
CS 189
Spring 2020

Introduction to
Machine Learning Final Exam

• The exam is open book, open notes, and open web. However, you may not consult or communicate with other people
(besides your exam proctors).

• You will submit your answers to the multiple-choice questions through Gradescope via the assignment “Final Exam
– Multiple Choice”; please do not submit your multiple-choice answers on paper. By contrast, you will submit your
answers to the written questions by writing them on paper by hand, scanning them, and submitting them through Grade-
scope via the assignment “Final Exam – Writeup.”

• Please write your name at the top of each page of your written answers. (You may do this before the exam.)

• You have 180 minutes to complete the midterm exam (3:00–6:00 PM). (If you are in the DSP program and have an
allowance of 150% or 200% time, that comes to 270 minutes or 360 minutes, respectively.)

• When the exam ends (6:00 PM), stop writing. You must submit your multiple-choice answers before 6:00 PM sharp.
Late multiple-choice submissions will be penalized at a rate of 5 points per minute after 6:00 PM. (The multiple-choice
questions are worth 60 points total.)

• From 6:00 PM, you have 15 minutes to scan the written portion of your exam and turn it into Gradescope via the
assignment “Final Exam – Writeup.” Most of you will use your cellphone and a third-party scanning app. If you have a
physical scanner, you may use that. Late written submissions will be penalized at a rate of 5 points per minute after 6:15
PM.

• Mark your answers to multiple-choice questions directly into Gradescope. Write your answers to written questions on
blank paper. Clearly label all written questions and all subparts of each written question. Show your work in
written questions.

• Following the exam, you must use Gradescope’s page selection mechanism to mark which questions are on which pages
of your exam (as you do for the homeworks).

• The total number of points is 150. There are 16 multiple choice questions worth 4 points each, and six written questions
worth 86 points total.

• For multiple answer questions, fill in the bubbles for ALL correct choices: there may be more than one correct choice,
but there is always at least one correct choice. NO partial credit on multiple answer questions: the set of all correct
answers must be checked.

First name

Last name
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Q1. [64 pts] Multiple Answer
Fill in the bubbles for ALL correct choices: there may be more than one correct choice, but there is always at least one correct
choice. NO partial credit: the set of all correct answers must be checked.

(1) [4 pts] Which of the following are true for the k-nearest neighbor (k-NN) algorithm?

© A: k-NN can be used for both classification and
regression.

© B: As k increases, the bias usually increases.

© C: The decision boundary looks smoother with
smaller values of k.

© D: As k increases, the variance usually increases.

(2) [4 pts] Let X be a matrix with singular value decomposition X = UΣV>. Which of the following are true for all X?

© A: rank(X) = rank(Σ).

© B: If all the singular values are unique, then the
SVD is unique.

© C: The first column of V is an eigenvector of X>X.

© D: The singular values and the eigenvalues of X>X
are the same.

(3) [4 pts] Lasso (with a fictitious dimension), random forests, and principal component analysis (PCA) all . . .

© A: can be used for dimensionality reduction or feature subset selection

© B: compute linear transformations of the input features

© C: are supervised learning techniques

© D: are translation invariant: changing the origin of the coordinate system (i.e., translating all the training and
test data together) does not change the predictions or the principal component directions

(4) [4 pts] Suppose your training set for two-class classification in one dimension (d = 1; xi ∈ R) contains three sample
points: point x1 = 3 with label y1 = 1, point x2 = 1 with label y2 = 1, and point x3 = −1 with label y3 = −1. What are
the values of w and b given by a hard-margin SVM?

© A: w = 1, b = 1

© B: w = 0, b = 1

© C: w = 1, b = 0

© D: w = ∞, b = 0

(5) [4 pts] Use the same training set as part (d). What is the value of w and b given by logistic regression (with no regular-
ization)?

© A: w = 1, b = 1

© B: w = 0, b = 1

© C: w = 1, b = 0

© D: w = ∞, b = 0

(6) [4 pts] Below are some choices you might make while training a neural network. Select all of the options that will
generally make it more difficult for your network to achieve high accuracy on the test data.

© A: Initializing the weights to all zeros

© B: Normalizing the training data but leaving the
test data unchanged

© C: Using momentum

© D: Reshuffling the training data at the beginning
of each epoch
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(7) [4 pts] To the left of each graph below is a number. Select the choices for which the number is the multiplicity of the
eigenvalue zero in the Laplacian matrix of the graph.

© A: 1

© B: 1

© C: 2

© D: 4

(8) [4 pts] Given the spectral graph clustering optimization problem
Find y that minimizes y>Ly
subject to y>y = n

and 1>y = 0,
which of the following optimization problems produce a vector y that leads to the same sweep cut as the optimization
problem above? M is a diagonal mass matrix with different masses on the diagonal.

© A:
Minimize y>Ly
subject to y>y = 1

and 1>y = 0

© B:
Minimize y>Ly
subject to ∀i, yi = 1 or yi = −1

and 1>y = 0

© C: Minimize y>Ly/(y>y)
subject to 1>y = 0

© D:
Minimize y>Ly
subject to y>My = 1

and 1>My = 0

(9) [4 pts] Which of the following methods will cluster the data in panel (a) of the figure below into the two clusters (red
circle and blue horizontal line) shown in panel (b)? Every dot in the circle and the line is a data point. In all the options
that involve hierarchical clustering, the algorithm is run until we obtain two clusters.

(a) Unclustered

(b) Desired clustering

© A: Hierarchical agglomerative clustering with
Euclidean distance and complete linkage

© B: Hierarchical agglomerative clustering with
Euclidean distance and single linkage

© C: Hierarchical agglomerative clustering with
Euclidean distance and centroid linkage

© D: k-means clustering with k = 2
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(10) [4 pts] Which of the following statement(s) about kernels are true?

© A: The dimension of the lifted feature vectors Φ(·), whose inner products the kernel function computes, can be
infinite.

© B: For any desired lifting Φ(x), we can design a kernel function k(x, z) that will evaluate Φ(x)>Φ(z) more quickly
than explicitly computing Φ(x) and Φ(z).

© C: The kernel trick, when it is applicable, speeds up a learning algorithm if the number of sample points is
substantially less than the dimension of the (lifted) feature space.

© D: If the raw feature vectors x, y are of dimension 2, then k(x, y) = x2
1y2

1 + x2
2y2

2 is a valid kernel.

(11) [4 pts] We want to use a decision tree to classify the training points depicted. Which of the following decision tree
classifiers is capable of giving 100% accuracy on the training data with four splits or fewer?

© A: A standard decision tree with axis-aligned splits

© B: Using PCA to reduce the training data to one
dimension, then applying a standard decision tree

© C: A decision tree with multivariate linear splits

© D: Appending a new feature |x1|+ |x2| to each sam-
ple point x, then applying a standard decision tree

(12) [4 pts] Which of the following are true about principal components analysis (PCA)?

© A: The principal components are eigenvectors of
the centered data matrix.

© B: The principal components are right singular
vectors of the centered data matrix.

© C: The principal components are eigenvectors of
the sample covariance matrix.

© D: The principal components are right singular
vectors of the sample covariance matrix.

(13) [4 pts] Suppose we are doing ordinary least-squares linear regression with a fictitious dimension. Which of the
following changes can never make the cost function’s value on the training data smaller?

© A: Discard the fictitious dimension (i.e., don’t append a 1 to every sample point).

© B: Append quadratic features to each sample point.

© C: Project the sample points onto a lower-dimensional subspace with PCA (without changing the labels) and
perform regression on the projected points.

© D: Center the design matrix (so each feature has mean zero).
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(14) [4 pts] Which of the following are true about principal components analysis (PCA)? Assume that no two eigenvectors
of the sample covariance matrix have the same eigenvalue.

© A: Appending a 1 to the end of every sample point doesn’t change the results of performing PCA (except that
the useful principal component vectors have an extra 0 at the end, and there’s one extra useless component with
eigenvalue zero).

© B: If you use PCA to project d-dimensional points down to j principal coordinates, and then you run PCA again
to project those j-dimensional coordinates down to k principal coordinates, with d > j > k, you always get the same
result as if you had just used PCA to project the d-dimensional points directly down to k principle coordinates.

© C: If you perform an arbitrary rigid rotation of the sample points as a group in feature space before performing
PCA, the principal component directions do not change.

© D: If you perform an arbitrary rigid rotation of the sample points as a group in feature space before performing
PCA, the largest eigenvalue of the sample covariance matrix does not change.

(15) [4 pts] Consider running a single iteration of AdaBoost on three sample points, starting with uniform weights on the
sample points. All the ground truth labels and predictions are either +1 or −1. In the table below, some values have been
omitted. Which of the following statements can we say with certainty?

True Label Classifier Prediction Initial Weight Updated Weight

X1 −1 −1 1/3 ?
X2 ? +1 1/3

√
2/3

X3 ? ? 1/3
√

2/6

© A: X1’s updated weight is
√

2/6

© B: X3’s classifier prediction is −1

© C: X2 is misclassified

© D: X3 is misclassified

(16) [4 pts] Consider running the hierarchical agglomerative clustering algorithm on the following set of four points in R2,
breaking ties arbitrarily. If we stop when only two clusters remain, which of the following linkage methods ensures the
resulting clusters are balanced (each have two sample points)? Select all that apply.

y

x

(0, 1)

(0,−1)

(1, 0)(−1, 0)

© A: Complete linkage

© B: Single linkage

© C: Centroid linkage

© D: Average linkage
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Q2. [14 pts] Principal Components Analysis
Consider the following design matrix, representing four sample points Xi ∈ R

2.

X =


4 1
2 3
5 4
1 0

 .
We want to represent the data in only one dimension, so we turn to principal components analysis (PCA).

(1) [5 pts] Compute the unit-length principal component directions of X, and state which one the PCA algorithm would
choose if you request just one principal component. Please provide an exact answer, without approximation. (You will
need to use the square root symbol.) Show your work!

(2) [5 pts] The plot below depicts the sample points from X. We want a one-dimensional representation of the data, so
draw the principal component direction (as a line) and the projections of all four sample points onto the principal
direction.

Label each projected point with its principal coordinate value (where the origin’s principal coordinate is zero). Give
the principal coordinate values exactly.

(3) [4 pts] The plot below depicts the sample points from X rotated 30 degrees counterclockwise about the origin.

As in part (b), identify the principal component direction that the PCA algorithm would choose and draw it (as a
line) on the plot. Also draw the projections of the rotated points onto the principal direction.

Label each projected point with the exact value of its principal coordinate.
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Q3. [14 pts] A Decision Tree
In this question we investigate whether students will pass or fail CS 189 based on whether or not they studied, cheated, and
slept well before the exam. You are given the following data for five students. There are three features, “Studied,” “Slept,” and
“Cheated.” The column “Result” shows the label we want to predict.

Studied Slept Cheated Result
Student 1 Yes No No Passed
Student 2 Yes No Yes Failed
Student 3 No Yes No Failed
Student 4 Yes Yes Yes Failed
Student 5 Yes Yes No Passed

(1) [4 pts] What is the entropy H(Result) at the root node? (There is no need to compute the exact number; you may write
it as an arithmetic expression.)

(2) [5 pts] Draw the decision tree where every split maximizes the information gain. (An actual drawing, please; a written
description does not suffice.) Do not perform a split on a pure leaf or if the split will produce an empty child; otherwise,
split. Explain (with numbers) why you chose the splits you chose.

(3) [2 pts] Did the tree you built implicitly perform feature subset selection? Explain.

(4) [3 pts] Suppose you have a sample of n students for some large n, with the same three features. Assuming that we use a
reasonably efficient algorithm to build the tree (as discussed in class), what is the worst-case running time to build the
decision tree? (Write your answer in the simplest asymptotic form possible.) Why?
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Q4. [20 pts] Spectral Graph Clustering

Figure 1: An undirected, weighted graph in which all vertices have mass 1. The numbers inside the vertices are their indices
(not masses).

In this problem, we approximate the sparsest cut of the graph above with the spectral graph clustering algorithm. Recall the
spectral graph clustering optimization objective is to

find y that minimizes y>Ly
subject to y>y = 6

and 1>y = 0.

(1) [4 pts] Write out the Laplacian matrix L.

(2) [3 pts] What is the rank of L? Explain your answer.

(3) [4 pts] L has the following six unit eigenvectors, listed in random order. Write down the Fiedler vector. Then explain
how you can tell which one is the Fiedler vector without doing a full eigendecomposition computation. (There are
several ways to see this; describe one.)

© [0.36,−0.58, 0.61,−0.4, 0.04,−0.03]

© [0.3,−0.33,−0.23, 0.3,−0.6, 0.55]

© [−0.41, 0.41, 0.41,−0.41,−0.41, 0.41]

© [−0.56,−0.32, 0.43, 0.62,−0.06,−0.1]

© [0.36, 0.34, 0.25, 0.19,−0.55,−0.6]

© [0.41, 0.41, 0.41, 0.41, 0.41, 0.41]

(4) [5 pts] How does the sweep cut decide how to cut this graph into two clusters? (Explain in clear English sentences.) For
every cut considered by the algorithm, write down the “score” it is assigned by the sweep cut algorithm. (You may use
fractions; decimal numbers aren’t required.) Identify the chosen cut by writing down two sets of vertex indices.

(5) [4 pts] Suppose we have computed the four eigenvectors v1, v2, v3, v4 corresponding to the four largest eigenvalues.
(For simplicity, assume no two eigenvectors have the same eigenvalue.) We want to write a constrained optimization
problem that identifies the eigenvector corresponding to the fifth-largest eigenvalue. Explain how to modify the
optimization problem at the beginning of this question so that the vector y it finds is the desired eigenvector. (You may
change the objective function and/or add constraints, but they must be mathematical, and you cannot write things like
“subject to y being the eigenvector corresponding to the fifth-largest eigenvalue.”)
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Q5. [12 pts] Hierarchical Spectral Graph Multi-Clustering
In this problem, we shall consider the same graph as in the previous question, but we use multiple eigenvectors to perform
3-cluster clustering with the algorithm of Ng, Jordan, and Weiss (as opposed to the 2-cluster clustering we performed in the last
question).

(1) [4 pts] Based on the six eigenvectors of L given in the previous question, write down the spectral vector (as defined in
the lecture notes) for each vertex 1, . . . , 6 in that order.

(2) [8 pts] We shall now cluster the six raw, unnormalized spectral vectors obtained above using hierarchical agglomerative
clustering with the Euclidean distance metric and single linkage. In contrast to what was discussed in class, we are not
normalizing the six spectral vectors (because we don’t want you to work that hard). Draw the complete single linkage
dendrogram on paper. The six integer points on the x-axis, 1, . . . , 6, should represent the vertices of the graph in the
order of their indices. The y-axis should indicate the linkage distances, as is standard for dendrograms. The numerical
distance at which each fusion happens should be clearly marked on your figure.
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Q6. [10 pts] A Miscellany
(1) [4 pts] Consider a single unit in a neural network that receives two binary inputs x1, x2 ∈ {0, 1}2 and computes a linear

combination followed by a threshold activation function, namely,

σ(z) =

1, z ≥ 0,
0 otherwise.

The unit is illustrated below. We have chosen a bias term of b = 5. Provide values for the two weights w1 and w2 that
allow you to compute the NAND function (which is 0 if and only if both inputs are 1).

(2) [6 pts] We are drawing sample points from a distribution with the probability density function (PDF) f (x) = 1
2 e−|x−µ|, but

we do not know the mean µ ∈ R. We decide to estimate µ with maximum likelihood estimation (MLE). Unfortunately,
we have only two sample points X1, X2 ∈ R.

Derive the likelihood and the log-likelihood for this problem. Then show that every value of µ between X1 and X2 is
a maximum likelihood estimate.
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Q7. [16 pts] Dual Ridge Regression & Leave-One-Out Error
[This question has four independent parts. If you get stuck on one, try the others. Each part depends on the statements made in
the previous parts, but not on your answer to the previous parts. Please show your work!]

Let X be an n × d design matrix representing n sample points with d features. (The last column of X may or may not be all 1’s,
representing a fictitious dimension; it won’t affect this question.) Let y ∈ Rn be a vector of labels. As usual, Xi denotes the ith
sample point expressed as a column vector (X>i is row i of X) and yi denotes the ith scalar component of y. Recall that ridge
regression finds the weight vector w∗ minimizing the cost function

J(w) = ‖Xw − y‖2 + λ‖w‖2

where λ > 0 is the regularization hyperparameter. Because λ > 0, every regression problem we will consider here has exactly
one unique minimizer. For X and y, the unique minimizer of J is denoted by w∗, giving a unique linear hypothesis h(z) = w∗ · z.

(1) [4 pts] Regression doesn’t usually have zero training error; we would like to check the value h(Xi) = w∗ · Xi to see how
close it is to yi. Recall the dual form of ridge regression and use it to show that w∗ · Xi = y>(K + λI)−1Ki, where K
is the kernel matrix and Ki is column i of K. Show your work. (Note: we are not lifting the sample points to another
feature space; we are just doing dual ridge regression with kernel matrix K = XX>.)

The Leave-One-Out (LOO) error of a regression algorithm is the expected loss on a randomly chosen training point when you
train on the other n − 1 points, leaving the chosen point out of training. Let Xi denote the (n − 1) × d design matrix obtained by
removing the sample point Xi (the ith row of X) from X, and let yi ∈ Rn−1 denote the vector obtained by removing yi from y.
Let Ji be the cost function of ridge regression on Xi and yi, and let wi be the optimal weight vector that minimizes Ji(w).

(2) [4 pts] Suppose that after we perform ridge regression on Xi and yi, we discover that our linear hypothesis function just
happens to fit the left-out sample point perfectly; that is, wi · Xi = yi.

Prove that w∗ = wi. That is, removing the sample point Xi did not change the weights or the linear hypothesis. (Hint:
find the difference between J(w) and Ji(w) (for an arbitrary w), then reason about the relationships between J(w), Ji(w),
Ji(wi), and J(wi).)

Suppose we are not so lucky, and it turns out that wi · Xi , yi. Let y(i) ∈ Rn denote the vector obtained by taking y and changing
the ith component, replacing yi with wi · Xi. Let w(i) be the optimal weight vector that minimizes the ridge regression cost
function on the inputs X and y(i). Our result from part (b) shows that w(i) = wi.

(3) [4 pts] From part (a), show that w(i) · Xi − w∗ · Xi = (w(i) · Xi − yi) (K + λI)−1
i Ki, where (K + λI)−1

i denotes row i of
(K + λI)−1. (Hint: The result from part (a) implies that w(i) · Xi = y(i) · (K + λI)−1Ki. What does y(i) − y look like?)

The Leave-One-Out error is defined to be

RLOO =
1
n

n∑
i=1

(wi · Xi − yi)2 =
1
n

n∑
i=1

(w(i) · Xi − yi)2.

The LOO error is often an excellent estimator for the regression loss on unseen data. In general, the computation of LOO error
can be very costly because it requires training the algorithm n times. But for dual ridge regression, remarkably, the LOO error
can be computed by training the algorithm only once! Let’s see how to compute the terms in the summation quickly.

(4) [4 pts] Show that w(i) · Xi − yi =
w∗ · Xi − yi

1 − (K + λI)−1
i Ki

.

Postscript: We can add the kernel trick to this method if we want; it adds no difficulties, though for speed we usually want to
use the kernel function to compute K and each w∗ · Xi. The technique also requires us to compute the diagonal of (K + λI)−1K,
which is probably best done by a Cholesky factorization of (K + λI)−1 and backsubstitution.
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