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Chapter 2Conditional Independene andFatorizationA graphial model an be thought of as a probabilisti database, a mahine that an answer\queries" regarding the values of sets of random variables. We build up the database in piees, usingprobability theory to ensure that the piees have a onsistent overall interpretation. Probabilitytheory also justi�es the inferential mahinery that allows the piees to be put together \on the y"to answer queries.Consider a set of random variables fX1;X2; : : : ;Xng and let xi represent the realization ofrandom variable Xi. Eah random variable may be salar-valued or vetor-valued. Thus xi is ingeneral a vetor in a vetor spae. In this setion, for onreteness, we assume that the randomvariables are disrete; in general, however, we make no suh restrition. There are several kinds ofquery that we might be interested in making regarding suh an ensemble. We might, for example,be interested in knowing whether one subset of variables is independent of another, or whether onesubset of variables is onditionally independent of another subset of variables given a third subset.Or we might be interested in alulating onditional probabilities|the probabilities of one subset ofvariables given the values of another subset of variables. Still other kinds of queries will be desribedin later hapters. In priniple all suh queries an be answered if we have in hand the joint proba-bility distribution, written P (X1 = x1;X2 = x2; : : : ;Xn = xn). Questions regarding independenean be answered by fatoring the joint probability distribution, and questions regarding onditionalprobabilities an be answered by appropriate marginalization and normalization operations.To simplify our notation, we will generally express disrete probability distributions in terms ofthe probability mass funtion p(x1; x2; : : : ; xn), de�ned as p(x1; x2; : : : ; xn) , P (X1 = x1;X2 =x2; : : : ;Xn = xn). We also will often use X to stand for fX1; : : : ;Xng, and x to stand forfx1; : : : ; xng, so that P (X1 = x1;X2 = x2; : : : ;Xn = xn) an be written more suintly asP (X = x), or, more suintly still, as p(x). Note also that subsets of indies are allowed whereversingle indies appear. Thus if A = f2; 4g and B = f3g, then XA is shorthand for fX2;X4g, XB isshorthand for fX3g, and P (XA = xA jXB = xB) is shorthand for P (X2 = x2;X4 = x4 jX3 = x3).While it is in fat our goal to maintain and manipulate representations of joint probabilities,we must not be naive regarding the size of the representations. In the ase of disrete random3



4 CHAPTER 2. CONDITIONAL INDEPENDENCE AND FACTORIZATIONvariables, one way to represent the joint probability distribution is as an n-dimensional table,in whih eah ell ontains the probability p(x1; x2; : : : ; xn) for a spei� setting of the variablesfx1; x2; : : : ; xng. If eah variable xi ranges over r values, we must store and manipulate rn numbers,a quantity exponential in n. Given that we wish to onsider models in whih n is in the hundredsor thousands, suh a naive tabular representation is out.Graphial models represent joint probability distributions more eonomially, using a set of\loal" relationships among variables. To de�ne what we mean by \loal" we avail ourselves ofgraph theory.2.1 Direted graphs and joint probabilitiesLet us begin by onsidering direted graphial representations. A direted graph is a pair G(V; E),where V is a set of nodes and E a set of (oriented) edges. We will assume that G is ayli.Eah node in the graph is assoiated with a random variable. Formally, we assume that thereis a one-to-one mapping from nodes to random variables, and we say that the random variables areindexed by the nodes in the graph. Thus, for eah i 2 V, there is an assoiated random variable Xi.Letting V = f1; 2; : : : ; ng, as we often do for onveniene, the set of random variables assoiatedwith the graph is given by fX1;X2; : : : ;Xng.Although nodes and random variables are rather di�erent formal objets, we will �nd it onve-nient to ignore the distintion, letting the symbol \Xi" refer both to a node and to its assoiatedrandom variable. Indeed, we will often gloss over the distintion between nodes and random vari-ables altogether, using language suh as \the marginal probability of node Xi."Note that we will also sometimes use lower-ase letters|that is, the realization variables xi|to label nodes, further blurring distintions. Given the strit one-to-one orrespondene that weenfore between the notation for random variables (Xi) and their realizations (xi), however, this isunlikely to lead to onfusion.It would be rather inonvenient to be restrited to the symbol \X" for random variables, and weoften use other symbols as well. Thus, we may onsider examples in whih sets suh as fW;X; Y; Zgor fX1;X2;X3; Y1; Y2; Y3g denote the set of random variables assoiated with a graph. As long asit is lear whih random variable is assoiated with whih node, then formally the random variablesare \indexed" by the nodes in the graph as required, even though the indexing is not neessarilymade expliit in the notation.Eah node has a set of parent nodes, whih an be the empty set. For eah node i 2 V, welet �i denote the set of parents of node i. We also refer to the set of random variables X�i asthe \parents" of the random variable Xi, exploiting the one-to-one relationship between nodes andrandom variables.We use the loality de�ned by the parent-hild relationship to onstrut eonomial represen-tations of joint probability distributions. To eah node i 2 V we assoiate a funtion fi(xi; x�i).These funtions are assumed to have the properties of onditional probability distributions: thatis, fi(xi; x�i) is nonnegative and sums to one with respet to xi for eah value of x�i . We impose noadditional onstraint on these funtions; in partiular, there is no assumption of any relationshipbetween the funtions at di�erent nodes.



2.1. DIRECTED GRAPHS AND JOINT PROBABILITIES 5Let V = f1; 2; : : : ; ng. Given a set of funtions ffi(xi; x�i) : i 2 Vg, we de�ne a joint probabilitydistribution as follows: p(x1; x2; : : : ; xn) , nYi=1 fi(xi; x�i): (2.1)That is, we de�ne the joint probability as a produt of the loal funtions at the nodes of thegraph. To verify that the de�nition obeys the onstraints on a joint probability, we hek: (1) theright-hand side is learly nonnegative; and (2) the assumption that eah fator fi(xi; x�i) sums toone with respet to xi, together with the assumption that the graph is ayli, implies that theright-hand side sums to one with respet to fx1; x2; : : : ; xng. In partiular, we an sum \bakward"from the leaves of the graph, summing over the values of leaf nodes and removing the nodes fromthe graph, obtaining a value of one at eah step.1By hoosing spei� numerial values for the funtions fi(xi; x�i), we generate a spei� jointprobability distribution. Ranging over all possible numerial hoies for these funtions, we de�nea family of joint probability distributions assoiated with the graph G. It will turn out that thisfamily is a natural mathematial objet. In partiular, as we will see later in this hapter, thisfamily an be haraterized not only in terms of produts of loal funtions, but also more \graph-theoretially" in terms of the patterns of edges in the graph. It is this relationship between thedi�erent ways to haraterize the family of probability distributions assoiated with a graph thatis the key to the underlying theory of probabilisti graphial models.With a de�nition of joint probability in hand, we an begin to address the problem of alu-lating onditional probabilities under this joint. Suppose in partiular that we alulate p(xi jx�i)under the joint probability in Eq. (2.1). What, if any, is the relationship between this onditionalprobability and fi(xi; x�i), a funtion whih has the properties of a onditional probability but isotherwise arbitrary? As we ask the reader to verify in Exerise ??, these funtions are in fat oneand the same. That is, under the de�nition of joint probability in Eq. (2.1), the funtion fi(xi; x�i)is neessarily the onditional probability of xi given x�i . Put di�erently, we see that the funtionsfi(xi; x�i) must form a onsistent set of onditional probabilities under a single joint probability.This is a pleasant and somewhat surprising fat given that we an de�ne the funtions fi(xi; x�i)arbitrarily.Given that funtions fi(xi; x�i) are in fat onditional probabilities, we heneforth drop the finotation and write the de�nition in terms of p(xi jx�i):2p(x1; x2; : : : ; xn) = nYi=1 p(xi jx�i): (2.2)1If this point is not lear now, it will be lear later when we disuss inferene algorithms.2Eq. (2.2) is often used as the de�nition of the joint probability for a direted graphial model. Suh a de�nitionrisks irularity, however, beause it is not lear in advane that an arbitrary olletion of onditional probabilities,fp(xi j x�i)g, are neessarily onditionals under the same joint probability. Moreover, it is not lear in advane thatan arbitrary olletion of onditional probabilities is internally onsistent. We thus prefer to treat Eq. (2.1) as thede�nition and view Eq. (2.2) as a onsequene. Having made this autionary note, however, for simpliity we referto Eq. (2.2) as the \de�nition" of joint probability in the remainder of the hapter.



6 CHAPTER 2. CONDITIONAL INDEPENDENCE AND FACTORIZATION
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Figure 2.1: An example of a direted graphial model.We refer to the onditional probabilities p(xi jx�i) as the loal onditional probabilities assoiatedwith the graph G. These funtions are the building bloks whereby we synthesize a joint distributionassoiated with the graph G.Figure 2.1 shows an example on six nodes. Aording to the de�nition, we obtain the jointprobability as follows:p(x1; x2; x3; x4; x5; x6) = p(x1)p(x2 jx1)p(x3 jx1)p(x4 jx2)p(x5 jx3)p(x6 jx2; x5); (2.3)by taking the produt of the loal onditional distributions.Let us now return to the problem of representational eonomy. Are there omputational ad-vantages to representing a joint probability as a set of loal onditional probabilities?Eah of the loal onditional probabilities must be represented in some manner. In later hapterswe will onsider a number of possible representations for these probabilities; indeed, this represen-tational issue is one of the prinipal topis of the book. For onreteness, however, let us make asimple hoie here. For a disrete node Xi, we must represent the probability that node Xi takeson one of its possible values, for eah ombination of values for its parents. This an be done usinga table. Thus, for example, the probability p(x1) an be represented using a one-dimensional table,and the probability p(x6 jx2; x5) an be represented using a three-dimensional table, one dimensionfor eah of x2; x5 and x6. The entire set of tables for our example is shown in Figure 2.2, wherefor simpliity we have assumed that the nodes are binary-valued. Filling these tables with spei�numerial values piks out a spei� distribution in the family of distributions de�ned by Eq. (2.3).In general, ifmi is the number of parents of nodeXi, we an represent the onditional probabilityassoiated with node Xi with an (mi + 1)-dimensional table. If eah node takes on r values, thenwe require a table of size rmi+1.We have exhanged exponential growth in n, the number of variables in the domain, for expo-nential growth in mi, the number of parents of individual nodes Xi (the \fan-in"). This is veryoften a happy exhange. Indeed, in many situations the maximum fan-in in a graphial model isrelatively small and the redution in omplexity an be enormous. For example, in hidden Markov
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Figure 2.2: The loal onditional probabilities represented as tables. Eah of the nodes is assumedto be binary-valued. Eah of these tables an be �lled with arbitrary nonnegative numerial values,subjet to the onstraint that they sum to one for given �xed values of the parents of a node. Thus,eah olumn in eah table must sum to one.



8 CHAPTER 2. CONDITIONAL INDEPENDENCE AND FACTORIZATIONmodels (see Chapter 12), eah node has at most a single parent, while the number of nodes n anbe in the thousands.The fat that graphs provide eonomial representations of joint probability distributions isimportant, but it is only a �rst hint of the profound relationship between graphs and probabilities.As we show in the remainder of this hapter and in the following hapter, graphs provide muh morethan a data struture; in partiular, they provide inferential mahinery for answering questionsabout probability distributions.2.1.1 Conditional independeneAn important lass of questions regarding probability distributions has to do with onditional inde-pendene relationships among random variables. We often want to know whether a set of variablesis independent of another set, or perhaps onditionally independent of that set given a third set.Independene and onditional independene are important qualitative aspets of probability theory.By de�nition, XA and XB are independent, written XA ?? XB , if:p(xA; xB) = p(xA)p(xB); (2.4)and XA and XC are onditionally independent given XB , written XA ?? XC jXB , if:p(xA; xC jxB) = p(xA jxB)p(xC jxB); (2.5)or, alternatively, p(xA jxB ; xC) = p(xA jxB); (2.6)for all xB suh that p(xB) > 0. Thus, to establish independene or onditional independene weneed to fator the joint probability distribution.Graphial models provide an intuitively appealing, symboli approah to fatoring joint prob-ability distributions. The basi idea is that representing a probability distribution within thegraphial model formalism involves making ertain independene assumptions, assumptions whihare embedded in the struture of the graph. From the graphial struture other independene rela-tions an be derived, reeting the fat that ertain fatorizations of joint probability distributionsimply other fatorizations. The key advantage of the graphial approah is that suh fatorizationsan be read o� from the graph via simple graph searh algorithms. We will desribe suh an al-gorithm in Setion 2.1.2; for now let us try to see in general terms why graphial struture shouldenode onditional independene.The hain rule of probability theory allows a probability mass funtion to be written in a generalfatored form, one a partiular ordering for the variables is hosen. For example, a distributionon the variables fX1;X2; : : : ;X6g an be written as:p(x1; x2; x3; x4; x5; x6)= p(x1)p(x2 jx1)p(x3 jx1; x2)p(x4 jx1; x2; x3)p(x5 jx1; x2; x3; x4)p(x6 jx1; x2; x3; x4; x5);where we have hosen the usual arithmeti ordering of the nodes. In general, we have:p(x1; x2; : : : ; xn) = nYi=1 p(xi jx1; : : : ; xi�1): (2.7)



2.1. DIRECTED GRAPHS AND JOINT PROBABILITIES 9Comparing this expansion, whih is true for an arbitrary probability distribution, with the de�-nition in Eq. (2.2), we see that our de�nition of joint probability involves dropping some of theonditioning variables in the hain rule. Inspeting Eq. (2.6), it seems natural to try to interpretthese missing variables in terms of onditional independene. For example, the fat that p(x4 jx2)appears in Eq. (2.3) in the plae of p(x4 jx1; x2; x3) suggests that we should expet to �nd that X4is independent of X1 and X3 given X2.Taking this idea a step further, we might posit that missing variables in the loal onditionalprobability funtions orrespond to missing edges in the underlying graph. Thus, p(x4 jx2) appearsas a fator in Eq. (2.3) beause there are no edges from X1 and X3 to X4. Transferring theinterpretation from missing variables to missing edges we obtain a probabilisti interpretationfor the missing edges in the graph in terms of onditional independene. Let us formalize thisinterpretation.De�ne an ordering I of the nodes in a graph G to be topologial if for every node i 2 V the nodesin �i appear before i in the ordering. For example, the ordering I = (1; 2; 3; 4; 5; 6) is a topologialordering for the graph in Figure 2.1. Let �i denote the set of all nodes that appear earlier thani in the ordering I, exluding the parent nodes �i. For example, �5 = f1; 2; 4g for the graph inFigure 2.1.As we ask the reader to verify in Exerise ??, the set �i neessarily ontains all anestors ofnode i (exluding the parents �i), and may ontain other nondesendant nodes as well.Given a topologial ordering I for a graph G we assoiate to the graph the following set of basionditional independene statements: fXi ?? X�i jX�ig (2.8)for i 2 V. Given the parents of a node, the node is independent of all earlier nodes in the ordering.For example, for the graph in Figure 2.1 we have the following set of basi onditional indepen-denies: X1 ?? ; j ; (2.9)X2 ?? ; j X1 (2.10)X3 ?? X2 j X1 (2.11)X4 ?? fX1;X3g j X2 (2.12)X5 ?? fX1;X2;X4g j X3 (2.13)X6 ?? fX1;X3;X4g j fX2;X5g; (2.14)where the �rst two statements are vauous.Is this interpretation of the missing edges in terms of onditional independene onsistent withour de�nition of the joint probability in Eq. (2.2)? The answer to this important question is \yes,"although proof will be again postponed until later. Let us refer to our example, however, to providea �rst indiation of the basi issues.Let us verify that X1 and X3 are independent of X4 given X2 by diret alulation from the



10 CHAPTER 2. CONDITIONAL INDEPENDENCE AND FACTORIZATIONjoint probability in Eq. (2.3). We �rst ompute the marginal probability of fX1;X2;X3;X4g:p(x1; x2; x3; x4) = Xx5 Xx6 p(x1; x2; x3; x4; x5; x6) (2.15)= Xx5 Xx6 p(x1)p(x2 jx1)p(x3 jx1)p(x4 jx2)p(x5 jx3)p(x6 jx2; x5) (2.16)= p(x1)p(x2 jx1)p(x3 jx1)p(x4 jx2)Xx5 p(x5 jx3)Xx6 p(x6 jx2; x5) (2.17)= p(x1)p(x2 jx1)p(x3 jx1)p(x4 jx2); (2.18)and also ompute the marginal probability of fX1;X2;X3g:p(x1; x2; x3) = Xx4 p(x1)p(x2 jx1)p(x3 jx1)p(x4 jx2) (2.19)= p(x1)p(x2 jx1)p(x3 jx1): (2.20)Dividing these two marginals yields the desired onditional:p(x4 jx1; x2; x3) = p(x4 jx2); (2.21)whih demonstrates the onditional independene relationship X4 ?? fX1;X3g jX2.We an readily verify the other onditional independenies in Eq. (2.14), and indeed it is nothard to follow along the lines of the example to prove in general that the onditional indepen-dene statements in Eq. (2.8) follow from the de�nition of joint probability in Eq. (2.2). Thuswe are liensed to interpret the missing edges in the graph in terms of a basi set of onditionalindependenies.More interestingly, we might ask whether there are other onditional independene statementsthat are true of suh joint probability distributions, and whether these statements also have agraphial interpretation.For example, for the graph in Figure 2.1 it turns out that X1 is independent of X6 givenfX2;X3g. This is not one of the basi onditional independenies in the list in Eq. (2.14), but it isimplied by that list. We an verify this onditional independene by algebra. In general, however,suh algebrai alulations an be tedious and it would be appealing to �nd a simpler method forheking onditional independenies. Moreover, we might wish to write down all of the onditionalindependenies that are implied by our basi set. Is there any way to do this other than by tryingto fatorize the joint distribution with respet to all possible triples of subsets of the variables?A solution to the problem is suggested by examining the graph in Figure 2.3. We see that thenodes X2 and X3 separate X1 from X6, in the sense that all paths between X1 and X6 pass throughX2 or X3. Moreover, returning to the list of basi onditional independenies in Eq. (2.14), we seethat the parents X�i blok all paths from the node Xi to the earlier nodes in a topologial ordering.This suggests that the notion of graph separation an be used to derive a graphial algorithm forinferring onditional independene.We will have to take some are, however, to make the notion of \bloking" preise. For example,X2 is not neessarily independent of X3 given X1 and X6, as would be suggested by a naiveinterpretation of \bloking" in terms of graph separation.
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Figure 2.3: The nodes X2 and X3 separate X1 from X6.We will pursue the analysis of bloking and onditional independene in the following setion,where we provide a general graph searh algorithm to solve the problem of �nding implied inde-pendenies.Let us make a �nal remark on the de�nition of the set of basi onditional independene state-ments in Eq. (2.8). Note that this set is dependent on both the graph G and on an ordering I. Itis also possible to make an equivalent de�nition that is de�ned only in terms of the graph G. Inpartiular, reall that the set �i neessarily inludes all anestors of i (exluding the parents �i).Note that the set of anestors is independent of the ordering I. We thus might onsider de�ninga basi set of independene statements that assert the onditional independene of a node fromits anestors, onditional on its parents. It turns out that the independene statements in this sethold if and only if the independene statements in Eq. (2.8) hold. As we ask the reader to verifyin Exerise ??, this equivalene follows easily from the \Bayes ball" algorithm that we present inthe following setion.The de�nition in Eq. (2.8) was hosen so as to be able to ontrast the de�nition of the jointprobability in Eq. (2.2) with the general hain rule in Eq. (2.7). An order-independent de�nition ofthe basi set of onditional independenies is, however, an arguably more elegant haraterizationof onditional independene in a graph, and it will take enter stage in our more formal treatmentof onditional independene and Markov properties in Chapter 16.2.1.2 Conditional independene and the Bayes ball algorithmThe algorithm that we desribe is alled the Bayes ball algorithm, and it has the olorful inter-pretation of a ball bouning around a graph. In essene it is a \reahability" algorithm, under apartiular de�nition of \separation."Our approah will be to �rst disuss the onditional independene properties of three anonial,three-node graphs. We then embed these properties in a protool for the bouning ball; these arethe loal rules for a graph-searh algorithm.Two �nal remarks before we desribe the algorithm. In our earlier disussion in Setion 2.1.1,
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X Y Z X Y Z

(a) (b)Figure 2.4: (a) The missing edge in this graph orresponds to the onditional independene state-ment X ?? Z jY . As suggested in (b), onditioning on Y has the graphial interpretation of blokingthe path between X and Z.and also in the urrent setion, we presented onditional independene as being subservient to thebasi de�nition in Eq. (2.2) of the joint probability. That is, we justi�ed an assertion of onditionalindependene by fatorizing Eq. (2.2) or one of its marginals. This is not the only point of viewthat we an take, however. Indeed it turns out that this relationship an be reversed, with Eq. (2.2)being derived from a haraterization of onditional independene, and we will also introdue thispoint of view in this setion. By the end of the urrent setion we hope to have lari�ed what ismeant by a \haraterization of onditional independene."On a related note, let us reall a remark that was made earlier, whih is that to eah graph weassoiate a family of joint probability distributions. In terms of the de�nition of joint probability inEq. (2.2), this family arises as we range over di�erent hoies of the numerial values of the loalonditional probabilities p(xi jx�i). Our work in the urrent setion an be viewed as providing analternative, more qualitative, haraterization of a family of probability distributions assoiated toa given graph. In partiular we an view the onditional independene statements generated by theBayes ball algorithm as generating a list of onstraints on probability distributions. Those jointprobabilities that meet all of the onstraints in this list are in the family, and those that fail to meetone or more onstraints are out. It is then an interesting question as to the relationship betweenthis haraterization of a family of probability distributions in terms of onditional independeneand the more numerial haraterization of a family in terms of loal onditional probabilities. Thisis the topi of Setion 2.1.3.Three anonial graphsAs we disussed in Setion 2.1.1, the missing edges in a direted graphial model an be interpretedin terms of onditional independene. In this setion, we esh out this interpretation for threesimple graphs.Consider �rst the graph shown in Figure 2.4, in whih X, Y , and Z are onneted in a hain.There is a missing edge between X and Z, and we interpret this missing edge to mean that X andZ are onditionally independent given Y ; thus:X ?? Z jY: (2.22)Moreover, we assert that there are no other onditional independenies assoiated with this graph.



2.1. DIRECTED GRAPHS AND JOINT PROBABILITIES 13Let us justify the �rst assertion, showing that X ?? Z jY an be derived from the assumed formof the joint distribution for direted models Eq. (2.2). We have:p(x; y; z) = p(x)p(y jx)p(z j y); (2.23)whih implies: p(z jx; y) = p(x; y; z)p(x; y) (2.24)= p(x)p(y jx)p(z j y)p(x)p(y jx) (2.25)= p(z j y); (2.26)whih establishes the independene.The seond assertion needs some explanation. What do we mean when we say that \there are noother onditional independenies assoiated with this graph"? It is important to understand thatthis does not mean that no further onditional independenies an arise in any of the distributionsin the family assoiated with this graph (that is, distributions that have the fatorized form inEq. (2.23)). There are ertainly some distributions whih exhibit additional independenies. Forexample, we are free to hoose any loal onditional probability p(y jx); suppose that we hoose adistribution in whih the probability of y happens to be the same no matter the value of x. Wean readily verify that with this partiular hoie of p(y jx), we obtain X ?? Y .The key point, then, is that Figure 2.4 does not assert that X and Y are neessarily depen-dent (i.e., not independent). That is, edges that are present in a graph do not neessarily implydependene (whereas edges that are missing do neessarily imply independene). But the \lakof independene" does have a spei� interpretation: the general theory that we present in Chap-ter 16 will imply that if a statement of independene is not made, then there exists at least onedistribution for whih that independene relation does not hold. For example, it is easy to �nddistributions that fatorize as in Eq. (2.23) and in whih X is not independent of Y .In essene, the issue omes down to a di�erene between universally quanti�ed statementsand existentially quanti�ed statements, with respet to the family of distributions assoiated witha given graph. Asserted onditional independenies always hold for these distributions. Non-asserted onditional independenies sometimes fail to hold for the distributions assoiated with agiven graph, but sometimes they do hold. This of ourse has important onsequenes for algorithmdesign. In partiular, if we build an algorithm that is based on onditional independenies, thealgorithm will be orret for all of the distributions assoiated with the graph. An algorithm basedon the absene of onditional independenies will sometimes be orret, sometimes not.For an intuitive interpretation of the graph in Figure 2.4, letX be the \past," Y be the \present,"and Z be the \future." Thus our onditional independene statement X ?? Z jY translates into thestatement that the past is independent of the future given the present, and we an interpret thegraph as a simple lassial Markov hain.Our seond anonial graph is shown in Figure 2.5. We assoiate to this graph the onditionalindependene statement: X ?? Z jY; (2.27)
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(a)

X

Y

Z X

Y

Z

(b)Figure 2.5: (a) The missing edge in this graph orresponds to the onditional independene state-ment X ?? Z jY . As suggested in (b), onditioning on Y has the graphial interpretation of blokingthe path between X and Z.and one again we assert that no other onditional independenies assoiated with this graph.A justi�ation of the onditional independene statement follows from the fatorization rule.Thus: p(x; y; z) = p(y)p(x j y)p(z j y) (2.28)implies: p(x; z j y) = p(y)p(x j y)p(z j y)p(y) (2.29)= p(x j y)p(z j y); (2.30)whih means that X and Z are independent given Y .An intuitive interpretation for this graph an be given in terms of a \hidden variable" senario.Let X be the variable \shoe size," and let Z be the variable \amount of gray hair." In the generalpopulation, these variables are strongly dependent, beause hildren tend to have small feet and nogray hair. But if we let Y be \hronologial age," then we might be willing to assert that X ?? Z jY ;that is, given the age of a person, there is no further relationship between the size of their feetand the amount of gray hair that they have. The hidden variable Y \explains" all of the observeddependene between X and Z.Note one again we are making no assertions of dependene based on Figure 2.5. In partiular,we do not neessarily assume that X and Z are dependent beause they both \depend" on thevariable Y . (But we an assert that there are at least some distributions in whih suh dependeniesare to be found).Finally, the most interesting anonial graph is that shown in Figure 2.6. Here the onditionalindependene statement that we assoiate with the graph is atually a statement of marginalindependene: X ?? Z; (2.31)
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(a) (b)

X
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X Z

Figure 2.6: (a) The missing edge in this graph orresponds to the marginal independene statementX ?? Z. As shown in (b), this is a statement about the subgraph de�ned onX and Z. Note moreoverthat onditioning on Y does not render X and Z independent, as would be expeted from a naiveharaterization of onditional independene in terms of graph separation.whih we leave to the reader to verify in terms of the form of the joint probability. One again, weassert that no other onditional independenies hold. In partiular, note that we do not assert anyonditional independene involving all three of the variables.The fat that we do not assert that X is independent of Z given Y in Figure 2.6 is an importantfat that is worthy of some disussion. Based on our earlier disussion, we should expet to beable to �nd senarios in whih a variable X is independent of another variable Z, given no otherinformation, but one a third variable Y is observed these variables beome dependent. Indeed,suh a senario is provided by a \multiple, ompeting explanation" interpretation of Figure 2.6.Suppose that Bob is waiting for Alie for their noontime lunh date, and let flate = \yes"gbe the event that Alie does not arrive on time. One explanation of this event is that Alie hasbeen abduted by aliens, whih we enode as faliens = \yes"g (see Figure 2.7). Bob uses Bayes'theorem to alulate the probability P (aliens = \yes" j late = \yes") and is dismayed to �nd thatit is larger than the base rate P (aliens = \yes"). Alie has perhaps been abduted by aliens.Now let fwath = \no"g denote the event that Bob forgot to set his wath to reet daylightsavings time. Bob now alulates P (aliens = \yes" j late = \yes";wath = \no") and is relievedto �nd that the probability of faliens = \yes"g has gone down again. The key point is thatP (aliens = \yes" j late = \yes") 6= P (aliens = \yes" j late = \yes";wath = \no"), and thusaliens is not independent of wath given late.On the other hand, it is reasonable to assume that aliens is marginally independent of wath;that is, Bob's wath-setting behavior and Alie's experienes with aliens are presumably unrelatedand we would evaluate their probabilities independently, outside of the ontext of the missed lunhdate.This kind of senario is known as \explaining-away" and it is ommonplae in real-life situations.Moreover, there are other suh senarios (e.g., those involving multiple, synergisti explanations)
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aliens

late

watch

Figure 2.7: A graph representing the fat that Alie is late for lunh with Bob, with two possibleexplanations|that she has been abduted by aliens and that Bob has forgotten to set his wathto reet daylight savings time.in whih variables that are marginally independent beome dependent when a third variable isobserved. We learly do not want to assume in general that X is independent of Z given Y inFigure 2.6.Graph separationWe would like to forge a general link between graph separation and assertions of onditional inde-pendene. Doing so would allow us to use a graph-searh algorithm to answer queries regardingonditional independene.Happily, the graphs in Figure 2.4 and Figure 2.5 exhibit situations in whih naive graph sepa-ration orresponds diretly to onditional independene. Thus, as shown in Figure 2.4(b), shadingthe Y node bloks the path from X to Z, and this an be interpreted in terms of the onditionalindependene of X and Z given Y . Similarly, in Figure 2.5(b), the shaded Y node bloks the pathfrom X to Z, and this an be interpreted in terms of the onditional independene of X and Zgiven Y .On the other hand, the graph in Figure 2.6 involves a ase in whih naive graph separationand onditional independene are opposed. It is when the node Y is unshaded that X and Z areindependent; when Y is shaded they beome dependent. If we are going to use graph-theoretiideas to answer queries about onditional independene, we need to pay partiular attention to thisase.The solution is straightforward. Rather than relying on \naive" separation, we de�ne a newnotion of separation that is more appropriate to our purposes. This notion is known as d-separation,for \direted separation." We provide a formal disussion of d-separation in Chapter 16; in theurrent hapter we provide a simple operational de�nition of d-separation in terms of the Bayesball algorithm.
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Figure 2.8: We develop a set of rules to speify what happens when a ball arrives from a node Xat a node Y , en route to a node Z.The Bayes ball algorithmThe problem that we wish to solve is to deide whether a given onditional independene statement,XA ?? XB jXC , is true for a direted graph G. Formally this means that the statement holds forevery distribution that fators aording to G, but let us not worry about formal issues for now,and let our intuition|aided by the three anonial graphs that we have already studied|help usto de�ne an algorithm to deide the question.The algorithm is a \reahability" algorithm: we shade the nodes XC , plae a ball at eah ofthe nodes XA, let the balls boune around the graph aording to a set of rules, and ask whetherany of the balls reah one of the nodes in XB . If none of the balls reah XB , then we assert thatXA ?? XB jXC is true. If a ball reahes XB then we assert that XA ?? XB jXC is not true.The basi problem is to speify what happens when a ball arrives at a node Y from a node X,en route to a node Z (see Figure 2.8). Note that we fous on a partiular andidate destinationnode Z, ignoring the other neighbors that Y may have. (We will be trying all possible neighbors,but we fous on one at a time). Note also that the balls are allowed to travel in either diretionalong the edges of the graph.We speify these rules by making referene to our three anonial graphs. In partiular, referringto Figure 2.4, suppose that ball arrives at Y from X along an arrow oriented from X to Y , and weare onsidering whether to allow the ball to proeed to Z along an arrow oriented from Y to Z.Clearly, if the node Y is shaded, we do not want the ball to be able to reah Z, beause X ?? Z jYfor this graph. Thus we require the ball to be \bloked" in this ase. Similarly, if a ball arrivesat Y from Z, we do not allow the ball to proeed to X; again the ball is bloked. We summarizethese rules with the diagram in Figure 2.9(a).
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X Y Z X Y Z

(a) (b)Figure 2.9: The rules for the ase of one inoming arrow and one outgoing arrow. (a) When themiddle node is shaded, the ball is bloked. (b) When the middle node is unshaded, the ball passesthrough.On the other hand, if Y is not shaded, then we want to allow the ball to reah Z from X(and similarly X from Z), beause we do not want to assert onditional independene in this ase.Thus we have the diagram in Figure 2.9(b), whih shows the ball \passing through" when Y is notshaded.Similar onsiderations apply to the graph in Figure 2.5, where the arrows are oriented outwardfrom the node Y . One again, if Y is shaded we do not want the ball to pass between X and Z,thus we require it to be bloked at Y . On the other hand, if Y is unshaded we allow the ball topass through. These rules are summarized in Figure 2.10.Finally, we onsider the graph in Figure 2.6 in whih both of the arrows are oriented towardsnode Y (this is often referred to as a \v-struture"). Here we simply reverse the rules. Thus, if Yis not shaded we require the ball to be bloked, reeting the fat that X and Z are marginallyindependent. On the other hand, if Y is shaded we allow the ball to pass through, reeting thefat that we do not assert that X and Z are onditionally independent given Y . The rules for thisgraph are given in Figure 2.11.We also intend for these rules to apply to the ase in whih the soure node and the destinationnode (X and Z, respetively) are the same. That is, when a ball arrives at a node, we onsidereah possible outgoing edge in turn, inluding the edge the ball arrives on.Consider �rst the ase in whih the ball arrives along an edge that is oriented from X to Y . Inthis ase, the situation is e�etively one in whih a ball arrives on the head of an arrow and departson the head of an arrow. This situation is overed by Figure 2.11. We see that the ball should bebloked if the node is unshaded and should \pass through" if the node is shaded, a result that issummarized in Figure 2.12. Note that the ation of \passing through" is better desribed in thisase as \bouning bak."The remaining situation is the one in whih the ball arrives along an edge that is oriented fromY to X. The ball arrives on the tail of an arrow and departs on the tail of an arrow, a situationwhih is overed by Figure 2.10. We see that the ball should be bloked if the node is shaded andshould boune bak if the node is unshaded, a result that is summarized in Figure 2.13.Let us onsider some examples. Figure 2.14 shows a hain-strutured graphial model (a Markovhain) on a set of nodes fX1;X2; : : : ;Xng. The basi onditional independenies for this graph (f.
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(b)Figure 2.10: The rules for the ase of two outgoing arrows. (a) When the middle node is shaded,the ball is bloked. (b) When the middle node is unshaded, the ball passes through.
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Figure 2.11: The rules for the ase of two outgoing arrows. (a) When the middle node is shaded,the ball passes through. (b) When the middle node is unshaded, the ball is bloked.
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(a) (b)

X Y X Y

Figure 2.12: The rules for this ase follow from the rules in Figure 2.11. (a) When the ball arrivesat an unshaded node, the ball is bloked. (b) When the ball arrives at a shaded node, the ball\passes through," whih e�etively means that it bounes bak.

(a) (b)

X Y X Y

Figure 2.13: The rules for this ase follow from the rules in Figure 2.10. (a) When the ball arrivesat an unshaded node, the ball \passes through," whih e�etively means that it bounes bak. (b)When the ball arrives at a shaded node, the ball is bloked.
1X 2X 3X X 4 X 5

Figure 2.14: The separation of X3 from X1, given its parent, X2, is a basi independene statementfor this graph. But onditioning on X3 also separates any subset of X1;X2 from any subset ofX4;X5, and all of these separations also orrespond to onditional independenies.
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Figure 2.15: A ball arriving at X2 from X1 is bloked from ontinuing on to X4. Also, a ballarriving at X6 from X5 is bloked from ontinuing on to X2.Eq. (2.8)) are the onditional independenies:Xi+1 ?? fX1;X2; : : : ;Xi�1g jXi: (2.32)There are, however, many other onditional independenies that are implied by this basi set, suhas: X1 ?? X5 jX4; X1 ?? X5 jX2; X1 ?? X5 j fX2;X4g; (2.33)eah of whih an be established from algebrai manipulations starting from the de�nition of thejoint probability. Indeed, in general we an obtain the onditional independene of any subset of\future" nodes from any subset of \past" nodes given any subset of nodes that separates thesesubsets. This is learly the set of onditional independene statements piked out by the Bayes ballalgorithm; the ball is bloked when it arrives at X3 from either the left or the right.Consider the graph in Figure 2.1 and onsider the onditional independene X4 ?? fX1;X3g jX2whih we demonstrated to hold for this graph (this is one of the basi set of onditional indepen-denies for this graph; reall Eqs. 2.9 through eq:example-set-of-basi-CI). Using the Bayes ballapproah, let us onsider whether it is possible for a ball to arrive at node X4 from either node X1or node X3, given that X2 is shaded (see Figure 2.15). To arrive at X4, the ball must pass throughX2. One possibility is to arrive at X2 from X1, but the path through to X4 is bloked beause ofFigure 2.9(a). The other possibility is to arrive at X2 via X6. However, any ball arriving at X6must do so via X5, and suh a ball is bloked at X6 beause of Figure 2.11(b).Note that balls an also boune bak at X2 and X6, but this provides no help with respet toarriving at X4.We laimed in Setion 2.1.1 that X1 ?? X6 j fX2;X3g, a onditional independene that is not inthe basi set. Consider a ball starting at X1 and traveling to X3 (see Figure 2.16). Suh a ballannot pass through to X5 beause of Figure 2.9(a). Similarly, a ball annot pass from X1 throughX2 (to either X4 or X6) beause of Figure 2.9(a).
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Figure 2.16: A ball annot pass through X2 to X6 nor through X3.
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Figure 2.17: A ball an pass from X2 through X6 to X5, and thene to X3.We also laimed in Setion 2.1.1 that it is not the ase that X2 ?? X3 j fX1;X6g. To establish thislaim we note that a ball an pass through X2 to X6 beause of Figure 2.9(b), and (see Figure 2.17)an then pass from through X6 to X5, on the basis of Figure 2.11(a). The ball then passes throughX5 and arrives at X3. Intuitively (and loosely), the observation of X6 implies the possibility of an\explaining-away" dependeny between X2 and X5. Clearly X5 and X3 are dependent, and thusX2 and X3 are dependent.Finally, onsider again the senario with Alie and Bob, and suppose that Bob does not atuallyobserve that Alie fails to show at the hour that he expets her. Suppose instead that Bob is animportant exeutive and there is a seurity guard for Bob's building who reports to Bob whether aguest has arrived or not. We augment the model to inlude a node report for the seurity guard'sreport and, as shown in Figure 2.18, we hang this node o� of the node late. Now observation ofreport is essentially as good as observation of late, partiularly if we believe that the seurityguard is reliable. That is, we should still have aliens ?? wath, and moreover we should not assert
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aliens

late

watch

reportFigure 2.18: An extended graphial model for the Bob-Alie senario, inluding a node report forthe seurity guard's report.aliens ?? wath j report. That is, if the seurity guard reports that Alie has not arrived, thenBob worries about aliens and subsequently has his worries alleviated when he realizes that he hasforgotten about daylight savings time.This pattern is what the Bayes ball algorithm delivers. Consider �rst the marginal independenealiens ?? wath. As an be veri�ed from Figure 2.19(a), a ball that starts at aliens is bloked frompassing though late diretly to wath. Moreover, although a ball an pass through late to report,suh a ball dies at report. Thus the ball annot arrive at wath.Consider now the situation when report is observed (Figure 2.19(b)). As before a ball thatstarts at aliens is bloked from passing though late diretly to wath; however, a ball an passthrough late to report. At this point Figure 2.12(b) implies implies that the ball bounes bak atreport. The ball an then pass through late on the path from report to wath. Thus we annotonlude independene of aliens and wath in the ase that report is observed.Some further thought will show that it suÆes for any desendant of late to be observed inorder to enable the explaining-away mehanism and render aliens and wath dependent.RemarksWe hope that the reader agrees that the Bayes ball algorithm is a simple, intuitively-appealingalgorithm for answering onditional independene queries. Of ourse, we have not yet provided afully-spei�ed algorithm, beause there are many implementational details to work out, inludinghow to represent multiple balls when XA and XB are not singleton sets, how to make sure thatthe algorithm onsiders all possible paths in an eÆient way, how to make sure that the algorithmdoesn't loop, et. But these details are just that|details|and with a modium of e�ort the reader
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Figure 2.19: (a) A ball annot pass from aliens to wath when no observations are made on lateor report. (b) A ball an pass from aliens to wath when report is observed.an work out suh an implementation. Our main interest in the Bayes ball algorithm is to providea handy tool for quik evaluation of onditional independene queries, and to provide onretesupport for the more formal disussion of onditional independene that we undertake in the nextsetion.2.1.3 Charaterization of direted graphial modelsA key idea that has emerged in this hapter is that a graphial model is assoiated with a familyof probability distributions. Moreover, as we now disuss, this family an be haraterized in twoequivalent ways.Let us de�ne two families and then show that they are equivalent. Atually we defer the proofof equivalene until Chapter 16, but we state the theorem here and disuss its onsequenes.The �rst family is de�ned via the de�nition of joint probability for direted graphs, whih werepeat here for onveniene. Thus for a direted graph G, we have:p(x1; x2; : : : ; xn) , nYi=1 p(xi jx�i): (2.34)Let us now onsider ranging over all possible numerial values for the loal onditional probabilitiesfp(xi jx�i)g, imposing only the restrition that these funtions are nonnegative and normalized.For disrete variables this would involve ranging over all possible real-valued tables on nodes xiand their parents. While in pratie, we often want to hoose simpli�ed parameterizations insteadof these tables, for the general theory we must range over all possible tables.
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Figure 2.20: The list in (b) shows all of the onditional independenies that hold for the graph in(a).For eah hoie of numerial values for the loal onditional probabilities we obtain a parti-ular probability distribution p(x1; : : : ; xn). Ranging over all suh hoies we obtain a family ofdistributions that we refer to as D1.Let us now onsider an alternative way to generate a family of probability distributions assoi-ated with a graph G. In this approah we will make no use of the numerial parameterization ofthe joint probability in Eq. (2.34)|this approah will be more \qualitative."Given a graph G we an imagine making a list of all of the onditional independene statementsthat haraterize the graph. To do this, imagine running the Bayes ball algorithm for all triples ofsubsets of nodes in the graph. For any given triple XA, XB and XC , the Bayes ball algorithm tellsus whether or not XA ?? XB jXC should be inluded in the list assoiated with the graph.For example, Figure 2.20 shows a graph, and all of its assoiated onditional independenestatements. In general suh lists an be signi�antly longer than the list in this example, but theyare always �nite.Now onsider all possible joint probability distributions p(x1; : : : ; xn), where we make no restri-tions at all. Thus, for disrete variables, we onsider all possible n-dimensional tables. For eahsuh distribution, imagine testing the distribution against the list of onditional independeniesassoiated with the graph G. Thus, for eah onditional independene statement in the list, we testwhether the distribution fatorizes as required. If it does, move to the next statement. If it doesnot, throw out this distribution and try a new distribution. If a distribution passes all of the testsin the list, we inlude that distribution in a family that we denote as D2.In Chapter 16, we state and prove a theorem that shows that the two families D1 and D2 are thesame family. This theorem, and an analogous theorem for undireted graphs, provide a strong andimportant link between graph theory and probability theory and are at the ore of the graphial



26 CHAPTER 2. CONDITIONAL INDEPENDENCE AND FACTORIZATIONmodel formalism. They show that the haraterizations of probability distributions via numerialparameterization and onditional independene statements are one and the same, and allow us touse these haraterizations interhangeably in analyzing models and de�ning algorithms.2.2 Undireted graphial modelsThe world of graphial models divides into two major lasses|those based on direted graphsand those based on undireted graphs.3 In this setion we disuss undireted graphial models,also known as Markov random �elds, and arry out a development that parallels our disussionof the direted ase. Thus we will present a fatorized parameterization for undireted graphs,a onditional independene semantis, and an algorithm for answering onditional independenequeries. There are many similarities to the direted ase|and muh of our earlier work on diretedgraphs arries over|but there are interesting and important di�erenes as well.An undireted graphial model is a graph G(V; E), where V is a set of nodes that are in one-to-one orrespondene with a set of random variables, and where E is a set of undireted edges.The random variables an be salar-valued or vetor-valued, disrete or ontinuous. Thus we willbe onerned with graphial representations of a joint probability distribution, p(x1; x2; : : : ; xn)|amass funtion in the disrete ase and a density funtion in the ontinuous ase.2.2.1 Conditional independeneAs we saw in Setion 2.1.3, there are two equivalent haraterizations of the lass of joint probabilitydistributions assoiated with a direted graph. Our presentation of direted graphial models began(in Setion 2.1) with the fatorized parameterization and subsequently motivated the onditionalindependene haraterization. We ould, however, have turned this disussion around and startedwith a set of onditional independene axioms, subsequently deriving the parameterization. In thease of undireted graphs, indeed, this latter approah is the one that we will take. For undiretedgraphs, the onditional independene semantis is the more intuitive and straightforward of thetwo (equivalent) haraterizations.To speify the onditional independene properties of a graph, we must be able to say whetherXA ?? XC jXB is true for the graph, for arbitrary index subsets A, B, and C. For direted graphswe de�ned the onditional independene properties operationally, via the Bayes ball algorithm (weprovide a orresponding delarative de�nition in Chapter 16). For undireted graphs we go straightto the delarative de�nition.We say that XA is independent of XC given XB if the set of nodes XB separates the nodesXA from the nodes XC , where by \separation" we mean naive graph-theoreti separation (seeFigure 2.21). Thus, if every path from a node in XA to a node in XC inludes at least one nodein XB , then we assert that XA ?? XC jXB holds; otherwise we assert that XA ?? XC jXB does nothold.3There is also a generalization known as hain graphs that subsumes both lasses. We will disuss hain graphsin Chapter ??.
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XA

XB

XCFigure 2.21: The set XB separates XA from XC . All paths from XA to XC pass through XB .As before, the meaning of the statement \XA ?? XC jXB holds for a graph G" is that everymember of the family of probability distributions assoiated with G exhibits that onditional in-dependene. On the other hand, the statement \XA ?? XC jXB does not hold for a graph G"means|in its strong form|that some distributions in the family assoiated with G do not exhibitthat onditional independene.Given this de�nition, it is straightforward to develop an algorithm for answering onditionalindependene queries for undireted graphs. We simply remove the nodes XB from the graph andask whether there are any paths from XA to XC . This is a \reahability" problem in graph theory,for whih standard searh algorithms provide a solution.Comparative semantisIs it possible to redue undireted models to direted models, or vie versa? To see that this is notpossible in general, onsider Figure 2.22.In Figure 2.22(a) we have an undireted model that is haraterized by the onditional indepen-dene statements X ?? Y j fW;Zg andW ?? Z j fX;Y g. If we try to represent this model in a diretedgraph on the same four nodes, we �nd that we must have at least one node in whih the arrowsare inward-pointing (a \v-struture"). (Reall that our graphs are ayli). Suppose without lossof generality that this node is Z, and that this is the only v-struture. By the onditional indepen-dene semantis of direted graphs, we have X ?? Y jW , and we do not have X ?? Y j fW;Zg. We areunable to represent both onditional independene statements, X ?? Y j fW;Zg andW ?? Z j fX;Y g,in the direted formalism.On the other hand, in Figure 2.22(b) we have a direted graph haraterized by the singleton
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(a) (b)Figure 2.22: (a) An undireted graph whose onditional independene semantis annot be apturedby a direted graph on the same nodes. (b) A direted graph whose onditional independenesemantis annot be aptured by an undireted graph on the same nodes.independene statement X ?? Y . No undireted graph on three nodes is haraterized by thissingleton set. A missing edge in an undireted graph only between X and Y aptures X ?? Y jZ,not X ?? Y . An additional missing edge between X and Z aptures X ?? Y , but implies X ?? Z.We will show in Chapter 16 that there are some families of probability distributions that an berepresented with either direted or undireted graphs. There is no good reason to restrit ourselvesto these families, however. In general, direted models and undireted models are di�erent modelingtools, and have di�erent strengths and weaknesses. The two together provide modeling powerbeyond that whih ould be provided by either alone.2.2.2 ParameterizationAs in the ase of direted graphs, we would like to obtain a \loal" parameterization for undiretedgraphial models. For direted graphs the parameterization was based on loal onditional prob-abilities, where \loal" had the interpretation of a set fi; �ig onsisting of a node and its parents.The de�nition of the joint probability as a produt of suh loal probabilities was motivated viathe hain rule of probability theory.In the undireted ase it is rather more diÆult to utilize onditional probabilities to representthe joint. One possibility would be to assoiate to eah node the onditional probability of thenode given its neighbors. This approah falls prey to a major onsisteny problem, however|it ishard to ensure that the onditional probabilities at di�erent nodes are onsistent with eah otherand thus with a single joint distribution. We are not able to hoose these funtions independentlyand arbitrarily, and this poses problems both in theory and in pratie.A better approah turns out to be to abandon onditional probabilities altogether. By so doingwe will lose the ability to give a loal probabilisti interpretation to the funtions used to representthe joint probability, but we will retain the ability to hoose these funtions independently and



2.2. UNDIRECTED GRAPHICAL MODELS 29arbitrarily, and we will retain the all-important representation of the joint as a produt of loalfuntions.A key problem is to deide the domain of the loal funtions; in essene, to deide the meaningof \loal" for undireted graphs. It is here that the disussion of onditional independene in theprevious setion is helpful. In partiular, onsider a pair of nodes Xi and Xj that are not linked inthe graph. The onditional independene semantis imply that these two nodes are onditionallyindependent given all of the other nodes in the graph (beause upon removing this latter set therean be no paths from Xi to Xj). Thus it must be possible to obtain a fatorization of the jointprobability that plaes xi and xj in di�erent fators. This implies that we an have no loalfuntion that depends on both xi and xj in our representation of the joint. Suh a loal funtion,say  (xi; xj; xk), would not fatorize with respet to xi and xj in general|reall that we areassuming that the loal funtions an be hosen arbitrarily.Reall that a lique of a graph is a fully-onneted subset of nodes. Our argument thus far hassuggested that the loal funtions should not be de�ned on domains of nodes that extend beyondthe boundaries of liques. That is, if Xi and Xj are not diretly onneted, they do not appeartogether in any lique, and orrespondingly there should be no loal funtion that refers to bothnodes. We now onsider the ip side of the oin. Should we allow arbitrary funtions that arede�ned on all of the liques? Indeed, an interpretation of the edges that are present in the graph interms of \dependene" suggests that we should. We have not de�ned dependene, but heuristially,dependene is the \absene of independene" in one or more of the distributions assoiated with agraph. If Xi and Xj are linked, and thus appear together in a lique, we an ahieve dependenebetween them by de�ning a funtion on that lique.The maximal liques of a graph are the liques that annot be extended to inlude additionalnodes without losing the property of being fully onneted. Given that all liques are subsets of oneor more maximal liques, we an restrit ourselves to maximal liques without loss of generality.Thus, if X1, X2, and X3 form a maximal lique, then an arbitrary funtion  (x1; x2; x3) alreadyaptures all possible dependenies on these three nodes; we gain no generality by also de�ningfuntions on sub-liques suh as fX1;X2g or fX2;X3g.4In summary, our arguments suggest that the meaning of \loal" for undireted graphs shouldbe \maximal lique." More preisely, the onditional independene properties of undireted graphsimply a representation of the joint probability as a produt of loal funtions de�ned on the max-imal liques of the graph. This argument is in fat orret, and we will establish it rigorously inChapter 16. Let us proeed to make the de�nition and explore some of its onsequenes.Let C be a set of indies of a maximal lique in an undireted graph G, and let C be the setof all suh C. A potential funtion,  XC (xC), is a funtion on the possible realizations xC of themaximal lique XC .Potential funtions are assumed to be nonnegative, real-valued funtions, but are otherwisearbitrary. This arbitrariness is onvenient, indeed neessary, for our general theory to go through,4While there is no need to onsider non-maximal liques in developing the general theory relating onditionalindependene and fatorization|our topi in this setion|in pratie it is often onvenient to work with potentialson non-maximal liques. This issue will return in Setion 2.3 and in later hapters. Let us de�ne joint probabilitiesin terms of maximal liques for now, but let us be prepared to relax this de�nition later.
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Figure 2.23: The maximal liques in this graph in are fX1;X2g, fX1;X3g, fX2;X4g, fX3;X5g,and fX2;X5;X6g. Letting all nodes be binary, we represent a joint distribution on the graph viathe potential tables that are displayed.but it also presents a problem. There is no reason for a produt of arbitrary funtions to benormalized and thus de�ne a joint probability distribution. This is a bullet whih we simply haveto bite if we are to ahieve the desired properties of arbitrary, independent potentials and a produtrepresentation for the joint.Thus we de�ne: p(x) , 1Z YC2C  XC (xC); (2.35)where Z is the normalization fator: Z ,Xx YC2C  XC (xC); (2.36)obtained by summing the produt in Eq. (2.35) over all assignments of values to the nodes X.An example is shown in Figure 2.23. The nodes in this example are assumed disrete, andthus tables an be used to represent the potential funtions. An overall on�guration x piks outsubvetors xC , whih determine partiular ells in eah of the potential tables. Taking the produtof the numbers in these ells yields an unnormalized representation of the joint probability p(x).
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X Y ZFigure 2.24: An undireted representation of a three-node Markov hain. The onditional indepen-dene assoiated with this graph is X ?? Z jY .The normalization fator Z is obtained by summing over all on�gurations x. There are anexponential number of suh on�gurations and it is unrealisti to try to perform suh a sum bynaively enumerating all of the summands. Note, however, that the expression being summed overis a fatored expression, in whih eah fator refers to a loal set of variables, and thus we anexploit the distributive law. This is an issue that is best disussed in the ontext of the moregeneral disussion of probabilisti inferene, and we return to it in Chapter 3.Note, however, that we do not neessarily have to alulate Z. In partiular, reall that aonditional probability is a ratio of two marginal probabilities. The fator Z appears in both ofthe marginal probabilities, and anels when we take the ratio. Thus we alulate onditionals bysumming aross unnormalized probabilities|the numerator in Eq. (2.35)|and taking the ratio ofthese sums.The interpretation of potential funtionsAlthough loal onditional probabilities do not provide a satisfatory approah to the parameteri-zation of undireted models, it might be thought that marginal probabilities ould be used instead.Thus, why not replae the potential funtions  XC (xC) in Eq. (2.35) with marginal probabilitiesp(xC)?An example will readily show that this approah is infeasible. Consider the model shown inFigure 2.24. The onditional independene that is assoiated with this graph is X ?? Z jY . Thisindependene statement implies (by de�nition) that the joint must fatorize as:p(x; y; z) = p(y)p(x j y)p(z j y): (2.37)The liques in Figure 2.24 are fX;Y g and fY;Zg. We an multiply the �rst two fators in Eq. (2.37)together to obtain a potential funtion p(x; y) on the �rst lique, leaving p(z j y) as the potentialfuntion on the seond lique. Alternatively, we an multiply p(z j y) by p(y) to yield a potentialp(y; z) on the seond lique, leaving p(x j y) as the potential on the �rst lique. Thus we an obtaina fatorization in whih one of the potentials is a marginal probability, and the other is a onditionalprobability. But we are unable to obtain a representation in whih both potentials are marginalprobabilities. That is: p(x; y; z) 6= p(x; y)p(y; z): (2.38)In fat, it is not hard to see that p(x; y; z) = p(x; y)p(y; z) implies p(y) = 0 or p(y) = 1, and thatthis representation is thus a rather limited and unnatural one.
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Figure 2.25: (a) A hain of binary random variables Xi, where Xi 2 f�1; 1g. (b) A set of potentialtables that enode a preferene for neighboring variables to have the same values.In general, potential funtions are neither onditional probabilities nor marginal probabilities,and in this sense they do not have a loal probabilisti interpretation. On the other hand, po-tential funtions do often have a natural interpretation in terms of pre-probabilisti notions suhas \agreement," \onstraint," or \energy," and suh interpretations are often useful in hoosingan undireted model to represent a real-life domain. The basi idea is that a potential funtionfavors ertain loal on�gurations of variables by assigning them a larger value. The global on-�gurations that have high probability are, roughly, those that satisfy as many of the favored loalon�gurations as possible.Consider a set of binary random variables, Xi 2 f�1; 1g; i = 0; : : : ; n, arrayed on a one-dimensional lattie as shown in Figure 2.25(a). In physis, suh latties are used to model magnetibehavior of rystals, where the binary variables have an interpretation as magneti \spins." All elsebeing equal, if a given spinXi is \up"; that is, if Xi = 1, then its neighborsXi�1 and Xi+1 are likelyto be \up" as well. We an easily enode this in a potential funtion, as shown in Figure 2.25(b).Thus, if two neighboring spins agree, that is, if Xi = 1 and Xi�1 = 1, or if Xi = �1 and Xi�1 = �1,we obtain a large value for the potential on the lique fXi�1;Xig. If the spins disagree we obtaina small value.The fat that potentials must be nonnegative an be inonvenient, and it is ommon to exploitthe fat that the exponential funtion, f(x) = exp(x), is a nonnegative funtion, to representpotentials in an unonstrained form. We let: XC (xC) = expf�HC(xC)g; (2.39)for a real-valued funtion HC(xC), where the negative sign is a standard onvention. Thus if we



2.2. UNDIRECTED GRAPHICAL MODELS 33range over arbitrary HC(xC), we an range over legal potentials.The exponential representation has another useful feature. In partiular, produts of exponen-tials behave niely, and from Eq. (2.35) we obtain:p(x) = 1Z YC2C expf�HC(xC)g (2.40)= 1Z expf�XC2CHC(xC)g (2.41)as an equivalent representation of the joint probability for undireted models. The sum in the latterexpression is generally referred to as the \energy":H(x) ,XC2CHC(xC) (2.42)and we have represented the joint probability of an undireted graphial model as a Boltzmanndistribution: p(x) = 1Z expf�H(x)g: (2.43)Without going too far astray into the origins of the Boltzmann representation in statistial physis,let us nonetheless note that the representation of a model in terms of energy, and in partiular therepresentation of the total energy as a sum over loal ontributions to the energy, is exeedinglyuseful. Many physial theories are spei�ed in terms of energy, and the Boltzmann distributionprovides a translation from energies into probabilities.Quite apart from any onnetion to physis, the undireted graphial model formalism is oftenquite useful in domains in whih global onstraints on probabilities are naturally deomposable intosets of loal onstraints, and the undireted representation is apt at apturing suh situations.2.2.3 Charaterization of undireted graphial modelsIn Setion 2.1.3 we disussed a theorem that shows that the two di�erent haraterizations of thefamily of probability distributions assoiated with a direted graphial model|one based on loalonditional probabilities and the other based on onditional independene assertions|were thesame. A formally idential theorem holds for undireted graphs.For a given undireted graph G, we de�ne a family of probability distributions, U1, by rangingover all possible hoies of positive potential funtions on the maximal liques of the graph.We de�ne a seond family of probability distributions, U2, via the onditional independeneassertions assoiated with G. Conretely, we make a list of all of the onditional independenestatements, XA ?? XB jXC , asserted by the graph, by assessing whether the subset of nodes XA isseparated from XB when the nodes XC are removed from the graph. A probability distribution isin U2 if it satis�es all suh onditional independene statements, otherwise it is not.In Chapter 16 we state and prove a theorem, the Hammersley-Cli�ord theorem, that showsthat U1 and U2 are idential. Thus the haraterization of probability distributions in terms ofpotentials on liques and onditional independene are equivalent. As in the direted ase, this isan important and profound link between probability theory and graph theory.



34 CHAPTER 2. CONDITIONAL INDEPENDENCE AND FACTORIZATION2.3 ParameterizationsWe have introdued two kinds of graphial model representations in this hapter|direted graph-ial models and undireted graphial models. In eah of these ases we have de�ned onditionalindependene semantis and orresponding parameterizations. Thus, in the direted ase, we have:p(x) , nYi=1 p(xi jx�i); (2.44)and in the undireted ase, we have: p(x) , 1Z YC2C  XC (xC): (2.45)By ranging over all possible onditional probabilities in Eq. (2.44) or all possible potential funtionsin Eq. (2.45) we obtain ertain families of probability distributions, in partiular exatly thosedistributions whih respet the onditional independene statements assoiated with a given graph.Conditional independene is an exeedingly useful onstraint to impose on a joint probabilitydistribution. In pratial settings onditional independene an sometimes be assessed by domainexperts, and in suh ases it provides a powerful way to embed qualitative knowledge about therelationships among random variables into a model. Moreover, as we will disuss in the followinghapter, the relationship between onditional independene and fatorization allows the develop-ment of powerful general inferene algorithms that use graph-theoreti ideas to ompute marginalprobabilities of interest. We often impose onditional independene as a rough, tentative assump-tion in a domain so as to be able to exploit the eÆient inferene algorithms and begin to learnsomething about the domain.On the other hand, onditional independene is by no means the only kind of onstraint thatone an impose on a probabilisti model. Another large lass of onstraints arise from assumptionsabout the algebrai struture of the onditional probabilities or potential funtions that de�ne amodel. In partiular, rather than ranging over all possible onditional probabilities or potentialfuntions, we may wish to range over a proper subset of these funtions, thus de�ning a propersubset of the family of probability distributions assoiated with a graph. Thus, in pratie we oftenwork with redued parameterizations that impose onstraints on probability distributions beyondthe strutural onstraints imposed by onditional independene.We will present many examples of redued parameterizations in later hapters. Let us brieyonsider two suh examples in the remainder of this setion to obtain a basi appreiation of someof the issues that arise.Direted graphial models require onditional probabilities, and if the number of parents ofa given node is large, then the spei�ation of the onditional probability an be problemati.Consider in partiular the graph shown in Figure 2.26(a), where all of the variables are assumedbinary (for simpliity), and where the number of parents of Y is assumed large. In partiular, ifY has 50 parents, then ranging over \all possible onditional probabilities" means speifying 250numbers, one probability for eah on�guration of the parents. Clearly suh a spei�ation annot
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1X 2X X 50

YFigure 2.26: An example in whih a node has many parents. In suh a graph, a general spei�-ation of the loal onditional probability distribution requires an impratially large number ofparameters.be stored on a omputer, and, equally problematially, it would be impossible to ollet enoughdata to be able to estimate these numbers with any degree of preision. We are fored to onsider\redued parameterizations." One suh parameterization, disussed in detail in Chapter 8, is thefollowing: p(Y = 1 jx) = f(�1x1 + �2x2 + � � �+ �mxm); (2.46)for a given funtion f(�) whose range is the interval (0; 1) (we will provide examples of suh funtionsin Chapter 8). Here, we need only speify the 50 numbers �i to speify a distribution.In general, we an onsider direted graphial models in whih eah node is parameterized asshown in Eq. (2.46). The family of probability distributions assoiated with the model as a wholeis that obtained by ranging over all possible values of �i in the de�ning onditional probabilities.This is a proper sub-family of the family of distributions assoiated with the graph.If pratial onsiderations often fore us to work with redued parameterizations, of what valueis the general de�nition of \the family of distributions assoiated with a graph"? As we will seein Chapter 4 and Chapter 17, given a graph, eÆient probabilisti inferene algorithms an bede�ned that operate on the graph. These algorithms are based solely on the graph struture andare orret for any distribution that respets the onditional independenies enoded by the graph.Thus suh algorithms are orret for any distribution in the family of distributions assoiated witha graph, inluding those in any proper sub-family assoiated with a redued parameterization.Similar issues arise in undireted models. Consider in partiular the graph shown in Fig-ure 2.27(a). From the point of view of independene, there is little to say|there are no indepen-dene assertions assoiated with this graph. Equivalently, the family of probability distributionsassoiated with the graph is the set of all possible probability distributions on the three variables,obtained by ranging over all possible potential funtions  (x1; x2; x3). Suppose, however, that weare interested in models in whih the potential funtion is de�ned algebraially as a produt of
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Figure 2.27: (a) An undireted graph whih makes no independene assertions. (b) An undiretedgraph whih asserts X3 ?? fX1;X2g.fators on smaller subsets of variables. Thus, we might let: (x1; x2; x3) = f(x1; x2)g(x3); (2.47)or let:  (x1; x2; x3) = r(x1; x2)s(x2; x3)t(x1; x3); (2.48)for given funtions f , g, r, s and t. Ranging over all possible hoies of these funtions, we obtainpotentials that are neessarily members of the family assoiated with the graph in Figure 2.27(a)|beause all suh potentials respet the (vauous) onditional independene requirement. The poten-tial in Eq. (2.47), however, also respets the (non-vauous) onditional independene requirementof the graph in Figure 2.27(b). We would normally use this latter graph if we deide (a priori) torestrit our parameterization to the form given in Eq. (2.47). On the other hand, the potentialgiven in Eq. (2.48) is problemati in this regard|there is no smaller graph that represents thislass of potentials. Any graph with a missing edge makes an independene assertion regarding oneor more pairs of variables, and  (x1; x2; x3) = r(x1; x2)s(x2; x3)t(x1; x3) does not respet suh anassertion, when we range over all funtions r, s and t.Thus we see that \fatorization" is a riher onept than \onditional independene." Thereare families of probability distributions that an be de�ned in terms of ertain fatorizations of thejoint probability that annot be aptured solely within the undireted or direted graphial modelformalism. From the point of view of designing inferene algorithms, this might not be viewed asa problem, beause an algorithm that is orret for the graph is orret for a distribution in anysub-family de�ned on the graph. However, by ignoring the algebrai struture of the potential, wemay be missing opportunities for simplifying the algebrai operations of inferene.In Chapter 4 we introdue fator graphs, a graphial representation of probability distributionsin whih suh redued parameterizations are made expliit. Fator graphs allow a more �ne-grainedrepresentation of probability distributions than is provided by either the direted or the undiretedgraphial formalism, and in partiular allow the fatorization of the potential in Eq. (2.48) to be



2.4. SUMMARY 37represented expliitly in the graph. While fator graphs provide nothing new in terms of rep-resenting and exploiting onditional independene relationships|the main theme of the urrenthapter|they do provide a way to represent and exploit algebrai relationships, an issue that willreturn in Chapter 4.2.4 SummaryIn this hapter we have presented some of the basi de�nitions and basi issues that arise whenone assoiates probability distributions with graphs. A key idea that we have emphasized is that agraphial model is a representation of a family of probability distributions. This family is hara-terized in one of two equivalent ways|either in terms of a numerial parameterization or in termsof a set of onditional independenies. Both of these haraterizations are important and useful,and it is the interplay between these haraterizations that gives the graphial models formalismmuh of its distintive avor.Direted graphs and undireted graphs have di�erent parameterizations and di�erent ondi-tional independene semantis, but the key onept of using graph theory to apture the notion ofa joint probability distribution being onstruted from a set of \loal" piees is the same in the twoases.We have also introdued simple algorithms that help make the problem of understanding on-ditional independene in graphial models more onrete. The reader should be able to utilizethe Bayes ball algorithm to read o� onditional independene statements from direted graphs.Similarly, for undireted graphs the reader should understand that naive graph separation en-odes onditional independene. Conditional independene assertions in undireted graphs an beassessed via a graph reahability algorithm.2.5 Historial remarks and bibliography


