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ABSTRACT

The problem of computing a piecewise linear approximation to a surface from a set
of sample points is important in solid modeling, computer graphics and computer vision.
A recent algorithm?! using the Voronoi diagram of the sample points gave a guarantee on
the distance of the output surface from the original sampled surface assuming that the
sample was sufficiently dense. We give a similar algorithm, simplifying the computation
and the proof of the geometric guarantee. In addition, we guarantee that our output
surface is homeomorphic to the original surface; to our knowledge this is the first such
topological guarantee for this problem.

Keywords: Voronoi diagram; Delaunay triangulation; surface reconstruction; homeomor-
phism.

1. Introduction

A number of applications in CAD, computer graphics, computer vision and
mathematical modeling involve the computation of a piecewise linear approximation
to a surface from a set of sample points. The point set can be generated by a laser
range scanner, manually with a contact probe digitizer, using medical images like
CT or MRI scans, or in any other way. In a specific application, the input may
contain additional information such as estimated surface normals, which can be
quite useful; for example, see Ref. [10]. But, as observed by Hoppe et al.,'® solutions
to the general surface reconstruction problem can provide a baseline for solving
and analyzing specialized problems. Curve reconstruction in the plane, the two
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dimensional version of the problem, has received a lot of recent attention. Several
algorithms?4:6:11,12,%,17.20 with various theoretical guarantees have been proposed.

The three-dimensional problem has been addressed by researchers in computer
graphics and computer vision.>”1918 Hoppe et. al '® present an algorithm in which
the surface is represented by the zero set of a signed distance function. Curless and
Levoy!? give a very effective algorithm using the same basic idea, carefully using
estimates of error and surface normals in laser range data. Edelsbrunner reports
success with a proprietary commercial program. '3 The a-shapes algorithm, as de-
scribed in Ref. [14] by Edelsbrunner and Miicke is useful for reconstructing surfaces
from uniform sample sets. There is no published analysis showing a relationship
between the original object surface and the output of any of these algorithms.

Clearly, it is not possible to compute a surface that is faithful to the topology
and geometry of the original unless the sampling is sufficiently dense, so any such
analysis must include some assumption about the sampling density. Amenta and
Bern! assumed that the distance between samples is proportional to the distance to
the medial azis, and presented a surface reconstruction algorithm based on Voronoi
diagrams. They proved that the output of their algorithm, the crust, is close to the
surface S, under the assumption that S is a smooth (twice-differentiable) 2-manifold
without boundary and that the sampling meets their assumption. Their algorithm
uses two passes of Voronoi diagram computation, and also two postprocessing steps,
called normal filtering and trimming. In this paper, we give a simpler, single-pass
Voronoi-based algorithm, and eliminate the normal filtering step. Amenta and
Bern! did not prove that the crust is homeomorphic to S. In this paper, we present
the first such proof.

Our algorithm is based on the following structural theorem. Let T be a set of
triangles satisfying three conditions:

I. T contains all triangles whose dual Voronoi edges intersect S,

I1. each triangle in T is small, that is, the radius of its circumcircle is much smaller
than the distance to the medial axis at its vertices, and

II1. all triangles in T' are “flat”, that is, the triangle normals make small angles
with the surface normals at their vertices.

Assuming again that S is smooth and the sampling is sufficiently dense, condition
I ensures that T contains a piecewise-linear manifold homeomorphic to S. Using
conditions II and III we show that any piecewise-linear 2-manifold N extracted
from T which spans all the sample points and for which every adjacent pair of
triangles meets at an obtuse angle must be homeomorphic to S.

We compute T by filtering triangles from the Delaunay triangulation as follows.
Let p be a sample point and let e be a Voronoi edge in the Voronoi cell of p. We
can estimate the surface normal at p by the vector from p to the farthest Voronoi
vertex in the Voronoi cell of p as shown in Ref. [1]. We then determine if e has a
point z, where pr makes an angle close to m/2 with the estimated normal at the
sample point p. If this condition is satisfied for all three Voronoi cells adjacent to
e, its dual is included in the candidate set T'. We prove that T satisfies conditions
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I, IT and III and that an acceptable piecewise-linear manifold N can be selected
from T by the manifold extraction step of Ref. [1]. Thus, in theory, our algorithm
produces a piecewise-linear manifold. Unfortunately in the usual case in which
the required sampling assumptions are not met, this manifold extraction step is
not particularly robust. Instead of implementing the manifold extraction step as
described in Ref. [1], we implement a heuristic which gives reasonable results in
practice.

After some definitions and preliminaries in Section 2, we will describe the al-
gorithm in detail in Section 3; our implementation is described later in Section 7.
We prove in Section 4 that T satisfies conditions I, IT and III, and in Section 5 we
derive some additional geometric consequences of these conditions. In Section 6 we
show a homeomorphism between the output and the original surface. Sections 4,5
and 6 will therefore establish that the output of our algorithm is both geometrically
and topologically correct.

2. Definitions and Preliminaries

We assume that surface S is a smooth manifold without boundary, embedded
in R®. We adopt the following definition of sampling density from Refs. [1,2].

2.1. Medial Azis and e-sampling

The medial azis of a surface S in R? is the closure of the set of points which
have more than one closest point on S. The local feature size, f(p), at point p € S
is the least distance of p to the medial axis. The maximal balls tangent to S at p
are centered on points of the medial axis; call these the medial balls at p. Notice
that f(p) is not necessarily the same as the radius of the medial balls at p. A very
useful property of f(-) is that it is 1-Lipschitz, that is, f(p) < f(q) + |pq| for any
two points p,q on S. A point set P is called an e-sample of a surface S if every
point p € S has a sample within distance €f(p).

2.2. Main Theorem

Given these definitions, we can state formally the main theorem of this paper.
Theorem 1 Let P be an e-sample for a smooth surface S, with ¢ < 0.06. Our
algorithm computes a piecewise-linear 2-manifold N homeomorphic to S, such that

any point on N is at most 112€ f(z) from some point z € S.

This proof of homeomorphism between N and S follows from Theorem 6 and the
geometric closeness between N and S follows from Theorem 4.

2.3. Restricted Delaunay Triangulation

We assume that the input sample P € R? is in general position; in practice most
Delaunay triangulation codes simulate general position, so this is not unreasonable.
Let Dp and Vp denote the Delaunay triangulation and the Voronoi diagram of P.
A Voronoi cell V,, C Vp for each point p € P is defined as the set of points z € R3
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such that |pz| < |gz| for any ¢ € P and g # p. The Delaunay triangulation Dp has
an edge pq if and only if V}, V; share a face, has a triangle pgr if and only if V,,, V,
and V, share an edge, and a tetrahedron pgrs if and only if V,,,V,,V,. and V; share
a Voronoi vertex.

Consider the restriction of Vp to the surface S. This defines the restricted
Voronoi diagram Vp g, with restricted Voronoi cells Vp s = V, N S. The dual of
these restricted Voronoi cells defines the restricted Delaunay triangulation Dps.
Specifically, an edge pq is in Dp g if and only if V), sNV, s is nonempty; a triangle pqr
is in Dp,g if and only if V,, sNV, 5NV, 5 is nonempty. Assuming that P is in general
position with respect to S, S does not pass through a Voronoi vertex, so there is no
tetrahedron in Dp s. Edelsbrunner and Shah!® showed that the underlying space of
Dp s is homeomorphic to S if the following closed ball property holds: each V, s is
a topological 2-ball, each nonempty pairwise intersection V, s NV, s is a topological
1-ball, and each nonempty triple intersection V, s NV, sNV;, s is a single point, that
is, a 0-ball. Amenta and Bern® used this result to show that if P is an e-sample of
S with € < 0.1, then Vp g satisfies the closed ball property, and hence Dp contains
the set Dp s of triangles forming a piecewise-linear manifold homeomorphic to S.

2.4. Conditions for Homeomorphism

Our algorithm selects a set of candidate triangles T that satisfy the following
three conditions.

I. RESTRICTED DELAUNAY CONDITION. The set of triangles includes the restricted
Delaunay triangles.

II. SMALL TRIANGLE CONDITION. The circumcircle of each triangle t € T is small;
specifically, its radius is cef(p), where p is any vertex of ¢t and ¢ > 0 is a constant
independent of e.

III. FLAT TRIANGLE CONDITION. The normal to each ¢ € T makes a small angle
ce with the surface normal at the vertex p, where p is the vertex with the largest
interior angle in ¢t and ¢ > 0 is a constant independent of e.

3. Algorithm

Our algorithm selects the candidate triangles using cocones at each sample point,
and then (at least in theory) extracts a piecewise-linear manifold from T'.

3.1. Cocones

The normal to S at each sample point is estimated using “poles”, which were
introduced in Ref. [1]. For each Voronoi cell V},, the Voronoi vertex farthest from the
sample point p is taken as a pole. The line through p and its pole is almost normal
to S and is called the estimated normal line at p; see Figure 1. For an angle 0,
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Fig. 1. The cocone for a sample in two dimensions (left), and three dimensions
(right). On the left the cocone is shaded, on the right its boundary is shaded.

we define a cone-complement — the cocone at p — as the complement of the double
cone with apex p making an angle of 7/2 — 6 with the axis that is aligned with
the estimated normal line at p. We determine the set of Voronoi edges in V}, that
intersect the cocones at all three of the sample points inducing the edge. The dual
triangles of these edges form our candidate set 7. We will argue that T satisfies
conditions I, IT and III for 6 < 7/8.

Note that this is equivalent to the definition of 7' mentioned in the introduction.
Any Voronoi edge e of a sample p which intersects the cocone at p must contain a
point z such that the angle between the estimated normal line and the vector pz is
at least 7/2 — 6.

Computing T is absolutely straightforward. We first compute the Delaunay
triangulation of P, and the Voronoi vertices dual to every tetrahedron, and we find
the pole v, of every sample p. Denote any ray from p to a point y € V, as . Let e
be an edge in the Voronoi cell V,,, and let w1, ws be its two endpoints. We compute
Zunvp and Zuwhv, and check if the range of angles determined by these two angles
intersects the desired range [7/2 — 0,7/2 + 6]. If it does, we mark e. We include
a Delaunay triangle ¢ in T if its dual edge e is marked by all three Voronoi cells
adjacent to e.

8.2. Manifold Fxtraction

For completeness, we review the manifold extraction step of the crust algorithm.!
First, we delete all triangles incident to sharp edges. An edge is called sharp if the
angle between any two consecutive triangles around the edge is more than 37 /2.
An edge with a single incident triangle is also sharp. Next, we extract the outer
boundary N of the set of triangles by a depth-first walk along the outer boundary
of each of its connected components. As mentioned earlier, we use a heuristic to
implement the manifold extraction to deal with practical data that may not satisfy
the sampling condition required by our theory.

4. Conditions

We use the following three lemmas from Ref. [1]. The first two establish that
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the vector from a sample to its pole estimates the normal at the sample.

Lemma 1 Let y be any point in V, such that |py| > 6f(p) for 6 > 0. The acute

angle between § and n, is less than sin™* si-o T sin™! 7.

Here sin™! denotes the arcsin function. Using Lemma 1 and the fact that |pv,| >
f(p) (recall that v, is the pole of p), we can bound the deviation of v, from the
surface normal n,.

€
—€

Lemma 2 The acute angle between n,, and v, is less than 2sin™" ;

We also use the following lemma,! which establishes that, within a bounded
region around p, the surface normal is also a Lipschitz function.

Lemma 3 Let p,q be two points on S so that |pg| < pmin{f(p), f(q)} withp < 1/3.
Then the angle between ny and ng is at most 55 radians.

4.1. Restricted Delaunay Condition

Condition I requires the restricted Delaunay triangles to be in T'. We begin with
a technical observation, which says that the line segment connecting two points close
together on S must be nearly parallel to the surface.
Observation 2 A line segment connecting two points x,z' € S, such that the dis-
tance |z,z'| < cef(z), with ¢ < v/2, makes an acute angle with the surface normal
ng at x of at least w/2 — sin$ .
This follows from the fact that ' must lie outside the two tangent balls of radius

f(z) at z.
Lemma 4 Let y be any point in the restricted Voronoi cell V, 5. The acute angle
between ny and § is larger than w/2 — €, for € < 0.1.

Proof. The distance |[yp| < ef(y), since y € Vp s and P is an e-sample. By the
Lipschitz condition f(y) < f(p) + |py| giving f(y) < 22, and hence |py| < ef(y) <
7= f(p). We can therefore apply Observation 2. ]

We can now prove that T satisfies Condition I.

Theorem 3 All restricted Delaunay triangles are in T, for ¢ < 0.1 and 6 = «/8.

Proof. Let e be the dual edge of a restricted Delaunay triangle. Consider the
point y = eNS. We have y € V, s for each of the three points p € P determining
e. For each such p, the acute angle between n, and ¥ is larger than 7/2 — ¢ by
Lemma 4. Therefore Z§v, € [7/2 — € — o, /2 + € + ], where a is the acute angle
between v, and n,. Plugging in the upper bound on a from Lemma 2 we find that
a+e<m/8, s0 Lijv, € [1/2 —0,7/2+ 6] for 6 = %. ad

4.2. Small Triangle Condition

Now we show that T meets Condition II.

Lemma 5 Let x be any point in V), so that the acute angle between & and ny, is at

least m/2 — 6 — 2sin™! -&. Then |pz| < 12 f(p), for 6 = 7/8 and € < 0.06.

Proof. If the acute angle between # and n, is at least a = sin™* oo
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sin™! 1<, then |pz| < §f(p) according to Lemma 1. With § = $:12¢ we have
a = sin™! 1 4sint <
- 1.15 1—e

which is less than 7/2 — 6 — 2sin™" £ = /8 and € < 0.06. a
Lemma 6 Let p be a vertex of any triangle t € T. The radius of the smallest
Delaunay ball of t is at most L5 f(p) for € < 0.06 and 6 = 7/8.

Proof. Let e be the dual edge of t and p any vertex of t. By our choice of
e, there is a point = € e so that & makes an angle in the range [7/2 — 6, 7/2 + 0]
with v,. Taking into account the angle between v, and n, we conclude that this
ray makes an acute angle more than 7/2 — 6 — 2sin™! - with n,. From Lemma
5, |pz| < LLE<f(p) for § = T and € < 0.06. O
Theorem 4 Let r denote the radius of the circumcircle of any triangle t € T.
Then, for each vertez p of t, r < L15< f(p) for € < 0.06 and 6 = /8.

Proof. The radius of the smallest Delaunay ball, bounded in Lemma 6, is
an upper bound on the radius of the circumcircle of ¢, which is centered at the
intersection of the line containing e with the plane containing ¢. O

4.8. Flat Triangle Condition

Here we show that T" meets Condition III.

Theorem 5 The normal to any triangle t € T makes an acute angle of no more
than a+sin™! (% sin 2a) with n, where p is the vertex subtending the largest interior
angle of t, where a < sin_l% and € < 0.06.

Proof. Consider the medial balls M; and M touching S at p with the centers
on the medial axis. Let D be the ball with the circumcircle of ¢ as a diameter; refer
to Figure 2. The radius r of D is equal to the radius of the circumcircle of . Denote
the circles of intersection of D with M; and M,y as C; and C5 respectively. The
normal to S at p passes through m, the center of M;. This normal makes an angle
less than a with the normals to the planes of C; and Cs, where

a < sin~lr/|pm|
1

< sin™! L15¢

1—e¢

since |pm| > f(p) by the definition of f and r < 111_5 € f(p) by Theorem 4. This
angle bound also applies to the plane of C3, which implies that the planes of C}
and C> make a wedge, say W, with an acute dihedral angle no more than 2a.

The other two vertices ¢, s of ¢t cannot lie inside M; or M,. This implies that ¢
lies completely in the wedge W. Consider a cone at p inside the wedge W formed by
the three planes; 7;, the plane of ¢, m;, the plane of C; and 2, the plane of C3. A
unit sphere centered around p intersects the cone in a spherical triangle uvw, where
u,v and w are the points of intersections of the lines m N7y, m N m and 7 N w2

respectively with the unit sphere. See the picture on right in Figure 2. Without
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Fig. 2. Normal to a small triangle and the normal to S at the vertex with the
largest face angle.

the loss of generality, assume that the angle Zuvw < Zuwv. We have the following
facts. The arc length of wv, denoted |wv|, is at least m/3 since p subtends the
largest angle in ¢ and ¢ lies completely in the wedge W. The spherical angle Zvuw
is less than or equal to 2a. We are interested in the spherical angle 8 = Zuvw
which is also the acute dihedral angle between the planes of ¢t and C;. By standard
sine laws in spherical geometry, we have sin 8 = sin [uw| S;?ﬂ‘;’:}w < sin |uw sfg‘lfﬁ)l If
7/3 < |wv| < 27/3, we have sin7/3 > 1/3/2 and hence 3 < sin™! -2—3 sin 2a. For the
range 27 /3 < |wv| < 7, we use the fact that |uw|+|wv| < 7 since Zvuw < 2a < 7/2
for sufficiently small €. So, in this case sin [uw] - g Thus, 8 < sin™? % sin 2a.

sin |wv|
The normals to ¢t and S at p make an acute angle at most a + 3 proving the

theorem. O
The upper bound on the angle between the normal to ¢t and n, provided by this
theorem is 14°; and the angle is O(e).

5. Geometric Consequences

The preceding lemmas have told us a great deal about 7. We know! that
the restricted Delaunay triangulation is a piecewise-linear surface homeomorphic
to S, when € < 0.1. Condition I ensures that T contains the restricted Delaunay
triangulation.

5.1. Triangle Interiors

Conditions II and III relate properties of each triangle ¢t € T to the value of f(-)
and the surface normal direction, respectively, at its vertices. Since the triangles are
small, we can use the Lipschitz properties to show that similar properties hold at
any point ¢ in the interior of ¢. To define these properties, we map ¢ to the nearest
surface point. Let p : R® — S map each point ¢ € R? to the closest point of S. The
restriction of u to T is a well-defined function p : T — S, since if some point ¢ had
more than one closest point on the surface, ¢ would be a point of the medial axis;
but by Theorem 4 every point ¢ € T is within 12 f(p) of a triangle vertex p € S.
Lemma 7 Let q be any point on a triangle t € T. The distance between q and and




A Simple Algorithm for Homeomorphic Surface Reconstruction 133

the point x = u(q) is at most 0.088 f(z), for e < 0.06.

Proof. The circumcircle of ¢ is small; the distance from ¢ to the vertex p of ¢
with largest angle is at most 26 f(p), with § = 1:18¢ < 074, by Theorem 4. Since
there is a sample, namely, a vertex of ¢ within §f(p) from ¢, we have |gz| < df(p).
We are interested in expressing this as a function of f(z), so we need an upper
bound on |pz|.

The triangle vertex p has to lie outside the tangent ball at z, while, since z is the
nearest surface point to ¢, ¢ must lie on the segment between = and the center of
this tangent ball. For any fixed |pgq|, these facts imply that |pz| is maximized when
the angle pqz is a right angle. Thus, |pz| < V56 f(p) < 0.17 f(p) for € < 0.06. This
implies that f(p) < 1.20 f(z) by Lipschitz property of f(-), giving |pz| < 0.20 f(z)
and |gz| < 0.088 f(z). |

With a little more work, we can also show that the triangle normal agrees with

the surface normal at the surface point closest to g.
Lemma 8 Let q be a point on triangle t € T, and let n, be the surface normal at
z = u(q). The acute angle between n, and and the normal to t is at most 42° for
€ < 0.06. Also, the acute angle between n, and the surface normal n, at the vertex
p of t with largest angle is at most 28°.

Proof. Applying Lemma 3, and taking p = 0.20, shows that the angle between
ng and n, is less than 28°. The angle between the triangle normal of ¢t and n, is
less than 14° for € < 0.06 (Theorem 5). Thus, the triangle normal and n, make an
angle of at most 42°. |

5.2. Sharp Edges

The manifold extraction step selects a piecewise-linear manifold from T'. It
begins by recursively removing all triangles in T' adjacent to sharp edges; recall
that a sharp edge is one for which the angle between two adjacent triangles, in
the circular order around the edge, is greater than 37w /2. Let T' be the remaining
set of triangles. The following lemma shows that none of the restricted Delaunay
triangles are removed, so that T" is guaranteed to contain a piecewise-linear manifold
homeomorphic to S.

Lemma 9 No restricted Delaunay triangle has a sharp edge, for € < 0.06.

Proof. Let t and ¢’ be adjacent triangles in the restricted Delaunay triangula-
tion, let e be their shared edge, and let p € e be any of their shared vertices. Since
t and t' belong to the restricted Delaunay triangulation, they have circumspheres
B and B’, respectively, centered at points v, v’ of S.

The boundaries of the circumspheres B and B’ intersect in a circle C contained
in a plane H, with e C H. H separates t and t', since the third vertex of each
triangle must lie on the boundary of its circumsphere, and B C B’ on one side of
H, while on the other B’ C B. The line through v, v’ is perpendicular to H, and the
distance |vv'| < (12_€€) f (@) (using the sampling condition). So segment v, v’ forms
an angle of at least 7/2 — sint<- with n, (Observation 2). This normal differs, in
turn, from n, by at most =4~ (Lemma 3), so H is nearly parallel to n,, at an angle
of at most 9°. The normals of both ¢ and #' differ from the surface normal at p by
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at most 14° (Theorem 5).

Thus we have ¢ on one side of H, ¢’ on the other, and the smaller angle between
H and either triangle is at least 67°. Hence the smaller angle between ¢ and t' is at
least 134°, and e is not sharp. O

6. Homeomorphism

A function p : X — Y defines a homeomorphism between two compact Euclidean
subspaces X and Y if u is continuous, one-to-one and onto. In this section, we will
show a homeomorphism between S and any piecewise-linear surface made up of
candidate triangles from T with two additional properties. The piecewise-linear
manifold NV selected by the manifold extraction step of our algorithm does in fact
have these properties, thus completing the proof of Theorem 1.

6.1. Additional Properties

A pair of triangles t1,t2 € N are adjacent if they share at least one common
vertex p. Since the normals to all triangles sharing p differ from the surface normal
at p by at most 42° (Lemma 8), and that normal in turn differs from the vector
to the pole at p by less than 8° (Lemma 2), we can orient the triangles sharing
p, arbitrarily but consistently calling the normal facing the pole the inside normal
and the normal facing away from the pole the outside normal. Let o be the angle
between the two inside normals of t1,t2. We define the angle at which the two
triangles meet at p to be 7 — a.

PROPERTY I: Every two adjacent triangles in N meet at their common vertex at
an angle of greater than /2.

Requiring this property excludes manifolds which contain sharp folds and, for in-
stance, flat tunnels. Since the triangles of T are all nearly perpendicular to the
surface normals at their vertices (Lemma 8), and the manifold extraction step elim-
inates triangles adjacent to sharp edges, IV has this property.

PROPERTY II: Every sample in P is a vertex of V.

Lemma 9 ensures that 7" contains the restricted Delaunay triangulation, which
contains a triangle adjacent to every sample in P. Lemma 11, below, ensures that
at least one triangle must be selected for each sample by the manifold extraction
step. This implies that IV has the second property as well.

6.2. Homeomorphism Proof

We define the homeomorphism explicitly, using the function g : N — S, as
defined above. Our approach will be first to show that u is well-behaved on the
samples themselves, and then show that this behavior continues in the interior of
each triangle of N.

Lemma 10 The restriction of u to N is a continuous function y: N — S.

Proof. By Theorem 4 every point ¢ € N is within 512<f(p) of a triangle
vertex p € S. Function p is continuous except at the medial axis of S, so that since
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Fig. 3. Proof of Lemma 11.

N is continuous and avoids the medial axis, p is continuous on N. a

Lemma 11 Let p be a sample and let m be the center of a medial ball M tangent
to the surface at p. No candidate triangle intersects the interior of the segment pm.

Proof. In order to intersect segment pm, a candidate triangle ¢ would have to
intersect M, and so would the smallest Delaunay ball D of t. Let H be the plane of
the circle where the boundaries of M and D intersect. We show that H separates
the interior of pm and t.

On one side of H, M is contained in D, and on the other, D is contained in M.
Since the vertices of ¢ lie on S and hence not in the interior of M, ¢ has to lie in the
open halfspace, call it H*, in which D is outside M. Since D is Delaunay, p cannot
lie in the interior of D; but since p lies on the boundary of M, it therefore cannot lie
in H+. We claim that m ¢ H either. (see Figure 3.) Since m € M, if it lay in H*
then m would have to be contained in D. Since m is a point of the medial axis, this
would mean that the radius of D would be at least 1/2 f(p') for any vertex p’ of ¢,
contradicting, by Lemma 6, the assertion that ¢ is a candidate triangle. Therefore
p,m and hence the segment pm cannot lie in H*, and H separates t and pm. O

Since any point g such that p(g) = p lies on such an open segment pm, we have
the following.

Corollary 1 The function p is one-to-one from N to every sample p.
In what follows, we will show that p is indeed one-to-one on all of V.

Our proof proceeds in three short steps. We show that p induces a homeomor-
phism on each triangle, then on each pair of adjacent triangles, and finally on IV as
a whole.

Lemma 12 Let U be a region contained within one triangle t € N or in adjacent
triangles of N. The function p defines a homeomorphism between U and u(U) C S.

Proof. We know that u is well-defined and continuous on U, so it only remains
to show that it is one-to-one. First, we prove that if U is in one triangle ¢, p is
one-to-one. For a point ¢ € t, the vector 7y from p(g) to ¢ is perpendicular to the
surface at pu(q); since S is smooth the direction of 71y is unique and well defined. If
there was some y € t with u(y) = u(g), then ¢, p(g) and y would all be colinear
and t itself would have to contain the line segment between g and y, contradicting
Lemma 8, which says that the normal of ¢ is nearly parallel to 1.

Now, we consider the case in which U is contained in more than one triangle.
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Let g and y be two points in U such that p(g) = p(y) = z, and let v be a common
vertex of the triangles that contain U. Since p is one-to-one in one triangle, ¢ and
y must lie in the two distinct triangles ¢, and t,. Let n, be the surface normal at
z. The line ! through z with direction n, pierces the patch U at least twice; if y
and ¢ are not adjacent intersections along [, redefine ¢ so that this is true (u(q) = =
for any intersection ¢ of I with U ). Now consider the orientation of the patch U
according to the direction to the pole at v. Either I passes from inside to outside
and back to inside when crossing y and ¢, or from outside to inside and back to
outside.

The acute angles between the triangle normals of ¢,4,t, and n, are less than 42°
(Lemma 8), that is, the triangles are stabbed nearly perpendicularly by n,. But
since the orientation of U is opposite at the two intersections, the angle between
the two oriented triangle normals is greater than zero, meaning that ¢, and ¢, must
meet at v at an acute angle. This would contradict PROPERTY I, which is that ¢,
and t, meet at v at an obtuse angle. Hence there are no two points in y,q with
mla) = p(y). o

We finish the theorem using a theorem from topology.

Theorem 6 The mapping p defines a homeomorphism from the triangulation N
to the surface S for € < 0.06.

Proof. Let S’ C S be u(N). We first show that (IV, u) is a covering space of S’.
Informally, (N, p) is a covering space for S’ if function u maps N smoothly onto S’,
with no folds or other singularities; see Massey!'®, Chapter 5. Showing that (IV, u)
is a covering space is weaker than showing that y defines a homeomorphism, since,
for instance, it does not preclude several connected components of N mapping onto
the same component of S’, or more interesting behavior, such as a torus wrapping
twice around another torus to form a double covering.

Formally, the (IV, ) is a covering space of S’ if, for every z € S’, there is a path-
connected elementary neighborhood V,; around x such that each path-connected
component of p~1(V,) is mapped homeomorphically onto V, by u.

To construct such an elementary neighborhood, note that the set of points
|p~1(z)| corresponding to a point z € S’ is non-zero and finite, since u is one-
to-one on each triangle of N and there are only a finite number of triangles. For
each point ¢ € p~!(z), we choose an open neighborhood U, of around ¢, homeo-
morphic to a disk and small enough so that U, is contained only in triangles that
contain gq.

We claim that x4 maps each U, homeomorphically onto u(U,). This is because
it is continuous, it is onto u(U,) by definition, and, since any two points = and y in
U, are in adjacent triangles, it is one-to-one by Lemma 12.

Let U'(z) = Ngeu-1(a)1(Uy), the intersection of the maps of each of the U,.
U'(z) is the intersection of a finite number of open neighborhoods, each containing z,
so we can find an open disk V, around z. V;, is path connected, and each component
of p=*(V,) is a subset of some U, and hence is mapped homeomorphically onto V,
by u. Thus (N, u) is a covering space for S'.

We now show that p defines a homeomorphism between N and S’. Since N
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Fig. 4. Proof of Theorem 6.

is onto S’ by definition, we need only show that u is one-to-one. Consider one
connected component G of S’. A theorem of algebraic topology (see eg. Massey,
citeMass67 Chapter 5 Lemma 3.4) says that when (IV, ) is a covering space of S’,
the sets p~!(z) for all z € G have the same cardinality. We now use Corollary 1,
that p is one-to-one at every sample. Since each connected component of S contains
some samples, it must be the case that u is everywhere one-to-one, and N and S’
are homeomorphic.

Finally, we show that S’ = S. Since N is closed and compact, S’ must be as well.
So S’ cannot include part of a connected component of S, and hence S’ must consist
of a subset of the connected components of S. Since every connected component of
S contains a sample p (actually many samples), and p(p) = p, all components of S
belong to S’, S’ = S, and N and S are homeomorphic. O

7. Implementation

[ objects | points | triangles | time(sec.) |

Foot 20021 40,341 153

set T

CLUB 16864 | 33,692 122

set T

Foot 40,004 234
surface NV

CLuB 33,670 189
surface NV

Fig. 5. Experimental data.

We have implemented the algorithm and tested it on several data sets. We faced
a serious implementation difficulty with the manifold extraction step. The manifold
extraction step depends heavily on the assumptions that the surface is smooth, has
no boundaries, and that the sampling is sufficiently dense. In practice the data
do not satisfy these assumptions. The manifold extraction step deletes edges at
boundaries, since they are sharp edges. Recursively deleting boundary edges can,
in the worst case, delete the entire output of the cocone filtering step. Even when the
surface has no boundaries, the output of the cocone step generally has holes which
are produced due to noise and undersampling, mostly in non-smooth regions. To
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prevent deleting too many triangles, we use a heuristic which we call UmbrellaCheck.

We say that a vertex p has an umbrella if there exists a set of triangles incident
to p which form a topological disk and no two consecutive triangles around the disk
meet at a dihedral angle less than 7 or more than 3—2’5 UmbrellaCheck determines
if a vertex p has an umbrella or not. This is done by considering the process of
deleting triangles adjacent to sharp edges only on the triangles incident to p. We
recursively mark all triangles adjacent to p and to a sharp edge as “deleted”. If p has
no umbrella, all triangles adjacent to p will be marked. Otherwise, an unmarked
triangle incident to p remains, and we conclude that p has an umbrella. In the
manifold extraction step, we actually delete a triangle incident with a sharp edge
only if all of its three vertices have umbrellas.

We implemented the algorithm in C' + + using the well known ghull code for
Delaunay triangulation. We show outputs for two data sets FOOT and CLUB in
Figure 6. The outputs are shown before (set T') and after (surface N) the manifold
extraction step. There is not much visible difference between the two outputs though
the number of triangles and running times in Table 5 indicate the difference. We
also provide zoomed pictures of the FOOT near the ankle for the set 7' and the
surface N. One can notice some slivers with one missing triangle in the picture
for T. The remaining three triangles form almost a square with a hanging triangle
on top of it. They disappear in the picture for the surface N. The surface N is
computed correctly almost everywhere except at the boundaries and near sharp
features, as expected.

Our running times, measured on a SUN machine with the 300Mhz processor and
256 MB memory, are faster than those reported in Ref. [3] for the crust algorithm.
For example, the foot took 153 seconds for extracting the set T', for which the crust
algorithm required 15 minutes on a SGI Onyx machine with 512 MB memory. The
difference can be explained by two factors; first, this algorithm requires only one
Delaunay triangulation step, and second, the implementation of Ref. [3] used the
exact-arithmetic Delaunay triangulation program hull, which we have observed to
be about four times slower than ghull on these inputs.

8. Conclusions

L are:

The main advantages of our algorithm over the original crust algorithm
(i) it requires only one Voronoi diagram computation as opposed to two; (ii) it
collects a set of triangles from the Delaunay triangulation by checking a single
simple condition; (iii) the proofs are simpler; and (iv) we can give a topological
guarantee on the output.

Our theory is supported by the output of our program on some reasonably large
data sets. We should note, however, that in practice many surfaces have sharp
corners and boundaries, and that sets of sample points are often noisy and fail to
meet our sampling condition, so that our theoretical results do not guarantee good
reconstruction in practice.

Important goals that remain in this area are to correctly reconstruct surfaces
with sharp edges, corners, and boundaries, to develop reconstruction algorithms
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Fig. 6. Experimental results,
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that gracefully handle noise, and to find more efficient algorithms that avoid com-
puting the Delaunay triangulation of all the input samples.
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