The exam is open book, open notes for material on **paper**. On your computer screen, you may have only this exam, Zoom (if you are running it on your computer instead of a mobile device), and four browser windows/tabs: Gradescope, the exam instructions, clarifications on Piazza, and the form for submitting clarification requests.

You will submit your answers to the multiple-choice questions directly into Gradescope via the assignment **“Midterm – Multiple Choice”**; please **do not** submit your multiple-choice answers on paper. If you are in the DSP program and have been granted extra time, select the “DSP, 150%” or “DSP, 200%” option. By contrast, you will submit your answers to the written questions by writing them on paper by hand, scanning them, and submitting them through Gradescope via the assignment **“Midterm – Free Response.”**

Please write your name at the top of each page of your written answers. (You may do this before the exam.) **Please start each top-level question (Q2, Q3, etc.) on a new sheet of paper. Clearly label all written questions and all subparts of each written question.**

You have **80 minutes to complete the midterm exam (7:40–9:00 PM).** (If you are in the DSP program and have an allowance of 150% or 200% time, that comes to 120 minutes or 160 minutes, respectively.)

When the exam ends (9:00 PM), **stop writing.** You must submit your multiple-choice answers before 9:00 PM sharp. **Late multiple-choice submissions will be penalized at a rate of 5 points per minute after 9:00 PM.** (The multiple-choice questions are worth 40 points total.)

From 9:00 PM, you have 15 minutes to scan the written portion of your exam and turn it into Gradescope via the assignment **“Midterm – Free Response.”** Most of you will use your cellphone/pad and a third-party scanning app. If you have a physical scanner, you may use that. **Late written submissions will be penalized at a rate of 10 points per minute after 9:15 PM.** (The written portion is worth 60 points total.)

Following the exam, you must use Gradescope’s **page selection mechanism** to mark which questions are on which pages of your exam (as you do for the homeworks). Please get this done before 2:00 AM. This can be done on a computer different than the device you submitted with.

The total number of points is 100. There are 10 multiple choice questions worth 4 points each, and four written questions worth a total of 60 points.

For multiple answer questions, fill in the bubbles for **ALL correct choices:** there may be more than one correct choice, but there is always at least one correct choice. **NO partial credit** on multiple answer questions: the set of all correct answers must be checked.
Q1. [40 pts] Multiple Answer

Fill in the bubbles for **ALL correct choices**: there may be more than one correct choice, but there is always at least one correct choice. **NO partial credit**: the set of all correct answers must be checked.

(a) [4 pts] Which of the following cost functions are smooth—i.e., having continuous gradients everywhere?

- A: the perceptron risk function
- B: the sum (over sample points) of logistic losses
- C: least squares with ℓ_2 regularization
- D: least squares with ℓ_1 regularization

(b) [4 pts] Which of the following changes would commonly cause an SVM’s margin $1/\|w\|$ to shrink?

- A: Soft margin SVM: increasing the value of C
- B: Hard margin SVM: adding a sample point that violates the margin
- C: Soft margin SVM: decreasing the value of C
- D: Hard margin SVM: adding a new feature to each sample point

(e) [4 pts] Recall the logistic function $s(\gamma)$ and its derivative $s'(\gamma) = \frac{4}{\gamma} s(\gamma)$. Let γ^* be the value of γ that maximizes $s'(\gamma)$.

- A: $\gamma^* = 0.25$
- B: $s(\gamma^*) = 0.5$
- C: $s'(\gamma^*) = 0.5$
- D: $s'(\gamma^*) = 0.25$

(f) [4 pts] Given a design matrix $X \in \mathbb{R}^{n \times d}$, labels $y \in \mathbb{R}^{n}$, and $\lambda > 0$, we find the weight vector w^* that minimizes $||Xw - y||^2 + \lambda ||w||^2$. Suppose that $w^* \neq 0$.

- A: The variance of the method decreases if λ increases enough.
- B: There may be multiple solutions for w^*.
- C: The bias of the method increases if λ increases enough.
- D: $w^* = X^+ y$, where X^+ is the pseudoinverse of X.
(g) **The following two questions use the following assumptions.** You want to train a dog identifier with Gaussian discriminant analysis. Your classifier takes an image vector as its input and outputs 1 if it thinks it is a dog, and 0 otherwise. You use the CIFAR10 dataset, modified so all the classes that are not “dog” have the label 0. Your training set has 5,000 dog images and 45,000 non-dog (“other”) images. Which of the following statements seem likely to be correct?

- A: LDA has an advantage over QDA because the two classes have different numbers of training examples.
- B: QDA has an advantage over LDA because the two classes have different numbers of training examples.
- C: LDA has an advantage over QDA because the two classes are expected to have very different covariance matrices.
- D: QDA has an advantage over LDA because the two classes are expected to have very different covariance matrices.

(h) **This question is a continuation of the previous question.** You train your classifier with LDA and the 0-1 loss. You observe that at test time, your classifier always predicts “other” and never predicts “dog.” What is a likely reason for this and how can we solve it? (Check all that apply.)

- A: Reason: The prior for the “other” class is very large, so predicting “other” on every test point minimizes the (estimated) risk.
- B: Reason: As LDA fits the same covariance matrix to both classes, the class with more examples will be predicted for all points in \(\mathbb{R}^d \).
- C: Solve it by using a loss function that penalizes dogs misclassified as “other” more than “others” misclassified as dogs.
- D: Solve it by learning an isotropic pooled covariance instead of an anisotropic one; that is, the covariance matrix computed by LDA has the form \(\sigma^2 I \).

(i) We do an ROC analysis of 5 binary classifiers \(C_1, C_2, C_3, C_4, C_5 \) trained on the training points \(X_{\text{train}} \) and labels \(y_{\text{train}} \). We compute their true positive and false positive rates on the validation points \(X_{\text{val}} \) and labels \(y_{\text{val}} \) and plot them in the ROC space, illustrated below. In \(X_{\text{val}} \) and \(y_{\text{val}} \), there are \(n_p \) points in class “positive” and \(n_n \) points in class “negative.” We use a 0-1 loss.

![ROC analysis of five classifiers](image_url)
ROC analysis of five classifiers. FPR = false positive rate; TPR = true positive rate.

- A: If \(n_p = n_n \), \(C_2 \) is the classifier with the highest validation accuracy.
- B: If \(n_p = n_n \), all five classifiers have higher validation accuracy than any random classifier.
- C: There exists some \(n_p \) and \(n_n \) such that \(C_1 \) is the classifier with the highest validation accuracy.
- D: There exists some \(n_p \) and \(n_n \) such that \(C_3 \) is the classifier with the highest validation accuracy.
(j) [4 pts] Tell us about feature subset selection.

- A: Ridge regression is more effective for feature subset selection than Lasso.

- B: If the best model uses only features 2 and 4 (i.e., the second and fourth columns of the design matrix), forward stepwise selection is guaranteed to find that model.

- C: Stepwise subset selection uses the accuracy on the training data to decide which features to include.

- D: Backward stepwise selection could train a model with only features 1 and 3. It could train a model with only features 2 and 4. But it will never train both models.
Q2. [14 pts] Eigendecompositions

(a) [5 pts] Consider a symmetric, square, real matrix $A \in \mathbb{R}^{d \times d}$. Let $A = V \Lambda V^\top$ be its eigendecomposition. Let v_i denote the ith column of V. Let λ_i denote Λ_{ii}, the scalar component on the ith row and ith column of Λ.

Consider the matrix $M = \alpha A - A^2$, where $\alpha \in \mathbb{R}$. What are the eigenvalues and eigenvectors of M? (Expressed in terms of parts of A's eigendecomposition and α. No proof required.)

(b) [4 pts] Suppose that A is a sample covariance matrix for a set of n sample points stored in a design matrix $X \in \mathbb{R}^{n \times d}$, and that $\alpha \in \mathbb{R}$ is a fixed constant. Is it always true (for any such A and α) that there exists another design matrix $Z \in \mathbb{R}^{n \times d}$ such that $M = \alpha A - A^2$ is the sample covariance matrix for Z? Explain your answer.

(c) [5 pts] In lecture, we talked about decorrelating a centered design matrix \dot{X}. We used an eigendecomposition to do that. Explain (in English, not math) what the eigendecomposition tells us about the sample points, and how that information helps us decorrelate a design matrix.

The eigenvectors of λ_{ii} tell us λ_{ii}.

With this information, we decorrelate the centered design matrix by λ_{ii}.

5
Q3. [10 pts] Maximum Likelihood Estimation

There are 5 balls in a bag. Each ball is either red or blue. Let \(\theta \) (an integer) be the number of blue balls. We want to estimate \(\theta \), so we draw 4 balls with replacement out of the bag, replacing each one before drawing the next. We get “blue,” “red,” “blue,” and “blue” (in that order).

(a) [5 pts] Assuming \(\theta \) is fixed, what is the likelihood of getting exactly that sequence of colors (expressed as a function of \(\theta \))?

(b) [3 pts] Draw a table showing (as a fraction) the likelihood of getting exactly that sequence of colors, for every value of \(\theta \) from zero to 5 inclusive.

\[
\begin{array}{c|c}
\theta & \mathcal{L}(\theta; \langle \text{blue, red, blue, blue} \rangle) \\
0 & ? \\
1 & ? \\
2 & ? \\
3 & ? \\
4 & ? \\
5 & ? \\
\end{array}
\]

(c) [2 pts] What is the maximum likelihood estimate for \(\theta \)? (Chosen among all integers; not among all real numbers.)
Q4. [20 pts] Tikhonov Regularization

Let’s take a look at a more complicated version of ridge regression called Tikhonov regularization. We use a regularization parameter similar to \(\lambda \), but instead of a scalar, we use a real, square matrix \(\Gamma \in \mathbb{R}^{d \times d} \) (called the Tikhonov matrix). Given a design matrix \(X \in \mathbb{R}^{n \times d} \) and a vector of labels \(y \in \mathbb{R}^n \), our regression algorithm finds the weight vector \(w^* \in \mathbb{R}^d \) that minimizes the cost function

\[
J(w) = \|Xw - y\|_2^2 + \|\Gamma w\|_2^2.
\]

(a) [7 pts] Derive the normal equations for this minimization problem—that is, a linear system of equations whose solution(s) is the optimal weight vector \(w^* \). Show your work. (If you prefer, you can write an explicit closed formula for \(w^* \).)

(b) [3 pts] Give a simple, sufficient and necessary condition on \(\Gamma \) (involving only \(\Gamma \); not \(X \) nor \(y \)) that guarantees that \(J(w) \) has only one unique minimum \(w^* \). (To be precise, the uniqueness guarantee must hold for all values of \(X \) and \(y \), although the unique \(w^* \) will be different for different values of \(X \) and \(y \).) (A sufficient but not necessary condition will receive part marks.)

(c) [5 pts] Recall the Bayesian justification of ridge regression. We impose an isotropic normal prior distribution on the weight vector—that is, we assume that \(w \sim N(0, \sigma^2 I) \). (This encodes our suspicion that small weights are more likely to be correct than large ones.) Bayes’ Theorem gives us a posterior distribution \(f(w | X, y) \). We apply maximum likelihood estimation (MLE) to estimate \(w \) in that posterior distribution, and it tells us to find \(w \) by minimizing \(\|Xw - y\|_2^2 + \lambda \|w\|_2^2 \) for some constant \(\lambda \).

Suppose we change the prior distribution to an anisotropic normal distribution: \(w \sim N(0, \Sigma) \) for some symmetric, positive definite covariance matrix \(\Sigma \). Then MLE on the new posterior tells us to do Tikhonov regularization! What value of \(\Gamma \) does MLE tells us to use when we minimize \(J(w) \)? Give a one-sentence explanation of your answer.

(d) [5 pts] Suppose you solve a Tikhonov regularization problem in a two-dimensional feature space \((d = 2) \) and obtain a weight vector \(w^* \) that minimizes \(J(w) \). The solution \(w^* \) lies on an isocontour of \(\|Xw - y\|_2^2 \) and on an isocontour of \(\|\Gamma w\|_2^2 \). Draw a diagram that plausibly depicts both of these two isocontours, in a case where \(\Gamma \) is not diagonal and \(y \neq 0 \). (You don’t need to choose specific values of \(X \), \(y \), or \(\Gamma \); your diagram just needs to look plausible.)

Your diagram must contain the following elements:

- The two axes (coordinate system) of the space you are optimizing in, with both axes labeled.
- The specified isocontour of \(\|Xw - y\|_2^2 \), labeled.
- The specified isocontour of \(\|\Gamma w\|_2^2 \), labeled.
- The point \(w^* \).

These elements must be in a plausible geometric relationship to each other.
Q5. [16 pts] Multiclass Bayes Decision Theory

Let’s apply Bayes decision theory to three-class classification. Consider a weather station that constantly receives data from its radar systems and must predict what the weather will be on the next day. Concretely:

- The input X is a scalar value representing the level of cloud cover, with only four discrete levels: 25, 50, 75, and 100 (the percentage of cloud cover).
- The station must predict one of three classes Y corresponding to the weather tomorrow. $Y = y_0$ means sunny, y_1 means cloudy, and y_2 means rain.
- The priors for each class are as follows: $P(Y = y_0) = 0.5$, $P(Y = y_1) = 0.3$, and $P(Y = y_2) = 0.2$.
- The station has measured the cloud cover on the days prior to 100 sunny days, 100 cloudy days, and 100 rainy days. From these numbers they estimated the class-conditional probability mass functions $P(X|Y)$:

| Prior-Day Cloud Cover (X) | Sunny, $P(X|Y = y_0)$ | Cloudy, $P(X|Y = y_1)$ | Rain, $P(X|Y = y_2)$ |
|---------------------------|-----------------------|------------------------|----------------------|
| 25 | 0.7 | 0.3 | 0.1 |
| 50 | 0.2 | 0.3 | 0.1 |
| 75 | 0.1 | 0.3 | 0.3 |
| 100 | 0 | 0.1 | 0.5 |

- We use an asymmetric loss. Let z be the predicted class and y the true class (label).

$$L(z, y) = \begin{cases}
0 & z = y, \\
1 & y = y_0 \text{ and } z \neq y_0, \\
2 & y = y_1 \text{ and } z \neq y_1, \\
4 & y = y_2 \text{ and } z \neq y_2.
\end{cases}$$

(a) [8 pts] Consider the constant decision rule $r_0(x) = y_0$, which always predicts y_0 (sunny). What is the risk $R(r_0)$ of the decision rule r_0? Your answer should be a number, but show all your work.

(b) [8 pts] Derive the Bayes optimal decision rule $r^*(x)$—the rule that minimizes the risk $R(r^*)$.

Hint: Write down a table calculating $L(z, y_i) P(X|Y = y_i) P(Y = y_i)$, for each class y_i and each possible value of X (12 entries total), in the cases where the prediction z is wrong. Then figure out how to use it to minimize R. This problem can be solved without wasting time computing $P(X)$.
