TINYIMAGENET 60 16 x 60 B 0.068
HYPERSCHED RESNET50 TINYIMAGENET 60 16 x 60 .5 0.019
BOHB RESNET50 TINYIMAGENET 60 16 x 60 B 0.055
" E-HYPERBAND  RESNETS0  TINYIMAGENET 60 T16x60 7 0.630 0.003

E-GRID SEARCH ~ RESNET50 TINYIMAGENET 60 16 x 60 .63 0.049
SEER RESNET50 TINYIMAGENET 60 16 x 60 . 0.001

ASHA and Hypersched are implementations of Hyperband on a fixed amount of
resources. E-Hyperband and E-Grid search are (naive) elastic variants of

Hyperband and grid search.



Experiments

Text classification Image segmentation

METHOD M/MM ACCURACY STD-ERROR METHOD MEAN-IOU STD-ERROR
RANDOM 0.651/0.657 0.07870.098 RAaNDOM 0.413 0.078
ASHA 0.837/0.831 0.002/0.001 ASHA 0.519 0.005
HYPERSCHED 0.834/0.837 0.0017/0.001 HYPERSCHED 0.524 0.061

___BOHMB 081470817  0.001/0.000 & BOHB 0474 0078

E-HYPERBAND 0.836/0.831 0.002/0.001 E-HYPERBAND 0.503 0.003
E-GRID SEARCH 0.833/0.815 0.0017/0.002 E-GRID SEARCH 0.524 0.006
SEER 0.839/0.840 0.001/0.002 SEER 0.541 0.008

ASHA and Hypersched are implementations of Hyperband on a fixed amount of
resources. E-Hyperband and E-Grid search are (naive) elastic variants of
Hyperband and grid search.



Summary

» Usually, BAI problems are formulated in terms of the number
of pulls (sample complexity).

» Carefully considering resource constraints that arise in practice
gives rise to interesting algorithms and theory, and better
empirical results.

» Setting 1: a fixed amount of parallel resoures, but with
sublinear scaling.

» Setting 2: Elastic resources. As we are increasingly running
jobs on the cloud, we are no longer constrained by a fixed pool
of resources.
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