Unique Games hardness of Quantum Max-Cut, and a conjectured vector-valued Borell’s inequality

Yeongwoo Hwang
Harvard

Joe Neeman
UT Austin

Ojas Parekh
Kevin Thompson
Sandia

John Wright
UC Berkeley
(Classical) Max-Cut

\[G = (V, E) \]

7 edges cut
(Classical) Max-Cut

$G = (V, E)$

8 edges cut (the max cut)
(Classical) Max-Cut

Goal: find partition \(f: V \rightarrow \{+1, -1\} \) maximizing

\[
\sum_{(u,v) \in E} \left(\frac{1 - f(u) \cdot f(v)}{2} \right)
\]

NP-hard to solve exactly!

So instead look for approximation algorithms.

An algorithm achieves an \(\alpha \)-approximation if it outputs a partition \(f \) such that

\[
\text{# of edges } f \text{ cuts} \geq \alpha \cdot \text{Max-Cut}(G).
\]
Approximating Max-Cut

[Goemans-Williamson]: Poly-time algorithm achieving a $0.878 \ldots$ approximation

Based on a technique known as **semidefinite programming** (SDP)

Powerful & versatile framework for designing algorithms

Will describe later!

[KKMO, MOO]: **GW** is the **optimal** poly-time algorithm.
(assuming **Unique Games Conjecture (UGC)**)
Constraint satisfaction problems

Max-Cut is e.g. of a constraint satisfaction problem (CSP)

CSP: set of variables with constraints on them

Examples: Max-3Sat, Max-3Coloring, Max-3XOR

For every CSP, there is a canonical SDP aka the basic SDP

[Raghavendra]: The basic SDP is the optimal poly-time alg (assuming UGC)

Complete understanding of approximability of CSPs. (modulo the UGC)

Beautiful theory!
The local Hamiltonian problem

Like quantum version of CSPs

Input: a physical system that looks like

Output: the “ground state” of the system
or the “ground state energy” of the system

Very important problem in physics!
The local Hamiltonian problem

Like **quantum** version of CSPs

Input:
1. A graph $G = (V, E)$ on n vertices
2. A Hamiltonian H on n qubits:

 $h_{uv} \in \mathbb{R}$ for $u \neq v$, $h_{uu} = 0$

$H = \sum_{(u,v) \in E} h_{uv} \otimes I_{V \setminus \{u,v\}}$

Output:

- a quantum state $|\psi\rangle$ on n qubits with the **maximum** energy $\lambda_{\text{max}}(H)$

 $\text{energy} = \langle \psi | H | \psi \rangle$
Problems with the LHP

Much less understood than classical CSPs!

We do not have:

• a theory of optimal algorithms
• a good understanding of the power of SDPs

like classical CSPs, there is a basic SDP

how well does it do?

is it also the optimal algorithm?

• a quantum version of the PCP theorem

(quantum PCP conjecture is still a conjecture)
Problems with the LHP part 2: the ansatz

Supposed to output quantum state $|\psi\rangle$. What does that mean?

If algorithm is classical, should output classical description of $|\psi\rangle$.

$|\psi\rangle$ must be efficiently describable!

E.g. product states $|\psi\rangle = |\psi_1\rangle \otimes \cdots \otimes |\psi_n\rangle$

Def: An ansatz is a family of quantum states which is efficiently describable.

Question: What is the optimal ansatz for approximation algorithms?
Quantum Max-Cut

Special case of 2-local Hamiltonian:

\[H_G = \sum_{(u,v) \in E} \frac{1}{4} \cdot (I - X_uX_v - Y_uY_v - Z_uZ_v) \]

Goal: Output the **maximum energy state** of \(H_G \)

Note: max energy state of \(H_G \) = **min** energy state of \(\sum_{(u,v) \in E} (X_uX_v + Y_uY_v + Z_uZ_v) \)

(antiferromagnetic) **Heisenberg model**

Dates back to [Heisenberg 1928]

Well-studied class of Hamiltonians
Quantum Max-Cut

Special case of 2-local Hamiltonian:

\[H_G = \sum_{(u,v) \in E} \frac{1}{4} \cdot (I - X_u X_v - Y_u Y_v - Z_u Z_v) \]

Intuition

Term 1: Does nothing

Term 2: Measure in X basis
- \(-1\) if same (+ + or − −)
- \(+1\) if different (+ − or − +)

want both different!

\[|\psi\rangle (n \text{ qubits}) \]
Quantum Max-Cut

Special case of 2-local Hamiltonian:

\[
H_G = \sum_{(u,v) \in E} \frac{1}{4} \cdot (I - X_u X_v - Y_u Y_v - Z_u Z_v)
\]

Intuition

Term 1: Does nothing

Term 2: Should be different in \(X\) basis

Term 3: Should be different in \(Y\) basis

Term 4: Should be different in \(Z\) basis

Like *(classical)* Max-Cut in \(X\), \(Y\), and \(Z\) bases!
Approximating Quantum Max-Cut

[CM16,PM17]: Given a Quantum Max-Cut instance H_G, estimating $\lambda_{\text{max}}(H_G)$ to error $\pm 1/poly(n)$ is QMA-hard.

[Gharibian-Parekh 2019]: 0.498-approximation

Ansatz: product states $|\psi\rangle = |\psi_1\rangle \otimes \cdots \otimes |\psi_n\rangle$

[Anshu-Gosset-Morenz 2020]: 0.531-approximation

Ansatz: tensor products of one- and two-qubit states

$|\psi\rangle = |\psi_{12}\rangle \otimes |\psi_3\rangle \otimes \cdots \otimes |\psi_n\rangle$

[Parekh-Thompson 2020]: 0.533-approximation

Ansatz: same as [AGM20]
Approximating Quantum Max-Cut

[CM16,PM17]: Given a Quantum Max-Cut instance H_G, estimating $\lambda_{\text{max}}(H_G)$ to error $\pm 1/\text{poly}(n)$ is QMA-hard.

[Gharibian-Parekh 2019]: 0.498-approximation

[Anshu-Gosset-Morenz 2020]: 0.531-approximation

[Parekh-Thompson 2020]: 0.533-approximation

[Lee 2022]: 0.562-approximation

[King 2022]: 0.582-approximation*

Ansatz: something more complicated

*only works for triangle-free graphs
Approximating Quantum Max-Cut

[CM16,PM17]: Given a Quantum Max-Cut instance H_G, estimating $\lambda_{\text{max}}(H_G)$ to error $\pm 1/\text{poly}(n)$ is QMA-hard.

[Gharibian-Parekh 2019]: 0.498-approximation uses the basic SDP for Quantum Max-Cut

[Anshu-Gosset-Morenz 2020]: 0.531-approximation

[Parekh-Thompson 2020]: 0.533-approximation

[Lee 2022]: 0.562-approximation

[King 2022]: 0.582-approximation*

do not use the basic SDP
Our motivation

[GP] uses **basic SDP** for Quantum Max-Cut

But [AGM], [PT], [L], and [K] outperform it

Classically, the basic SDP is **always** optimal

Originally, I figured we could just design a **better** SDP algorithm

Maybe product states are a **bad** ansatz?

So we spent some time working on it…
Our results

Thm: The Gharibian Parekh algorithm is the **optimal** algorithm using the basic SDP.

Any alg using basic SDP has approx ratio $\leq 0.498 \ldots$

(show this via an integrality gap)

Thm: It is **NP**-hard to achieve a $0.956 + \epsilon$ approximation for Quantum Max-Cut.

(assuming UGC)

Far from the best algorithm (0.562)

Seems to be the limit of current techniques

Can we improve either bound?
Our results

Thm: The Gharibian Parekh algorithm is the **optimal** algorithm using the basic SDP. *

Aka: Any alg using basic SDP has approx ratio \(\leq 0.498 \ldots \)

(\textit{show this via an integrality gap})

Thm: It is **NP**-hard to achieve a \(0.956 + \epsilon \) \hspace{1cm} (assuming UGC)

approximation for Quantum Max-Cut. *

* Assuming a conjecture in Gaussian geometry
The “**vector-valued Borell’s conjecture**”
We don’t know how to prove it!
Will explain later...
Product states for QMax-Cut

States of the form $|\psi\rangle = \bigotimes_{u \in V} |\psi_u\rangle$

n qubits: 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇

$|\psi_u\rangle$ $|\psi_v\rangle$

Product states possess no entanglement

But they can often be close to the ground state!

[Brandao Harrow 2016]: The ground state is close to product if G is high degree.
Product states for QMax-Cut

States of the form \(|\psi\rangle = \bigotimes_{u \in V} |\psi_u\rangle \)

\(f: \)

\(n \) qubits: \(\bigotimes_{u \in V} |\psi_u\rangle \)

Useful to look at \textbf{Bloch sphere} representation:

\[|\psi_u\rangle\langle\psi_u| = \frac{1}{2} \cdot (I + c_X \cdot X + c_Y \cdot Y + c_Z \cdot Z) \]

\(|\psi_u\rangle \) is pure \(\Rightarrow c_X^2 + c_Y^2 + c_Z^2 = 1 \)

Set \(f(u) = (c_X, c_Y, c_Z) \). Then \(f: V \to S^2 \).
Product states for QMax-Cut

States of the form $|\psi\rangle = \bigotimes_{u \in V} |\psi_u\rangle$

Bloch sphere representation: $f: V \rightarrow S^2$.

Product state energy formula:

$$
\langle \psi | H_G | \psi \rangle = \sum_{(u,v) \in E} \left(\frac{1 - \langle f(u), f(v) \rangle}{4} \right)
$$

"Want" neighboring $f(u)$ and $f(v)$ to point in opposite directions.

Like *(classical)* Max-Cut! There, $f: V \rightarrow \{\pm 1\} = S^0$.
Product state results

Also consider the problem of finding the best product state

[BOV]: Algorithm outputting a product state $|\psi\rangle$ with energy $\geq 0.956 \times$ (best product state energy).

(uses basic SDP)

[Us]: 1. This is the optimal alg using the basic SDP. *

2. This is the optimal poly-time alg. (assuming UGC)

Aka it NP-hard to achieve a $0.956 + \epsilon$ approx. *

Same NP-hardness as for general QMax-Cut!

* Assuming the same conjecture as before
Outline for rest of talk

Goal: explain this result:

Any alg for Quantum Max-Cut using basic SDP has approx ratio \(\leq 0.498 \ldots \)

Outline:

1. Goemans-Williamson algorithm
2. Gharibian-Parekh algorithm
3. Why GW is optimal alg for basic SDP
 (uses Borell’s isoperimetric inequality)
4. Why GP is optimal alg for basic SDP
 (assuming vector-valued Borell’s conjecture)
Goemans-Williamson algorithm
Goemans-Williamson algorithm

Goal: maximize

\[
\sum_{(u,v) \in E} \left(\frac{1 - f(u) \cdot f(v)}{2} \right)
\]

where \(f(u) \in \{\pm 1\} \)

Can’t optimize over this!

(NP-hard)
Goemans-Williamson algorithm

Goal: maximize

\[
\sum_{(u,v) \in E} \left(\frac{1 - \langle f(u), f(v) \rangle}{2} \right)
\]

where \(f(u) \in (\pm 1, 0, \ldots, 0) \)

Still can’t optimize over this!
Goemans-Williamson algorithm

Goal: maximize

\[
\sum_{(u,v) \in E} \left(\frac{1 - \langle f(u), f(v) \rangle}{2} \right)
\]

where \(f(u) \) unit vector \(\in \mathbb{R}^n \)

Can optimize over this!

Known as the Max-Cut **semidefinite program** (SDP)

Let \(\text{SDP}_{\text{MC}}(G) \) be the value of the best vectors

Note: \(\text{SDP}_{\text{MC}}(G) \geq \text{Max-Cut}(G) \)
Goemans-Williamson algorithm

Step 1: Compute the optimal SDP vectors

\[f(u), f(v), f(w) \]

Step 2: “Round” \(f: V \to S^{n-1} \) into a partition \(g: V \to \{\pm 1\} \)
Goemans-Williamson algorithm

Step 1: Compute the optimal SDP vectors

\(\mathbf{f}(\mathbf{u}) \)
\(\mathbf{f}(\mathbf{v}) \)
\(\mathbf{f}(\mathbf{w}) \)

(a) Pick a random vector \(\mathbf{z} \in \mathbb{R}^n \)

(b) Set \(g(\mathbf{u}) = \text{sign}(\langle \mathbf{z}, \mathbf{f}(\mathbf{u}) \rangle) \), for all \(\mathbf{u} \in V \)

[GW]: Achieves a \(0.878 \ldots \) approximation
Analyzing the GW algorithm

Step 1: Compute the optimal SDP vectors

Step 2: “Round” $f: V \rightarrow S^{n-1}$ into a partition $g: V \rightarrow \{\pm 1\}$

Goal: $\mathbb{E}[\text{# edges cut by } g] \geq 0.878 \cdot (\text{SDP value of } f)$

(recall) $0.878 \cdot \text{Max-Cut}(G)$
Analyzing the GW algorithm

Step 1: Compute the optimal SDP vectors

Step 2: “Round” $f: V \rightarrow S^{n-1}$ into a partition $g: V \rightarrow \{\pm 1\}$

Goal: $E[\text{# edges cut by } g] \geq 0.878 \cdot \text{(SDP value of } f\text{)}$

\[
\sum_{(u,v) \in E} \left(\frac{1 - g(u) \cdot g(v)}{2} \right)
\]

\[
\sum_{(u,v) \in E} \left(\frac{1 - \langle f(u), f(v) \rangle}{2} \right)
\]

Goal inequality is true for each edge!

Key lemma:

\[
\forall u, v: E[1 - g(u) \cdot g(v)] \geq 0.878 \cdot (1 - \langle f(u), f(v) \rangle)
\]
Analyzing the GW algorithm

Key lemma:
\[\forall u, v: \mathbb{E}[1 - g(u) \cdot g(v)] \geq 0.878 \cdot (1 - \rho_{uv}) \]

Pf: Set \(\rho_{uv} = \langle f(u), f(v) \rangle \).

LHS is function only of \(\rho_{uv} \) too.

Want to compute

\[
\min_{-1 \leq \rho_{uv} \leq 1} \mathbb{E}[1 - g(u) \cdot g(v)] \\
(1 - \rho_{uv})
\]

Equal to 0.878 (when \(\rho_{uv} = -0.69 \ldots \)). \(\square \)

Note: \(g \)'s value on edge \((u, v)\)

is only 0.878 \(\times \) (\(f \)'s value)

if \(\rho_{uv} \) is the “bad angle” \(-0.69 \ldots \)
Gharibian-Parekh algorithm
Back to **Quantum Max-Cut**

Goal: Gharibian-Parekh *0.498*-approximation algorithm

Recall:
1. Based on **semidefinite programming**
2. Outputs product state $|\psi\rangle = |\psi_1\rangle \otimes \cdots \otimes |\psi_n\rangle$
 (aka a Bloch sphere assignment $g: V \to S^2$)
Back to **Quantum Max-Cut**

Goal: Gharibian-Parekh 0.498-approximation algorithm

Recall: 1. Based on *semidefinite programming*

For every optimization problem, there is a *canonical* SDP

a) Gives an upper bound to the true optimum
b) Can be efficiently solved
c) Probably involves some vectors

For Quantum Max-Cut, a bit complicated

But you can simplify it...
Back to **Quantum Max-Cut**

Goal: Gharibian-Parekh 0.498-approximation algorithm

Recall: 1. Based on **semidefinite programming**

Given a graph G and Hamiltonian H_G, the SDP is:

$$\text{SDP}_{\text{QMC}}(G) = \max \sum_{(u,v) \in E} \left(\frac{1 - 3 \cdot \langle f(u), f(v) \rangle}{4} \right)$$

s. t. $f: V \rightarrow S^{n-1}$

Very similar to Max-Cut SDP!

Optimizing $f: V \rightarrow S^{n-1}$ is same in both!
Back to **Quantum Max-Cut**

Goal: Gharibian-Parekh 0.498-approximation algorithm

Recall:
1. Based on *semidefinite programming*

Given a graph G and Hamiltonian H_G, the SDP is:

$$\text{SDP}_{\text{QMC}}(G) = \max \sum_{(u,v) \in E} \left(\frac{1 - 3 \cdot \langle f(u), f(v) \rangle}{4} \right)$$

s. t. $f: V \to S^{n-1}$

Gives an upper bound to the true optimum:

$$\text{QMax-Cut}(G) \leq \text{SDP}_{\text{QMC}}(G)$$

Next step: rounding this into a Bloch sphere assignment $g: V \to S^2$.

How to do this???
Step 1: Compute the optimal SDP vectors $\mathbf{f}(\mathbf{u}), \mathbf{f}(\mathbf{v})$.

(a) Pick random 3-dimensional projector $\Pi \in \mathbb{R}^{3 \times n}$ random, orthonormal

$$\Pi = \begin{bmatrix} x & y & z \end{bmatrix},$$

where $x, y, z \in \mathbb{R}^n$ are random.

Step 2: "Round" f into a Bloch sphere assignment $g: V \rightarrow S^2$.
Gharibian-Parekh algorithm

Step 1: Compute the optimal SDP vectors

\[f(u) \]
\[f(v) \]

(a) Pick random 3-dimensional projector \(\Pi \in \mathbb{R}^{3 \times n} \)

(b) For all \(u \in V \), set \(g(u) = \frac{\Pi \cdot f(u)}{\|\Pi \cdot f(u)\|_2} \).

Step 2: “Round” \(f \) into a Bloch sphere assignment \(g : V \to S^2 \)
Gharibian-Parekh algorithm

Step 1: Compute the optimal SDP vectors

(a) Pick random 3-dimensional projector \(\Pi \in \mathbb{R}^{3 \times n} \)

(b) For all \(u \in V \), set \(g(u) = \Pi \cdot f(u)/\|\Pi \cdot f(u)\|_2 \).

[GP]: Achieves a **0.498** ... approximation

Step 2: “Round” \(f \) into a Bloch sphere assignment \(g: V \to S^2 \)

(a) Pick random 3-dimensional projector \(\Pi \in \mathbb{R}^{3 \times n} \)

(b) For all \(u \in V \), set \(g(u) = \Pi \cdot f(u)/\|\Pi \cdot f(u)\|_2 \).
Analyzing the GP algorithm

Similar to the GW analysis

Boils down to a per edge inequality:

Key lemma:
\[\forall u, v: \mathbb{E}[1 - \langle g(u), g(v) \rangle] \geq 0.498 \cdot (1 - 3 \cdot \rho_{uv}) \]

inequality is tight if \(\rho_{uv} = -0.97 \ldots \)

this is the “bad angle” for GP algorithm

for these edges, \(g \)’s value is only \(0.498 \times (f \)’s value)
Why GW is optimal alg for the basic SDP
GW analysis

Wanted to show: \(\alpha \cdot \text{Max-Cut}(G) \leq E[\# \text{ edges cut by } g] \)
\[\alpha = 0.878 \ldots\]

Actually showed: \(\alpha \cdot \text{SDP}_{MC}(G) \leq E[\# \text{ edges cut by } g] \leq \text{Max-Cut}(G) \)

Stronger statement!

"Standard analysis": comparing \(g \) to SDP value

Note: \(\alpha \leq \min_G \left\{ \frac{\text{Max-Cut}(G)}{\text{SDP}_{MC}(G)} \right\} \)

"Integrality gap" of SDP

Integrality gap provides limitation on any algorithm analyzed via "standard analysis"
Integrality gap for Max-Cut

[FS]: The basic SDP for Max-Cut has integrality gap $0.878 \ldots$

∴ Any algorithm which rounds basic SDP has approx. ratio $\leq 0.878 \ldots$

(according to standard analysis)

[Raghavendra]: For any CSP, the optimal poly-time approx. ratio is equal to the integrality gap of basic SDP.

(assuming UGC)

Can’t beat the standard analysis!
Integrality gap for Max-Cut

[FS]: The basic SDP for Max-Cut has integrality gap $0.878 \ldots$

Pf: Want a graph $G = (V, E)$ satisfying the following:

1. $\text{Max-Cut}(G) = 0.878 \cdot \text{SDP}_{\text{MC}}(G)$
2. $\text{Max-Cut}(G) = E[\# \text{ edges cut by } g]$

(Since $E[\# \text{ edges cut by } g] \geq 0.878 \cdot \text{SDP}_{\text{MC}}(G)$)
Integrality gap for Max-Cut

[FS]: The basic SDP for Max-Cut has integrality gap $0.878 \ldots$

Pf: Want a graph $G = (V, E)$ satisfying the following:

1. $\text{Max-Cut}(G) = 0.878 \cdot \text{SDP}_{MC}(G)$
2. $\text{Max-Cut}(G) = \mathbb{E}[\# \text{edges cut by } g]$
 GW algorithm always outputs optimal cut!
3. For each edge (u, v),
 $$\rho_{uv} = \langle f(u), f(v) \rangle$$
 equals the "bad angle" $\rho_{uv} = -0.69$

(Necessary for GW to lose factor of $0.878 \ldots$ on each edge)
Gaussian graph

Vertex set:

\[V = \mathbb{R}^n \]

Random edge:

\((u, v)\), where \(u \sim \rho v \) are \(\rho \)-correlated Gaussians

\(\rho = -0.69 \ldots\)
Gaussian graph

Vertex set:

$$\mathcal{V} = \mathbb{R}^n$$

Random edge:

$$(u, v), \text{ where } u \sim \rho v \text{ are } \rho\text{-correlated Gaussians}$$

$$(\rho = -0.69 \ldots)$$

SDP solution $f : \mathcal{V} \rightarrow \mathbb{R}^n$:

1. $f(u) = u / \|u\|_2$
2. $\langle f(u), f(v) \rangle \approx \rho$

- GW loses $0.878 \ldots$ on each edge
- Need to show GW is **optimal**
Optimality of GW

Value of solution: $E_{u \sim \rho v} \left(\frac{1 - g(u) \cdot g(v)}{2} \right)$
Optimality of GW

Value of solution: \(E_{u \sim \rho v} \left[\left(\frac{1 - \text{sign}(\langle u, r \rangle) \cdot \text{sign}(\langle v, r \rangle)}{2} \right) \right] \)

• Rotationally symmetric
• Can pick \(r = (1, 0, ..., 0) \) WOLOG
Optimality of GW

Value of solution: \[E_{u \sim \rho \nu} \left[\left(\frac{1 - \text{sign}(u_1) \cdot \text{sign}(\nu_1)}{2} \right) \right] \]

- Rotationally symmetric
- Can pick \(r = (1, 0, \ldots, 0) \) WOLOG
Optimality of GW

Value of solution: $E_{u \sim \rho, v} \left[\frac{1 - \text{sign}(u_1) \cdot \text{sign}(v_1)}{2} \right]$

Want this to be optimal partition.

Should be at least: $E_{u \sim \rho, v} \left[\frac{1 - h(u) \cdot h(v)}{2} \right]$, for all partitions $h: V \rightarrow \{\pm 1\}$
Borell’s theorem

First proven in [Borell 1985]

Basic result in Gaussian geometry
Why GP is optimal alg for the basic SDP
Integrality gap for Quantum Max-Cut

[Us]: The basic SDP for Quantum Max-Cut has integrality gap 0.498 ...

Same graph G: ρ-correlated Gaussian graph,

ρ is the “bad angle” $\rho = -0.97$...

\Rightarrow GP algorithm loses factor of 0.498

Goal: GP algorithm produces optimal solution
Optimality of GP

GP picks random 3-dimensional projector Π

Sets $g(u) = \Pi \cdot u / \|\Pi \cdot u\|_2$ for each $u \in \mathbb{R}^n$

Value of solution:

$$E_{z \sim p(y)}\left[\left(1 - \frac{\langle g(u), g(v) \rangle}{4} \right) \right]$$

- Rotationally symmetric
- Can pick $\Pi =$ projector onto (u_1, u_2, u_3)

$$\Rightarrow g(u) = (u_1, u_2, u_3) / \|(u_1, u_2, u_3)\|_2$$
Optimality of GP

GP picks random 3-dimensional projector Π

Sets $g(u) = \Pi \cdot u / \|\Pi \cdot u\|_2$ for each $u \in \mathbb{R}^n$

Value of solution:

$$E_{u \sim \rho v} \left[\left(\frac{1 - \langle g(u), g(v) \rangle}{4} \right) \right]$$

Want this to be optimal quantum state.

This is a product state (Bloch sphere rep.).

Need to compare against all quantum states

However, G is high degree \Rightarrow ground state is **product**

[Brandao Harrow 2016]

Only need to compare to product states $h: \mathbb{R}^n \rightarrow S^2$
A vector-valued Borell’s conjecture

For all \(k \geq 1 \), the quantity

\[
E_{u \sim \nu} \left[\langle h(u), h(v) \rangle \right]
\]

is minimized by \(h(u) = (u_1, ... , u_k)/\|u_1, ... , u_k\|_2 \)

We \textbf{thought} we had proven this!

(but Steve Heilman found a \textbf{bug} in our proof)

What we \textbf{can} show:

1. Show that \(h \) is “essentially \(k \) dimensional” (\textbf{positive} \(\rho \))
 (via calculus of variations)

2. Prove it in the case of \(n = k \) (\textbf{negative} \(\rho \))
 (via Fourier analysis)
Conclusion
Open problems

1. Prove the vector-valued Borell’s conjecture!
2. Improve our UG-hardness past 0.956
3. Improve the best approx. ratio past 0.562 [Lee]
4. The [PT] algorithm uses degree-4 Sum of Squares (SoS)
 (more powerful SDP than the basic SDP)
 Can we understand the power of SoS?
5. Algorithmic gap for the Gharibian-Parekh algorithm:
 Graph $G = (V, E)$ s.t.
 • $\text{QMax-Cut}(G) = \nu$
 • GP alg produces state with energy $0.498 \cdot \nu$
 (Or maybe “standard analysis” is not tight?)
Thanks!