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Multi-armed Bandits: optimise an unknown system

Observation(s)
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to pull
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System

Decision Maker
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Hyperparameters of Distributed Materials & Physics
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Bandit problems are usually formulated in terms of the
number of arm pulls (sample complexity)

Observation(s)
Next arm(s)

to pull

Unknown
System

Decision Maker

Examples:

I Cumulative regret after T pulls: RT =
∑T

t=1 (µ? − µt)

I Best arm identification: Minimise number of pulls to identify
the optimal arm µ? with probability at least 1− δ.
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Bandit problems are usually formulated in terms of the
number of arm pulls (sample complexity)
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Bandit problems are usually formulated in terms of the
number of arm pulls (sample complexity)

Usual assumption:

number of arm pulls (samples collected)

≈ resource consumption

= cost, time, ethical concerns etc.

We usually care about time and cost, and often, the number of
samples does translate to these considerations under practical
constraints.

- Formulating bandit problems directly in terms of time and
resource constraints give rise to new algorithms, theory, and
better empirical results.
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Setting 1: Systems with sublinear scaling

4 GPUs

4 GPUs

4 GPUs

4 GPUs

64 GPUs

What is the best way to allocate the GPUs to different
hyperparameters to identify the optimal hyperparameter in the
shortest time?
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Setting 1: Systems with sublinear scaling

Given a set of resources, what is the best way to allocate them to
arm pulls to identify the optimal arm in the shortest possible time?
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Setting 2: Elastic resources

Fixed amount of resources

Elastic resources

Other natural applications outside of cloud-based experiments.
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Outline

1. Review: Best Arm Identification (BAI)

2. BAI with fixed amount of resources & sublinear scaling
- Thananjeyan, Kandasamy, Stoica, Jordan, Goldberg, Gonzalez, Resource Allocation in Multi-armed

Bandit Exploration: Overcoming Sublinear Scaling with Adaptive Parallelism, ICML 2021

3. BAI with elastic resources
- Thananjeyan, Kandasamy, Stoica, Jordan, Goldberg, Gonzalez, PAC Best Arm Identification under

a Deadline, Under review

4. Hyperparameter tuning with elastic resources
- Misra, Liaw, Dunlap, Bhardwaj, Kandasamy, Gonzalez, Stoica, Tumanov, Rubberband:

Cloud-based Hyperparameter Tuning, EuroSys 2021

- Dunlap, Misra, Liaw, Kandasamy, Gonzalez, Jordan, Stoica, Rubberband: Hyperparameter Tuning

on the Cloud, Under review
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Best Arm Identification

I Given a bandit problem ν = (ν1, . . . , νn) of n arms.

I When we pull arm i , you observe a reward from a distribution
νi . Arm i has mean EX∼νi [X ] = µi .

- Each arm is a candidate/configuration to be tested. Pulling an
arm corresponds to an experiment.

I Let µ(1) > µ(2) ≥ µ(3) ≥ · · · ≥ µ(n). Arm (1) is the best arm.

I BAI: Given δ ∈ (0, 1), identify the best arm with probability
at least 1− δ, by pulling arms to collect information about
their mean values.

- Keep the number of arm pulls to a minimum.

I (ε, δ)-PAC BAI: Given ε > 0 and δ ∈ (0, 1), identify an ε
optimal arm with probability at least 1− δ.

an ε-optimal arm i : µi > µ(1) − ε
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Racing Algorithms for BAI

(Maron & Moore 1993, Kaufmann & Kalyanakrishnan 2013, Jun et al. 2016)
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Theoretical Results

Theorem (Informal) *: Number of samples required for BAI,

# samples ∈ Θ̃

(
H(ν) · log

(
1

δ

))

H(ν) =
n∑

i=1

1

∆2
i

, where ∆i =

{
µ(1) − µ(2) if i = (1),

µ(1) − µi otherwise.

For (ε, δ)-PAC BAI,

H(ν) =
n∑

i=1

1

(∆i + ε)2
,

* Hiding some details and caveats.
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BAI with a fixed amount of resources & sublinear scaling

Given a set of resources, what is the best way to allocate them to
arm pulls to identify the best arm in the shortest possible time?
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BAI with a fixed amount of resources & sublinear scaling

Tradeoffs: Parallelising arm pulls do not scale linearly (due to
communication, synchronisation costs etc.)

Time taken to complete an arm pull

Amount of resources

linear (ideal) scaling

sublinear scaling

I More resources per arm pull: arm pull finishes faster, and we
can use that information to make better subsequent decisions.
However resource usage is inefficient.

I Fewer resources per arm pull: vice versa.

Tradeoff between information accumulation and resource efficiency.
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Adaptive Parallel Racing (APR)

I Racing style: pull arms on each round, and at the end of the
round, eliminate arms based on confidence intervals.

I Increase number of pulls for surviving arms in the next round.
Rate at which the number of pulls are increased depends on
the scaling function λ.
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Theoretical Results

Theorem (Informal): Number of samples required for BAI with
a fixed amount of resources and sublinear scaling,

# samples ∈ Θ̃

(
T · log

(
1

δ

))

T = T2
(
{∆−2i }ni=2

)
is given via the following dynamic program,

Tj
(
{zi}ni=j

)
= min

k∈{j ,...,n}

(
λ(k(zj − zk+1)) + Tk+1

(
{zi}ni=k+1

) )
.

I Upper bound: via our algorithm APR.

I Lower bound: integrates the scaling funtion into hypothesis
testing techniques.
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Simulations

Used a scaling function of the form, λ
(
1
x

)
∝ 1

xq , for q ∈ (0, 1].
When q is large, the scaling is good.

APR is able to match the best fixed amount of parallelization for a
problem without knowledge of the gap values.
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BAI with elastic resources

Current literature on (ε, δ)-PAC BAI:

I Sequential setting: pull arms one at a time.
# samples ∈ Θ̃

(
H(ν) · log

(
1
δ

))
, where,

H(ν) =
n∑

i=1

(∆i + ε)−2 , where ∆i =

{
µ(1) − µ(2) if i = (1),

µ(1) − µ(i) otherwise.

I Passive setting: Pull all arms at one go and identify the best
arm. # samples ∈ Θ̃

(
nε−2 log

(
1
δ

))
.

Sequential algorithms can adapt to problem difficulty, and have
better sample complexity.

I Our work: Given a deadline of T rounds.
Can execute multiple arm pulls per round.
(Prior work: Agarwal et al 2017, Jin et al 2019)
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BAI with elastic resources

Passive Sequential Elastic

I Passive (T = 1): requires a lot of samples even on easy
problems.

I Sequential (T =∞): small sample complexity as it can adapt
to the problem, but can take a long time.

I 1 < T <∞: “best of both worlds” – short time, intermediate
sample complexity.

21
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Applications for elastic bandits

I Cloud-based experiments for hyperparameter tuning, scientific
simulations etc.

I Clinical trials: identify the best treatment/vaccine among
multiple candidates over a few rounds trials.

- Reduce number of trials to reduce costs and for ethical reasons.

I Laboratory experiments: high-throughput experimentation
platforms can be used to conduct several trials at a time.

- Reduce number of experiments to reduce the cost of reagents.

Standard assumption of a single resource or a fixed amount of
parallel resources often does not hold true in practice.
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Elastic Batch Racing (EBR)

I Racing style: pull arms on each round,
and at the end of the round, eliminate
arms based on confidence intervals.

I Pull each surviving arm O(ε−2t/T ) times
on round t.

I If an arm survives until round T , it gets
pulled O(ε−2) times.
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Theoretical results 1: minimax optimality over subclasses

I Passive setting: #samples ∈ Θ̃
(
nε−2 log

(
δ−1
))

.

I Sequential setting: # samples ∈ Θ̃
(
H(ν) · log

(
δ−1
))

, where,
H(ν) =

∑n
i=1 (∆i + ε)−2.

How well can we adapt to problem difficulty with only limited
rounds of adaptivity?

We partition all the problems P =
⋃
γ∈{1,...,T}n Pγ based on their

{∆i}i values. Here, Pγ = {ν; γ(ν) = γ}, where,

γi (ν) =


1 if ∆i ∈ [ε

1
T , 1]

k if ∆i ∈ [ε
k
T , ε

k−1
T ) for k ∈ {2, . . . ,T − 1}

T if ∆i ∈ [0, ε
T−1
T ).

,

When γ is “small” (e.g. γ = [1, . . . , 1]), the problems in Pγ are
“easy” (i.e ∆i values are large).
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Theoretical results 1: minimax optimality over subclasses

We partition all the problems P =
⋃
γ∈{1,...,T}n Pγ based on their

{∆i}i values.

Upper bound 1: EBR on problem ν ∈ Pγ ,

# samples ∈ Õ

(
sup
ν′∈Pγ

H(ν ′) · log(δ−1)

)

Lower bound 1:

inf
A∈(ε,δ)−PAC

sup
ν′∈Pγ

# samples ∈ Ω̃

(
sup
ν′∈Pγ

H(ν ′) · log(δ−1)

)
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(
sup
ν′∈Pγ

H(ν ′) · log(δ−1)

)

Lower bound 1:

inf
A∈(ε,δ)−PAC

sup
ν′∈Pγ

# samples ∈ Ω̃

(
sup
ν′∈Pγ

H(ν ′) · log(δ−1)

)

25



Theoretical results 2: relative to sequential setting

I Passive setting: #samples ∈ Θ̃
(
nε−2 log

(
δ−1
))

.

I Sequential setting: # samples ∈ Θ̃
(
H(ν) · log

(
δ−1
))

, where,
H(ν) =

∑n
i=1 (∆i + ε)−2.

Upper bound 2: EBR on any problem ν ∈ P,

# samples ∈ Õ
(
ε−2/T · H(ν) · log(δ−1)

)

Lower bound 2 *:

inf
A∈(ε,δ)−PAC

sup
ν∈P

# samples

H(ν)
∈ Ω̃

(
ε−2/T

)
* With some caveats.
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Simulations
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Hyperparameter Tuning with Elastic Resources

Goal: identify the optimal hyperparameters for a machine learning
model under a deadline and resource-time budget.
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Elasticity helps circumvent undesirable effects of sublinear
scaling
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Experiments

Image classification

ASHA and Hypersched are implementations of Hyperband on a fixed amount of

resources. E-Hyperband and E-Grid search are (naive) elastic variants of

Hyperband and grid search.
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Experiments

Text classification Image segmentation

ASHA and Hypersched are implementations of Hyperband on a fixed amount of

resources. E-Hyperband and E-Grid search are (naive) elastic variants of

Hyperband and grid search.
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Summary

I Usually, BAI problems are formulated in terms of the number
of pulls (sample complexity).

I Carefully considering resource constraints that arise in practice
gives rise to interesting algorithms and theory, and better
empirical results.

I Setting 1: a fixed amount of parallel resoures, but with
sublinear scaling.

I Setting 2: Elastic resources. As we are increasingly running
jobs on the cloud, we are no longer constrained by a fixed pool
of resources.
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