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Barnabás Póczos,3 Jay Whitacre,2,4,* and Venkatasubramanian Viswanathan1,4,*

SUMMARY

Innovations in batteries can require years of experimentation for
design and optimization. We report an autonomous approach to
the optimization of a battery electrolyte that uses machine learning
coupled to a robotic test-stand to perform hundreds of sequential
experiments. We search for mixtures of salts in aqueous electrolytes
with high electrochemical stability using Bayesian optimization. In
40 hours of experimentation testing for 140 electrolyte formulas,
we converge on a non-intuitive optimal electrolyte. The optimum
is amixed-anion sodium electrolyte that is more stable than a bench-
mark electrolyte, despite lower salt content, contrary to the known
design principle. The precision and repeatability of the robotic test-
stand distinguishes formulations that human-guided design may
have missed. Our result demonstrates the possibility of integrating
robotics with machine learning to discover novel battery materials.
We provide a dataset characterizing 251 aqueous electrolytes
containing LiNO3, LiClO4, Li2SO4, NaNO3, NaClO4, and Na2SO4

that includes conductivities, pHs, and electrochemical responses
on platinum.

INTRODUCTION

Energy-dense and safe batteries are crucial for the electrification of transportation1

and aviation.2 However, improvements to battery materials can take years to deliver

and many iterations of testing might be required to optimize the material to achieve

the objectives.3 The battery-design problem is fundamentally a complex function

that takes battery formulation as input and outputs performancemeasurements. Ma-

chine-learning methods can be used to optimize these black-box functions.4–8 Ma-

chine-learning models coupled to automated evaluation — able to immediately

act on themodel’s recommendations— can ‘‘close the loop’’ and enable inverse ma-

terial design.9–14 Bayesian optimization in particular has been proven effective in

solving chemical design problems over minimal experimental iterations, with suc-

cessful examples including carbon nanotube15 and polymer fiber synthesis,16 meta-

material design,17 and organic photovoltaic devices.18 Although similar approaches

have been attempted in several fields of study, to our knowledge this is the first

attempt to apply this framework to the design of functional materials in

electrochemistry.

We have built the robotic platform ‘‘Otto’’ from scratch for characterizing battery

electrolytes,19,20 and the schematic is shown in Figure 1. In this work, we connected

our platform to a Bayesian optimizer and allowed it to run autonomously, allowing

the machine-learning model to plan each experiment sequentially on the basis of
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measurement feedback in real time. Our goals are: (1) to demonstrate and assess the

first attempt of battery electrolyte design by machine-learning integrated into ro-

botics, (2) to confidently optimize in previously unexplored design spaces, (3) to

discover interesting, non-intuitive, and high-performing materials with this method,

and (4) to generate high-quality data for the community andmake it available with all

metadata in a structured format.

We specifically target aqueous electrolyte design with our method and look to maxi-

mize the electrolyte’s electrochemical stability window in two design spaces: one

space mixing three common lithium salts in water, and the other mixing four sodium

salts in water. Three- or four-salt aqueous electrolytes have not yet appeared in the

literature. Run continuously over a two-week period, Otto generated about 70 data

points in each design space, which, with many additional experiments for replication

and detailed evaluation, yielded over 250 experimental data points for a range of

mixed-salt aqueous electrolytes. These data (electrolyte composition versus

Figure 1. Schematic Figure of Robotic Platform and Software Architecture

The test-stand (Otto) mixes feeder solutions and measures pH, ionic conductivity, and electrochemical properties in a symmetric platinum electrode

cell. The control software takes in an experiment request and returns measurements and metadata (e.g., temperature) over HTTP to a Python API.

Dragonfly, the Bayesian optimization software utilized, plugs into the Python API for requesting experiments and receiving feedback. A more detailed

version of test-stand components and logic is available as Figure S8.
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conductivity, pH, and electrochemical assessment on platinum) are supplied in a

easily queried format for the community (https://data.matr.io/5).

Aqueous electrolytes are of great research interest because the non-aqueous elec-

trolytes commonly used in batteries are flammable and present significant safety

hazards and manufacturing costs relating to safety, storage, and management.21,22

Aqueous electrolytes are an attractive alternative. They are safer, lower-cost, and

more conductive than non-aqueous counterparts.23,24 High conductivity particularly

suits large-format batteries that might be used in the electrical grid to smooth out

the intermittent generation of power from renewable sources.25

However, aqueous electrolytes have a narrow electrochemical stability window, limited

by the hydrogen evolution reaction (HER) at low electrochemical potentials and the ox-

ygen evolution reaction (OER) at high potentials.26 These parasitic reactions preclude

the use of the high-voltage electrode couples that enable the high energy density of

non-aqueous batteries21 and lead to poor cycling capability, calendar life, and dimin-

ished high-rate performance.27 A recent trend in aqueous electrolyte design uses

very high salt concentrations to suppress these reactions, either by the deposition of

a passivating electrode film (often via anionic reduction) or by modifying interfacial hy-

dration structures to achieve similar effects. These ‘‘water-in-salt’’ electrolytes have been

shown to expand the electrochemical stability window from less than 2V for a standard

aqueous electrolyte up to 3V, with effects demonstrated in both lithium and sodium sys-

tems.22,28–31 Water concentration alone has been shown to have asymmetric influence

on electrolyte resistance to HER and OER.29 Blending salts in electrolytes can positively

impact performance, opening the possibility formixed-anion electrolyteswith improved

electrochemical windows,32,33 but three- and four-salt aqueous electrolytes havenot ap-

peared in the literature.

Improvements in stability for aqueous electrolytes that do not reduce into a passiv-

ating film are not fully explained from first principles.28,29,34,35 Because these sys-

tems have properties that are expensive to compute with molecular dynamics, the

computational screening of aqueous electrolytes would be challenging and time-

consuming without guarantee of fidelity when compared to physical experimenta-

tion. Progress in aqueous electrolyte design is made via chemists’ ingenuity and a

significant amount of manual testing.

We reformulate aqueous electrolyte design as a black-box optimization problem.

Otto mixes together aqueous electrolyte salts, pre-dissolved near saturation into

feeder solutions, and measures two electrolyte objectives: ionic conductivity

and electrochemical stability, as well as temperature and pH. Electrochemical

stability is tested with constant current holds at four current levels (111, 22, 5,

then 1 mA/cm2, first testing OER onset potentials then HER onset potentials) on

two platinum wires with an Ag/AgCl reference electrode. As described previously,19

we utilize a slope-extrapolation method between 22 and 5 mA/cm2 to the zero-

current axis to characterize electrolyte stability. This method will over-estimate elec-

trolyte stability compared to longer measurements done at a lower currents (e.g.,

50m A/cm2), but using this quantity during survey and optimization enables a 60 s

measurement of electrolyte stability against HER and OER with consistent vari-

ance.19 Dosing, mixing, measurement, flushing, and washing steps meant that

each experimental iteration took under 25 min. In-depth details on the design, cali-

bration, and performance of Otto and the fast electrochemical assessment are

previously published,19 but a detailed schematic of the test-stand mechanics and

visualizations of the test are shown in Figures S1–S4 and S8.
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The optimal electrolyte found in the sodium design space is a novel dual-anion sodium

electrolyte. The blended electrolyte exhibits a wider electrochemical stability window

on platinum compared to a baseline NaClO4 aqueous sodium electrolyte,30,35 despite

lower overall salt content. The electrolyte can be used in a cell with repeated cycling at

over 2V reversible capacity on active electrodes. The automated discovery of a non-intu-

itive, novel electrolyte in a complex design space illustrates the promise of using ma-

chine learning coupled to robotic experiments to rapidly optimize material designs

that human experimenters might miss.

RESULTS AND DISCUSSION

Manual Surveys

Otto first surveyed electrochemical stability as a function of salt concentration on a

manually defined grid across common lithium and sodium electrolytes without the

Figure 2. Results for Autonomous Optimization of Aqueous Electrolytes

Sodium (left column) and lithium (right column) design spaces comprise the two columns.

(A and D) The panels show Dragonfly’s optimization routine for sodium (A) and lithium (D). The black circles indicate individual evaluations, and the red

line shows the maximum stability window found over iterations. Shown in color are the top blends found by Dragonfly, the compositions of which are

given in Table 1.

(B, C, E, and F) For each top blend, four additional experiments were carried out against baselines of NaClO4 and LiNO3, and the potentials (via slope-

extrapolation method) are reported here. The OER (B) and HER (C) potentials of Blends D and E were compared to NaC1O4. The OER (E) and HER (F)

potentials of Blends ε and b were compared to LiNO3. Blend E is the best-performing sodium electrolyte, and LiNO3 is the best lithium electrolyte.
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machine-learning optimizer. The results, shown in Figure S9, demonstrate significant

differences in behavior among salts in suppressing OER and HER when controlling

for salt content. These results motivated our design problem where salts are chosen

and blended to discover a novel electrolyte with an optimal stability window.

Machine-Learning-Guided Optimization

It would be time consuming to exhaustively searchmixtures of these anions for optimal

formulations because the complexity of these design spaces exhibits combinatorial

explosion. For example, Otto utilizes a testing volume of 7 mL. Exhaustively searching

a space of 3-salt mixtures in 0.1mL increments would require 62,000 evaluations, and a

space of 4-salt mixtures would require 1,150,000 evaluations. To make optimization

over this design space practical, we connected Otto to Dragonfly, a Bayesian optimi-

zation software package developed by our team. Dragonfly harnesses a suite of acqui-

sition strategies and evolutionary algorithms for scalable and robust treatment of

black-box functions.6,7 Although other Bayesian optimization packages (e.g., GPyOpt,

BOTorch) are widely used, Dragonfly is unique in its adaptive sampling strategy. Other

packages enforce a choice of a single acquisition function, which can lead to problem-

dependent performance. Dragonfly uses four different acquisition functions and

actively learns which performs best in the task at hand through the course of each opti-

mization run.7 The combined approach can be important for problems in which the

optimization response surface is unknown. Also, interfacing directly to an experiment

requires support for optimizing under arbitrary constraints and discrete domains,

which was developed in Dragonfly for this work.

Given only solubility and pumping-precision constraints onmixtures, Dragonfly opti-

mized for the electrochemical stability window — as measured by the fast electro-

chemical assessment and summarized into a single value with a slope-extrapolation

method — over the design spaces of (1) mixtures of NaNO3, NaClO4, Na2SO4, and

NaBr and (2) mixtures of LiNO3, LiClO4, and Li2SO4. Dragonfly operated fully auton-

omously, running experiments with no human guidance. Results are illustrated in

Figures 2A–2F. Concentrations of feeder solutions for each salt are given in Table 1;

compositions of the blended electrolytes discovered by Dragonfly that have the wid-

est measured stability windows are given in Table 2.

The optimization curve over sodium electrolytes illustrated in Figure 2A looks split.

Any amount of NaBr in the electrolyte significantly lowered cathode stability due to

an anodic reaction of the bromide anion; in other words, a non-smooth chemical

response appeared along the NaBr axis. This quality of the design space is apparent

when the stability window is viewed against the electrolyte components’ Euclidean

distance (Figure S13) and compared to that of the lithium design space (Figure S14).

Table 1. Concentrations of Feeder Solutions

Feeder Solution Molality

NaClO4 16.03

NaNO3 10.03

Na2SO4 1.5

NaBr 8

LiNO3 7.02

Li2SO4 3.01

LiClO4 5.01

Feeder solutions were made near each salt’s solubility limit in water by molality and mixed to create each

electrolyte formulation.
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Gaussian process regression requires an assumption of smoothness on the response

surface.7 The underlying Gaussian process regression model used in the sodium

design space was probably not very well-fitted to sampled data during the first

half of optimization. In Figure 3, we re-run this optimization on the sodium design

space after log-scaling the NaBr axis. Log-scaling gives the response surface smaller

gradients along this axis, and encoding this information a priori enables much

improved performance: ‘‘bo-log’’ shows faster convergence to the optimum and

more consistent adaptive sampling compared to ‘‘bo.’’ As always, selection and pre-

sentation of the design space is of utmost importance to autonomous design tasks.

Top blends from the sodium optimization in Figure 2 were run for an additional four

experiments each against a pure NaClO4 feeder-solution benchmark. The four

measured potentials and their averages are reported in Figures 2B and 2C. Blend

E showed an improved OER stability of 20 mV over pure NaClO4.

The optimization over lithium electrolytes is illustrated in Figure 2D. Dragonfly ini-

tializes by randomly sampling the design space in the first five runs, which, in the

case of the lithium design space, included a strong electrolyte. The three-dimen-

sional design space is smaller than the sodium design space and exhibits a smooth

response to electrolyte formulation (Figure S14). Our optimization converges faster

than the other design space. The optimizer converged on two blends and pure

LiNO3 feeder solution as three candidates with optimal stability windows; other

high-performing candidates were dilutions of LiNO3 and not tested. These electro-

lytes were run for an additional four experiments each; the measured potentials are

shown in Figures 2E and 2F. The concentrated LiNO3 electrolyte is the strongest

performer tested by the optimizer. Its use has been reported in literature.26,28

Detailed Evaluation of Optimal Electrolytes

Blend E and NaClO4 were run for a longer, detailed evaluation of OER stability in

Otto, illustrated in Figure 4. Current density was varied in half log-decade steps

from j = 10�1A=cm2 to 10�5A=cm2. A Tafel equation was fit to the average of seven

sequential runs, ignoring high current steps j = 10�1 and 10�1:5A=cm2. Otto has pre-

viously been used to replicate the Tafel slope of 1M KOH standard for OER posited

in the literature36 to within experimental error (Figure S5). Full data figures and

methods for this run are given in the Supplemental Experimental Procedures and

Figures S6 and S7. The results show that Blend E is more resistant to OER on plat-

inum than high-concentration NaClO4, a high-performing sodium electrolyte exten-

sively evaluated in past work.30,31,35 The potential at a low leakage current34

ð30mA =cm2Þ is 24 mV higher in the blend than in the NaClO4 feeder solution. The

blend also shows significantly higher resistance to OER at high potentials with a

58% suppression of current density at 2V compared to the NaClO4 feeder solution.

Although a 24 mV improvement does not constitute a state-of-the-art aqueous bat-

tery electrolyte, this result is interesting for a number of reasons. First, Blend E has a

Table 2. Composition of Electrolyte Blends Discovered

Blend Composition (mL of feeder solutions)

D 6.1 NaClO4, 0.8 NaNO3, 0.1 Na2SO4

E 6.7 NaClO4, 0.3 NaNO3

E 6.4 LiNO3, 0.6 LiClO4

B 5.7 LiNO3, 0.9 LiClO4, 0.4 Li2SO4

Test volume was kept constant at 7mL.
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higher water concentration compared to the NaClO4 solution but exhibits increased

stability against OER, which is contrary to the generally followed design principle.

Further evaluations of small additions of NaNO3 to high-concentration NaClO4

near the ratio of Blend E show that even less added NaNO3 can have a similar effect

of improving OER stability, despite lower overall salt concentration (Figures S10 and

S11). The mixed-anion character of Blend E might more significantly suppress water

activity at interfaces,28 with minimal changes to the bulk properties of the NaClO4

solution (i.e., NaNO3 appears to function like an additive improving OER stability).

A full cell was constructed using NaTi2(PO4)3 and activated carbon as the anode

and cathode (here, as an electrochemical double-layer capacitor), respectively,

with Blend E as the electrolyte. The cell can operate at well over 2V over many cycles

as shown in Figure S12. Second, the discovered electrolyte is only four parts in 100

different from the benchmark, on the scale of an additive (e.g., five parts in 100 vinyl-

ene carbonate in nonaqueous chemistries37). A small effect due to a small change in

the electrolyte is discovered with machine learning and automation assistance.

We reproduce this result on command, as illustrated in the dataset provided and

in Figures 2B and 3 and Figures S6, S7, S10, and S11.

We note that this method and the required equipment was inexpensive and con-

sisted solely of high-precision pumping units, custom-machined PTFE fixtures, and

standard electrochemical tooling in the Consort probe and a Palmsens 4. The

test-stand was operated by two teammembers. In our example, automation andma-

chine learning acted as a ‘‘force multiplier’’ for a small team.

In this work, we have demonstrated the first automated design of battery electro-

lytes by machine learning integrated into robotics. We have optimized two previ-

ously unexplored design spaces and find an interesting and non-intuitive optimum,

while generating a database on aqueous electrolytes. All data captured by Otto are

made available in a structured format that gives the full concentration dependence

of ionic conductivity, pH, and electrochemical behavior via multi-step potentiometry

Figure 3. Assessing Optimization along a Non-smooth Response

The sodium optimization was re-run synthetically (see ‘‘Synthetic Optimization’’ in the

Supplemental Experimental Procedures) to examine the non-smooth response along the NaBr axis.

Each series reflects the mean G standard deviation of five optimization runs. When comparing

random sampling (‘‘rand’’), to vanilla Bayesian optimization in Dragonfly (‘‘bo’’), to the same with a

log-scaled NaBr axis (‘‘bo-log’’), ‘‘bo-log’’ improves convergence to the optimum in the design

space; adaptive sampling is more consistent in choice of acquisition function, reflecting more

stable optimizations due to a better-fitting underlying model.
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on platinum for all salts mentioned. Exhaustive data for the single salts, as well as 167

samples requested during machine-learning-guided stability-window optimization,

are present in the dataset. We believe these data are useful not just to the battery

community but also to those in adjacent fields (e.g., catalysis in aqueous environ-

ments). This result demonstrates an important proof-point of the ability of autono-

mous platforms to accelerate material optimization.

EXPERIMENTAL PROCEDURES

Resource Availability

Lead Contact

J. Whitacre and V. Viswanathan are reachable at whitacre@andrew.cmu.edu and

venkvis@cmu.edu respectively.

Materials Availability

This study did not generate new unique reagents.

Data and Code Availability

The public dataset is available at https://data.matr.io/5 and contains all electrolyte

formulations tested relevant to this work. It contains conductivity, pH, andmulti-step

potentiometry measurements of 251 different electrolyte formulations of common

lithium and sodium salts. Exhaustive data give the concentration dependence of

measured properties in the cases of LiNO3, LiClO4, Li2SO4, NaNO3, NaClO4,

Na2SO4, and NaBr, as well as a machine-learning-guided sampling of mixtures of

these salts. These data support Figures 2 and S9.

The supporting data for the other included graphs within this paper, as well as other

findings from this study, are available from the corresponding author upon reason-

able request.

Dragonfly is open source and publicly available at https://github.com/dragonfly/

dragonfly/

Figure 4. Re-evaluating the Optimal Electrolyte outside Otto

Results for seven runs on Blend E against the control NaClO4 suggest that the blend is better at

suppressing OER than NaClO4. The potential for an acceptable leakage current (30 mA/cm2) is

24 mV higher in the blend, and the blend illustrates significantly improved high-rate capability with

a 58% (�0.37 log units) suppression of current density at 2V compared to NaClO4. The two

electrolytes are close in pH (near 8.8); the potentials given are therefore not pH shifted.
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The code for the plots presented in this paper is available from the corresponding

author upon reasonable request.

SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.xcrp.

2020.100264.
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Häse, F., Roch, L.M., Dettelbach, K.E., Moreira,
R., Yunker, L.P.E., Rooney, M.B., Deeth, J.R.,
Lai, V., Ng, G.J., Situ, H., Zhang, R.H., Elliott,
M.S., Haley, T.H., Dvorak, D.J., Aspuru-Guzik,
A., Hein, J.E., and Berlinguette, C.P. (2020).
Self-driving laboratory for accelerated
discovery of thin-film materials. Sci. Adv. 6,
eaaz8867.

19. Whitacre, J.F., Mitchell, J., Dave, A., Wu, W.,
Burke, S., and Viswanathan, V. (2019). An
Autonomous Electrochemical Test Stand for
Machine Learning Informed Electrolyte
Optimization. J. Electrochem. Soc. 166, A4181.

20. Dave, A., Gering, K.L., Mitchell, J.M., Whitacre,
J., and Viswanathan, V. (2020). Benchmarking
Conductivity Predictions of the Advanced
Electrolyte Model (AEM) for Aqueous Systems.
J. Electrochem. Soc. 167, 013514.

21. Luo, J.-Y., Cui, W.-J., He, P., and Xia, Y.-Y.
(2010). Raising the cycling stability of aqueous
lithium-ion batteries by eliminating oxygen in
the electrolyte. Nat. Chem. 2, 760–765.

22. Suo, L., Borodin, O., Gao, T., Olguin, M., Ho, J.,
Fan, X., Luo, C., Wang, C., and Xu, K. (2015).
‘‘Water-in-salt’’ electrolyte enables high-
voltage aqueous lithium-ion chemistries.
Science 350, 938–943.

23. Li, Z., Young, D., Xiang, K., Carter, W.C., and
Chiang, Y.-M. (2013). Towards High Power High
Energy Aqueous Sodium-Ion Batteries: The
NaTi2(PO4)3/Na0.44mno2 System. Adv.
Energy Mater. 3, 290–294.

24. Whitacre, J.F., Shanbhag, S., Mohamed, A.,
Polonsky, A., Carlisle, K., Gulakowski, J., Wu,
W., Smith, C., Cooney, L., Blackwood, D., et al.
(2015). A Polyionic, Large-Format Energy
Storage Device Using an Aqueous Electrolyte
and Thick-Format Composite NaTi2(PO4)3/
Activated Carbon Negative Electrodes. Energy
Technol. (Weinheim) 3, 20–31.

25. Wu, W., Shabhag, S., Chang, J., Rutt, A., and
Whitacre, J.F. (2015). Relating Electrolyte
Concentration to Performance and Stability for
NaTi2(PO4)3/Na0.44mno2 Aqueous Sodium-
Ion Batteries. J. Electrochem. Soc. 162, A803–
A808.

26. Li, W., Dahn, J.R., and Wainwright, D.S. (1994).
Rechargeable lithium batteries with aqueous
electrolytes. Science 264, 1115–1118.

27. Luo, J.-Y., and Xia, Y.-Y. (2007). Aqueous
Lithium-ion Battery LiTi2(PO4)3/LiMn2o4 with
High Power and Energy Densities as well as
Superior Cycling Stability. Adv. Funct. Mater.
17, 3877–3884.

28. Zheng, J., Tan, G., Shan, P., Liu, T., Hu, J., Feng,
Y., Yang, L., Zhang, M., Chen, Z., Lin, Y., et al.
(2018). Understanding Thermodynamic and
Kinetic Contributions in Expanding the
Stability Window of Aqueous Electrolytes.
Chem 4, 2872–2882.

29. Yokoyama, Y., Fukutsuka, T., Miyazaki, K., and
Abe, T. (2018). Origin of the Electrochemical
Stability of Aqueous Concentrated Electrolyte

Solutions. J. Electrochem. Soc. 165, A3299–
A3303.

30. Nakamoto, K., Sakamoto, R., Sawada, Y., Ito,
M., and Okada, S. (2019). Over 2 V Aqueous
Sodium-Ion Battery with Prussian Blue-Type
Electrodes. Small Methods 3, 1800220.

31. Nakamoto, K., Sakamoto, R., Ito, M., Kitajou,
A., and Okada, S. (2017). Effect of
Concentrated Electrolyte on Aqueous Sodium-
ion Battery with Sodium Manganese
Hexacyanoferrate Cathode. Electrochemistry
(Tokyo) 85, 179–185.

32. Weber, R., Genovese,M., Louli, A.J., Hames, S.,
Martin, C., Hill, I.G., and Dahn, J.R. (2019). Long
cycle life and dendrite-free lithiummorphology
in anode-free lithium pouch cells enabled by a
dual-salt liquid electrolyte. Nat. Energy 4,
683–689.

33. Suo, L., Borodin, O., Sun, W., Fan, X., Yang, C.,
Wang, F., Gao, T., Ma, Z., Schroeder, M., von
Cresce, A., et al. (2016). Advanced High-
Voltage Aqueous Lithium-Ion Battery Enabled
by ‘‘Water-in-Bisalt’’ Electrolyte. Angew. Chem.
Int. Ed. Engl. 55, 7136–7141.

34. Wessells, C., Ruffo, R., Huggins, R.A., and Cui,
Y. (2010). Investigations of the Electrochemical
Stability of Aqueous Electrolytes for Lithium
Battery Applications. Electrochem. Solid-State
Lett. 13, A59.

35. Lee, M.H., Kim, S.J., Chang, D., Kim, J., Moon,
S., Oh, K., Park, K.-Y., Seong, W.M., Park, H.,
Kwon, G., et al. (2019). Toward a low-cost high-
voltage sodium aqueous rechargeable battery.
Mater. Today.

36. Damjanovic, A., Dey, A., and Bockris, J. (1966).
Kinetics of oxygen evolution and dissolution on
platinum electrodes. Electrochim. Acta 11,
791–814.

37. Aurbach, D., Gamolsky, K., Markovsky, B.,
Gofer, Y., Schmidt, M., and Heider, U. (2002).
On the use of vinylene carbonate (VC) as an
additive to electrolyte solutions for Li-ion
batteries. Electrochim. Acta 47, 1423–1439.

ll
OPEN ACCESS

10 Cell Reports Physical Science 1, 100264, December 23, 2020

Please cite this article in press as: Dave et al., Autonomous Discovery of Battery Electrolytes with Robotic Experimentation and Machine
Learning, Cell Reports Physical Science (2020), https://doi.org/10.1016/j.xcrp.2020.100264

Article

http://refhub.elsevier.com/S2666-3864(20)30286-1/sref13
http://refhub.elsevier.com/S2666-3864(20)30286-1/sref13
http://refhub.elsevier.com/S2666-3864(20)30286-1/sref13
http://refhub.elsevier.com/S2666-3864(20)30286-1/sref13
http://refhub.elsevier.com/S2666-3864(20)30286-1/sref13
http://refhub.elsevier.com/S2666-3864(20)30286-1/sref13
http://refhub.elsevier.com/S2666-3864(20)30286-1/sref14
http://refhub.elsevier.com/S2666-3864(20)30286-1/sref14
http://refhub.elsevier.com/S2666-3864(20)30286-1/sref14
http://refhub.elsevier.com/S2666-3864(20)30286-1/sref14
http://refhub.elsevier.com/S2666-3864(20)30286-1/sref14
http://refhub.elsevier.com/S2666-3864(20)30286-1/sref14
http://refhub.elsevier.com/S2666-3864(20)30286-1/sref14
http://refhub.elsevier.com/S2666-3864(20)30286-1/sref15
http://refhub.elsevier.com/S2666-3864(20)30286-1/sref15
http://refhub.elsevier.com/S2666-3864(20)30286-1/sref15
http://refhub.elsevier.com/S2666-3864(20)30286-1/sref15
http://refhub.elsevier.com/S2666-3864(20)30286-1/sref15
http://refhub.elsevier.com/S2666-3864(20)30286-1/sref16
http://refhub.elsevier.com/S2666-3864(20)30286-1/sref16
http://refhub.elsevier.com/S2666-3864(20)30286-1/sref16
http://refhub.elsevier.com/S2666-3864(20)30286-1/sref16
http://refhub.elsevier.com/S2666-3864(20)30286-1/sref16
http://refhub.elsevier.com/S2666-3864(20)30286-1/sref17
http://refhub.elsevier.com/S2666-3864(20)30286-1/sref17
http://refhub.elsevier.com/S2666-3864(20)30286-1/sref17
http://refhub.elsevier.com/S2666-3864(20)30286-1/sref17
http://refhub.elsevier.com/S2666-3864(20)30286-1/sref18
http://refhub.elsevier.com/S2666-3864(20)30286-1/sref18
http://refhub.elsevier.com/S2666-3864(20)30286-1/sref18
http://refhub.elsevier.com/S2666-3864(20)30286-1/sref18
http://refhub.elsevier.com/S2666-3864(20)30286-1/sref18
http://refhub.elsevier.com/S2666-3864(20)30286-1/sref18
http://refhub.elsevier.com/S2666-3864(20)30286-1/sref18
http://refhub.elsevier.com/S2666-3864(20)30286-1/sref18
http://refhub.elsevier.com/S2666-3864(20)30286-1/sref18
http://refhub.elsevier.com/S2666-3864(20)30286-1/sref19
http://refhub.elsevier.com/S2666-3864(20)30286-1/sref19
http://refhub.elsevier.com/S2666-3864(20)30286-1/sref19
http://refhub.elsevier.com/S2666-3864(20)30286-1/sref19
http://refhub.elsevier.com/S2666-3864(20)30286-1/sref19
http://refhub.elsevier.com/S2666-3864(20)30286-1/sref20
http://refhub.elsevier.com/S2666-3864(20)30286-1/sref20
http://refhub.elsevier.com/S2666-3864(20)30286-1/sref20
http://refhub.elsevier.com/S2666-3864(20)30286-1/sref20
http://refhub.elsevier.com/S2666-3864(20)30286-1/sref20
http://refhub.elsevier.com/S2666-3864(20)30286-1/sref21
http://refhub.elsevier.com/S2666-3864(20)30286-1/sref21
http://refhub.elsevier.com/S2666-3864(20)30286-1/sref21
http://refhub.elsevier.com/S2666-3864(20)30286-1/sref21
http://refhub.elsevier.com/S2666-3864(20)30286-1/sref22
http://refhub.elsevier.com/S2666-3864(20)30286-1/sref22
http://refhub.elsevier.com/S2666-3864(20)30286-1/sref22
http://refhub.elsevier.com/S2666-3864(20)30286-1/sref22
http://refhub.elsevier.com/S2666-3864(20)30286-1/sref22
http://refhub.elsevier.com/S2666-3864(20)30286-1/sref22
http://refhub.elsevier.com/S2666-3864(20)30286-1/sref22
http://refhub.elsevier.com/S2666-3864(20)30286-1/sref23
http://refhub.elsevier.com/S2666-3864(20)30286-1/sref23
http://refhub.elsevier.com/S2666-3864(20)30286-1/sref23
http://refhub.elsevier.com/S2666-3864(20)30286-1/sref23
http://refhub.elsevier.com/S2666-3864(20)30286-1/sref23
http://refhub.elsevier.com/S2666-3864(20)30286-1/sref24
http://refhub.elsevier.com/S2666-3864(20)30286-1/sref24
http://refhub.elsevier.com/S2666-3864(20)30286-1/sref24
http://refhub.elsevier.com/S2666-3864(20)30286-1/sref24
http://refhub.elsevier.com/S2666-3864(20)30286-1/sref24
http://refhub.elsevier.com/S2666-3864(20)30286-1/sref24
http://refhub.elsevier.com/S2666-3864(20)30286-1/sref24
http://refhub.elsevier.com/S2666-3864(20)30286-1/sref24
http://refhub.elsevier.com/S2666-3864(20)30286-1/sref25
http://refhub.elsevier.com/S2666-3864(20)30286-1/sref25
http://refhub.elsevier.com/S2666-3864(20)30286-1/sref25
http://refhub.elsevier.com/S2666-3864(20)30286-1/sref25
http://refhub.elsevier.com/S2666-3864(20)30286-1/sref25
http://refhub.elsevier.com/S2666-3864(20)30286-1/sref25
http://refhub.elsevier.com/S2666-3864(20)30286-1/sref26
http://refhub.elsevier.com/S2666-3864(20)30286-1/sref26
http://refhub.elsevier.com/S2666-3864(20)30286-1/sref26
http://refhub.elsevier.com/S2666-3864(20)30286-1/sref27
http://refhub.elsevier.com/S2666-3864(20)30286-1/sref27
http://refhub.elsevier.com/S2666-3864(20)30286-1/sref27
http://refhub.elsevier.com/S2666-3864(20)30286-1/sref27
http://refhub.elsevier.com/S2666-3864(20)30286-1/sref27
http://refhub.elsevier.com/S2666-3864(20)30286-1/sref28
http://refhub.elsevier.com/S2666-3864(20)30286-1/sref28
http://refhub.elsevier.com/S2666-3864(20)30286-1/sref28
http://refhub.elsevier.com/S2666-3864(20)30286-1/sref28
http://refhub.elsevier.com/S2666-3864(20)30286-1/sref28
http://refhub.elsevier.com/S2666-3864(20)30286-1/sref28
http://refhub.elsevier.com/S2666-3864(20)30286-1/sref29
http://refhub.elsevier.com/S2666-3864(20)30286-1/sref29
http://refhub.elsevier.com/S2666-3864(20)30286-1/sref29
http://refhub.elsevier.com/S2666-3864(20)30286-1/sref29
http://refhub.elsevier.com/S2666-3864(20)30286-1/sref29
http://refhub.elsevier.com/S2666-3864(20)30286-1/sref30
http://refhub.elsevier.com/S2666-3864(20)30286-1/sref30
http://refhub.elsevier.com/S2666-3864(20)30286-1/sref30
http://refhub.elsevier.com/S2666-3864(20)30286-1/sref30
http://refhub.elsevier.com/S2666-3864(20)30286-1/sref31
http://refhub.elsevier.com/S2666-3864(20)30286-1/sref31
http://refhub.elsevier.com/S2666-3864(20)30286-1/sref31
http://refhub.elsevier.com/S2666-3864(20)30286-1/sref31
http://refhub.elsevier.com/S2666-3864(20)30286-1/sref31
http://refhub.elsevier.com/S2666-3864(20)30286-1/sref31
http://refhub.elsevier.com/S2666-3864(20)30286-1/sref32
http://refhub.elsevier.com/S2666-3864(20)30286-1/sref32
http://refhub.elsevier.com/S2666-3864(20)30286-1/sref32
http://refhub.elsevier.com/S2666-3864(20)30286-1/sref32
http://refhub.elsevier.com/S2666-3864(20)30286-1/sref32
http://refhub.elsevier.com/S2666-3864(20)30286-1/sref32
http://refhub.elsevier.com/S2666-3864(20)30286-1/sref33
http://refhub.elsevier.com/S2666-3864(20)30286-1/sref33
http://refhub.elsevier.com/S2666-3864(20)30286-1/sref33
http://refhub.elsevier.com/S2666-3864(20)30286-1/sref33
http://refhub.elsevier.com/S2666-3864(20)30286-1/sref33
http://refhub.elsevier.com/S2666-3864(20)30286-1/sref33
http://refhub.elsevier.com/S2666-3864(20)30286-1/sref33
http://refhub.elsevier.com/S2666-3864(20)30286-1/sref33
http://refhub.elsevier.com/S2666-3864(20)30286-1/sref34
http://refhub.elsevier.com/S2666-3864(20)30286-1/sref34
http://refhub.elsevier.com/S2666-3864(20)30286-1/sref34
http://refhub.elsevier.com/S2666-3864(20)30286-1/sref34
http://refhub.elsevier.com/S2666-3864(20)30286-1/sref34
http://refhub.elsevier.com/S2666-3864(20)30286-1/sref35
http://refhub.elsevier.com/S2666-3864(20)30286-1/sref35
http://refhub.elsevier.com/S2666-3864(20)30286-1/sref35
http://refhub.elsevier.com/S2666-3864(20)30286-1/sref35
http://refhub.elsevier.com/S2666-3864(20)30286-1/sref35
http://refhub.elsevier.com/S2666-3864(20)30286-1/sref36
http://refhub.elsevier.com/S2666-3864(20)30286-1/sref36
http://refhub.elsevier.com/S2666-3864(20)30286-1/sref36
http://refhub.elsevier.com/S2666-3864(20)30286-1/sref36
http://refhub.elsevier.com/S2666-3864(20)30286-1/sref37
http://refhub.elsevier.com/S2666-3864(20)30286-1/sref37
http://refhub.elsevier.com/S2666-3864(20)30286-1/sref37
http://refhub.elsevier.com/S2666-3864(20)30286-1/sref37
http://refhub.elsevier.com/S2666-3864(20)30286-1/sref37

	XCRP100264_proof.pdf
	Autonomous Discovery of Battery Electrolytes with Robotic Experimentation and Machine Learning
	Introduction
	Results and Discussion
	Manual Surveys
	Machine-Learning-Guided Optimization
	Detailed Evaluation of Optimal Electrolytes

	Experimental Procedures
	Resource Availability
	Lead Contact
	Materials Availability
	Data and Code Availability


	Supplemental Information
	Acknowledgments
	Author Contributions
	Declaration of Interests
	References



