University of California at Berkeley
Department of Electrical Engineering and Computer Sciences
Computer Science Division

CS 61B: Midterm Exam II

This is an open book, open notes exam. Electronic devices are forbidden on your person, including cell phones, iPods, headphones, and laptops. Turn your cell phone off and leave it and all electronics at the front of the room, or risk getting a zero on the exam. Do not open your exam until you are told to do so!

Name:

Login: \qquad

Lab TA: \qquad
Lab day and time:

Do not write in these boxes.

Problem \#	Possible	Score
1. Miscellaneous	6	
2. Trees	10	
3. Graphs	9	
Total	25	

Problem 1. (6 points) A miscellany.

a. (1 point) Suppose that the following code compiles with no errors, and BException is a checked exception. What is the relationship between AException and BException?

```
public class SomeClass {
    public void methodl() throws AException {
        method2();
    }
    public void method2() throws BException {
        throw new BException();
    }
}
```

b. (1 point) Consider a hash table that initially has 50 buckets and no entries. Whenever the load factor exceeds one, the array is resized to be 50 buckets larger. If no chain ever contains more than $\mathcal{O}(1)$ entries, the total time to insert n entries into the hash table, including resizing time, is in $\Theta($ \qquad).
c. (4 points) Prove formally and rigorously that $\log (x+y) \in \mathcal{O}(\log x+\log y)$. (Both x and y are positive variables that can grow arbitrarily large. You may assume without proof that when x gets bigger, $\log x$ gets bigger.) Hint: What if $x \geq y$? What if $y \geq x$?

Problem 2. (10 points) Trees.
a. (2 points) Draw the binary search tree whose preorder traversal is $\begin{array}{llllllll} & 0 & 2 & 1 & 6 & 4 & 5 & 7 .\end{array}$
b. (3 points) Show the sequence of swaps by which the method bottomUpHeap converts the following array into a binary heap. Redraw the array once for each swap in the boxes provided.

c. (1.5 points) A binary heap of height h contains at least \qquad keys. A binary search tree of height h contains at least \qquad keys. A 2-3-4 tree of height h contains at least \qquad keys. (Give exact values, not asymptotic.)
d. (1.5 points) Draw the following 2-3-4 tree after you execute remove (6).

e. (2 points) Suppose you are given an array k of n integer keys, no two of them equal. Describe in plain English or Java-like pseudocode-your choice-an algorithm to answer the following question: if the n keys $\mathrm{k}[0] \ldots \mathrm{k}[n-1]$ are inserted into a binary search tree in order, what will be the depth of the minimum key? Your algorithm must run in $\mathcal{O}(n)$ time and use only $\mathcal{O}(1)$ memory (not counting the memory that stores the array k), so constructing a binary search tree is not an option.

Problem 3. (9 points) Graphs.

a. (2 points) In the adjacency list pictured below, each listnode contains three fields: the destination of an edge, the weight of an edge, and a reference to the next listnode, in that order. For example, the first listnode in the first linked list represents the directed edge $(0,5)$ with weight 7 . Suppose we run the breadth-first search algorithm from Lecture 29 on the directed graph this adjacency list represents, starting at vertex 0 . Recall that when BFS visits a vertex, it creates a parent field pointing from the visited vertex to the vertex that BFS reached it from. Draw the directed tree that these parent references represent. Label its vertices A, B, C, D, E, F, G in the order they're visited by BFS.

b. (1 point) We can make this graph strongly connected by adding just one edge, namely \qquad , \qquad).
c. (2 points) Draw all the minimum spanning trees of this graph, treating it as an undirected graph.
d. (2 points) Suppose G is a connected, weighted, undirected graph that has many vertices and many edges-no two with the same weight—but G has only one minimum spanning tree T.
Do you think that T must include the edge of G with the least weight? \qquad What about the edge with the second-least weight? \qquad What about the edge with the third-least weight? \qquad Explain why.
e. (1 point) With an adjacency matrix, the worst-case running time of Kruskal's algorithm, expressed in terms of the number n of vertices and the number e of edges, is in Θ (\qquad).
f. (1 point) The worst-case running time of Kruskal's algorithm on graphs with exactly 100 vertices, expressed in terms of the number e of edges, is in $\Theta($ \qquad don't answer \qquad). This is a nasty trick question that doesn't even make sense. Explain what is wrong with the question.

