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Abstract

Our topic is the relationship between dynamical systems and optimization. This
is a venerable, vast area in mathematics, counting among its many historical threads
the study of gradient flow and the variational perspective on mechanics. We aim to
build some new connections in this general area, studying aspects of gradient-based
optimization from a continuous-time, variational point of view. We go beyond
classical gradient flow to focus on second-order dynamics, aiming to show the
relevance of such dynamics to optimization algorithms that not only converge, but
converge quickly.

Although our focus is theoretical, it is important to motivate the work by considering
the applied context from which it has emerged. Modern statistical data analysis often
involves very large data sets and very large parameter spaces, so that computational effi-
ciency is of paramount importance in practical applications. In such settings, the notion
of efficiency is more stringent than that of classical computational complexity theory,
where the distinction between polynomial complexity and exponential complexity has
been a useful focus. In large-scale data analysis, algorithms need to be not merely
polynomial, but linear, or nearly linear, in relevant problem parameters. Optimization
theory has provided both practical and theoretical support for this endeavor. It has sup-
plied computationally-efficient algorithms, as well as analysis tools that allow rates of
convergence to be determined as explicit functions of problem parameters. The dictum
of efficiency has led to a focus on algorithms that are based principally on gradients of
objective functions, or on estimates of gradients, given that Hessians incur quadratic
or cubic complexity in the dimension of the configuration space (Bottou [2010] and
Nesterov [2012a]).

More broadly, the blending of inferential and computational ideas is one of the ma-
jor intellectual trends of the current century—one currently referred to by terms such
as “data science” and “machine learning.” It is a trend that inspires the search for new
mathematical concepts that allow computational and inferential desiderata to be stud-
ied jointly. For example, one would like to impose runtime budgets on data-analysis
algorithms as a function of statistical quantities such as risk, the number of data points
and the model complexity, while also taking into account computational resource con-
straints such as number of processors, the communication bandwidth and the degree
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of asynchrony. Fundamental understanding of such tradeoffs seems likely to emerge
through the development of lower bounds—by establishing notions of “best” one can
strip away inessentials and reveal essential relationships. Here too optimization theory
has been important. In a seminal line of research beginning in the 1970’s, Nemirovskii,
Nesterov and others developed a complexity theory of optimization, establishing lower
bounds on rates of convergence and discovering algorithms that achieve those lower
bounds (Nemirovskii and Yudin [1983] and Nesterov [1998]). Moreover, the model of
complexity was a relative one—an “oracle” is specified and algorithms can only use in-
formation that is available to the oracle. For example, it is possible to consider oracles
that have access only to function values and gradients. Thus the dictum of practical
computational efficiency can be imposed in a natural way in the theory.

Our focus is the class of optimization algorithms known as “accelerated algorithms”
Nesterov [1998]. These algorithms often attain the oracle lower-bound rates, although
it is something of a mystery why they do so. We will argue that some of mystery is
due to the historical focus in optimization on discrete-time algorithms and analyses.
In optimization, the distinction between “continuous optimization” and “discrete op-
timization” refers to the configuration (“spatial”) variables. By way of contrast, our
discussion will focus on continuous time. In continuous time we can give acceleration
a mathematical meaning as a differential concept, as a change of speed along a curve.
And we can pose the question of “what is the fastest rate?” as a problem in variational
analysis; in essence treating the problem of finding the “optimal way to optimize” for a
given oracle itself as a formal problem of optimization. Such a variational perspective
also has the advantage of being generative—we can derive algorithms that achieve fast
rates rather than requiring an analysis to establish a fast rate for a specific algorithm
that is derived in an adhoc manner.

Working in continuous time forces us to face the problem of discretizing a continuous-
time dynamical system, so as to derive an algorithm that can be implemented on a dig-
ital computer. Interestingly, we will find that symplectic integrators, which are widely
used for integrating dynamics obtained from variational or Hamiltonian perspectives,
are relevant in the optimization setting. Symplectic integration preserves the continu-
ous symmetries of the underlying dynamical system, and this stabilizes the dynamics,
allowing step sizes to be larger. Thus algorithms obtained from symplectic integration
can move more quickly through a configuration space; this gives a geometric meaning
to “acceleration.”

It is also of interest to consider continuous-time stochastic dynamics that are in some
sense “accelerated.” The simplest form of gradient-based stochastic differential equa-
tion is the Langevin diffusion. The particular variant that has been studied in the litera-
ture is an overdamped diffusion that is an analog of gradient descent. We will see that
by considering instead an underdamped Langevin diffusion, we will obtain a method
that is more akin to accelerated gradient descent, and which in fact provably yields a
faster rate than the overdamped diffusion.
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The presentation here is based on joint work with co-authors Andre Wibisono, Ashia
Wilson, Michael Betancourt, Chi Jin, Praneeth Netrapalli, Rong Ge, Sham Kakade, Ni-
ladri Chatterji and Xiang Cheng, as well as other co-authors who will be acknowledged
in specific sections.

1 Lagrangian and Hamiltonian Formulations of Accelerated
Gradient Descent

Given a continuously differentiable function f on an open Euclidean domain X, and
given an initial point Xy € X, gradient descent is defined as the following discrete
dynamical system:

(1) Xkt1 = Xk —nV f(X),

where n > 0 is a step size parameter.

When f is convex, it is known that gradient descent converges to the global optimum
x*, assumed unique for simplicity, at a rate of O(1/k) Nesterov [ibid.]. This means
that after k iterations, the function value f(x) is guaranteed to be within a constant
times 1/k of the optimum value f* = f(x*). This is a worst-case rate, meaning
that gradient descent converges as least as fast as O(1/k) across the function class of
convex functions. The constant hidden in the O(-) notation is an explicit function of a
complexity measure such as a Lipschitz constant for the gradient.

In the 1980’s, a complexity theory of optimization was developed in which rates
such as O(1/k) could be compared to lower bounds for particular problem classes (Ne-
mirovskii and Yudin [1983]). For example, an oracle model appropriate for gradient-
based optimization might consider all algorithms that have access to sequences of gra-
dients of a function, and whose iterates must lie in the linear span of the current gradient
and all previous gradients. This model encompasses, for example, gradient descent, but
other algorithms are allowed as well. Nemirovskii and Yudin [ibid.] were able to prove,
by construction of a worst-case function, that no algorithm in this class can converge
at a rate faster than O(1/k?). This lower bound is better than gradient descent, and it
holds open the promise that some gradient-based algorithm can beat gradient descent
across the family of convex functions. That promise was realized by Nesterov [1983],
who presented the following algorithm, known as accelerated gradient descent:

Vi1 = Xx — 0V f (k)
2 Xi+1 = (1 + Ag)¥i+1 — ArYk,

and proved that the algorithm converges at rate O (1/k?) for convex functions f. Here
Ak is an explicit function of the other problem parameters. We see that the acceleration
involves two successive gradients, and the resulting dynamics are richer than those of
gradient descent. In particular, accelerated gradient descent is not a descent algorithm—
the function values can oscillate.
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Nesterov’s basic algorithm can be presented in other ways; in particular, we will also
use a three-sequence version:

Xk = Vi + Avi
Yit+1 = Xk — Tlvf(xk)
3) Vik+1 = Yk+1 — Vk-

We note in passing that in both this version and the two-sequence version, the parameter
Ak is time-varying for some problem formulations and constant for others.

After Nesterov’s seminal paper in 1983, the subsequent three decades have seen the
development of a variety of accelerated algorithms in a wide variety of other problem
settings. These include mirror descent, composite objective functions, non-Euclidean
geometries, stochastic variants and higher-order gradient descent. Rates of convergence
have been obtained for these algorithms, and these rates often achieve oracle lower
bounds. Overall, acceleration has been one of the most productive ideas in modern
optimization theory. See Nesterov [1998] for a basic introduction, and Bubeck, Y. T.
Lee, and M. Singh [2015] and Allen-Zhu and Orecchia [2014] for examples of recent
progress.

And yet the basic acceleration phenomenon has remained somewhat of a mystery. Its
derivation and its analysis are often obtained only after lengthy algebraic manipulations,
with clever but somewhat opaque upper bounds needed at critical junctures.

In Wibisono, Wilson, and Jordan [2016], we argue that this mystery is due in part
to the discrete-time formalism that is generally used to derive and study gradient-based
optimization algorithms. Indeed, the notion of “acceleration” seems ill-defined in a
discrete-time framework; what does it mean to move more quickly along a sequence
of discrete points? Such a notion seems to require an embedding in an underlying
flow of time, such that acceleration can be viewed as a diffeomorphism. Moreover, if
accelerated optimization algorithms are in some sense optimal, there must be something
special about the curve that they follow in the configuration space, not merely the speed
at which they move. Such a separate characterization of curve and speed also seem to
require continuous time.

Wibisono, Wilson, and Jordan [ibid.] address these issues via a variational frame-
work that aims to capture the phenomenon of acceleration in some generality. We re-
view this framework in the remainder of this section, discussing the Lagrangian formu-
lation that captures acceleration in continuous time, showing how this formulation gives
rise to a family of differential equations whose convergence rates are the continuous-
time counterpart of the discrete-time oracle rates. We highlight the problem of the nu-
merical integration of these differential equations, setting up the symplectic integration
approach that we discuss in Section 2.

We consider the general non-Euclidean setting in which the space X is endowed
with a distance-generating function /2 : X — R that is convex and essentially smooth
(i.e., h is continuously differentiable in X, and ||VA(x)|« — oo as ||x|| = o0). The
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function / can be used to define a measure of distance in X via its Bregman divergence:
“4) Diu(y.x) = h(y) = h(x) = (Vh(x).y — x).

The Euclidean setting is obtained when /(x) = %||X||2

We use the Bregman divergence to construct a Bregman kinetic energy for a dynam-
ical system. We do this by taking the Bregman divergence between a point x and its
translation in the direction of the velocity v by a time-varying magnitude, e ~%:

5) K(x,v,t) := Dp(x + e~ %v,x).

Using the definition in Eq. (4), we see that this kinetic energy can be interpreted as
comparison between the amount that 4 changes under a finite translation, & (x+e~* v)—
h(x), versus an infinitesimal translation, e~ (VA(x), v).

We now define a time-dependent potential energy, U (x):

(6) U(x.t) = eP f(x),

and we subtract the potential energy from the kinetic energy to obtain the Bregman
Lagrangian:

L(x,v,1) == e (K(x,v,t) — U(x,1))
7 = MV (Dy(x + e "%, x) — Pt f(x)).

In this equation, the time-dependent factors «,, B; and y; are algorithmic degrees of
freedom that allow the Bregman—Lagrangian framework to encompass a range of dif-
ferent algorithms.

Although o4, B; and y; can be set independently in principle, we define a set of ideal
scaling conditions that reduce these three degrees of freedom to a single functional
degree of freedom:

Br < e
® Ve = e*.

Wibisono, Wilson, and Jordan [ibid.] show that these conditions are needed to obtain
differential equations whose rates of convergence are the optimal rates; see Theorem 1
below.

Given the Bregman Lagrangian, we use standard calculus of variations to obtain
a differential equation whose solution is the path that optimizes the time-integrated
Bregman Lagrangian. In particular, we form the Euler—Lagrange equations:
% %aﬁ(x,,)k,,t)} - aﬁ(x,,)k,,t) =0,

©) v ox

a computation which is easily done based on Eq. (7). Using the ideal scaling conditions
in Eq. (8), the result simplifies to the following master differential equation:

-1
(10) 4 (% — )iy + 2B [VQh(xt + e_“’)'ct)] Vf(x:) =0.
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We see that the equation is second order and non-homogeneous. Moreover, the gradient
V f (x;) appears as a force, modified by geometric terms associated with the Bregman
distance-generating function s. As we will discuss below, this equation is a general
form of Nesterov acceleration in continuous time.

It is straightforward to obtain a convergence rate for the master differential equation.
We define the following Lyapunov function:

(11) 8 = Dj (x*, x, +e%%) +eP (f(x))— f)).

Taking a first derivative with respect to time, and asking that this derivative be less
than or equal to zero, we immediately obtain a convergence rate, as documented in the
following theorem, whose proof can be found in Wibisono, Wilson, and Jordan [2016].

Theorem 1. [f'the ideal scaling in Eq. (8) holds, then solutions to the Euler—Lagrange
equation Eq. (10) satisfy

f(x) = f*=0(e).

For further explorations of Lyapunov-based analysis of accelerated gradient meth-
ods, see Wilson, Recht, and Jordan [2016].

Wibisono, Wilson, and Jordan [2016] studied a subfamily of Bregman Lagrangians
with the following choice of parameters, indexed by a parameter p > 0:

a; =log p —logt
B: = plogt +logC
(12) Ve = plogt,

where C > 0 is a constant. This choice of parameters satisfies the ideal scaling condi-
tion in Eq. (8). The Euler—Lagrange equation, Eq. (10), reduces in this case to:

(13) %+ pj

1 t -t
X+ Cp*tP~? |:V2h (Xt + —xt):| Vf(x:)=0,
p

and, by Theorem 1, it has an O(1/¢?) rate of convergence.

The case p = 2 of the Eq. (13) is the continuous-time limit of Nesterov’s accelerated
mirror descent (Krichene, Bayen, and Bartlett [2015]), the case p = 3 is the continuous-
time limit of Nesterov’s accelerated cubic-regularized Newton’s method (Nesterov and
Polyak [2006]). In the Euclidean case, when the Hessian V2 is the identity matrix, we
recover the following differential equation:

. 3.
(14) X: + ;Xz +Vf(x)=0,

which was first derived by Su, Boyd, and Candes [2016] as the continuous-time limit
of the basic Nesterov accelerated gradient descent algorithm in Eq. (2).

The Bregman Lagrangian has several mathematical properties that give significant
insight into aspects of the acceleration phenomenon. For example, the Bregman La-
grangian is closed under time dilation. This means that if we take an Euler—-Lagrange
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curve of a Bregman Lagrangian and reparameterize time so that we travel the curve at
a different speed, then the resulting curve is also the Euler—Lagrange curve of another
Bregman Lagrangian, with appropriately modified parameters. Thus, the entire family
of accelerated methods correspond to a single curve in spacetime and can be obtained
by speeding up (or slowing down) any single curve. As suggested earlier, the Bregman
Lagrangian framework permits us to separate out the consideration of the optimal curve
from optimal speed of movement along that curve.

Finally, we turn to a core problem—how to discretize the master differential equation
so that it can be solved numerically on a digital computer. Wibisono, Wilson, and
Jordan [2016] showed that naive discretizations can fail to yield stable discrete-time
dynamical systems, or fail to preserve the fast oracle rates of the underlying continuous
system. Motivated by the three-sequence form of Nesterov acceleration (see Eq. (3)),
they derived the following algorithm, in the case of the logarithmic parameterization
shown in Eq. (12):

Xk4+1 = i zi + Yk

k+p k+p

v argmin[f (vixe) + Iy xﬂ

k= —1(ysxk) + ——|ly — ¢
yeX i €P p

1
(15) Zj = argmin |:C pkP=V Y f(yi).z) + e_PDh(Z’ Zk_l)] .

z€X

Here f,—1(y;Xx) is the order-p Taylor expansion of the objective function around xi
and N and C are scaling coefficients and € is a step size. Although Wibisono, Wilson,
and Jordan [ibid.] were able to prove that this discretization is stable and achieves the
oracle rate of O(1/k?), the discretization is heuristic and does not flow natural from the
dynamical-systems framework. In the next section, we revisit the discretization issue
from the point of view of symplectic integration.

2 A Symplectic Perspective on Acceleration

Symplectic integration is a general for the discretization of differential equations that
preserves various of the continuous symmetries of the dynamical system (Hairer, Lu-
bich, and Wanner [2006]). In the case of differential equations obtained from mechan-
ics, these symmetries include physically-meaningful first integrals such as energy and
momentum. Symplectic integrators exactly conserve these quantities even if the dynam-
ical flow is only approximated. In addition to the appeal of this result from the point of
view of physical conservation laws, the preservation of continuous symmetries means
that symplectic integrators tend to be more stable than other integration schemes, such
that it is possible to use larger step sizes in the discrete-time system. It is this latter fact
that suggests a role for symplectic integrators in the integration of the differential equa-
tions associated with accelerated optimization methods. This idea has been pursued in
recent work by Betancourt, Jordan, and Wilson [2018], whose results we review in this
section.
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Figure 1: (a) When appropriately tuned, both the leapfrog integrator and the
three-sequence Nesterov algorithm simulate the same latent Bregman dynamics
and hence achieve similar convergence rates, here approximately O (k_2'95). (b)
Given a larger step size, the symplectic integrator remains stable and thus con-
verges more quickly, whereas the three-sequence Nesterov algorithm becomes
unstable.
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While symplectic integrators can be obtained from a Lagrangian framework, they
are most naturally obtained from a Hamiltonian framework. We thus begin by trans-
forming the Bregman Lagrangian into a Bregman Hamiltonian. This is readily done
via a Legendre transform, as detailed in Wibisono, Wilson, and Jordan [2016] and Be-
tancourt, Jordan, and Wilson [2018]. The resulting Hamiltonian is as follows:

(16)  H(x.r,1) = *O+r®) (Dh*(e_”(t)r + %(r), %(x)) - e’f’(’)f(x)) :
0x 0x
where
. e On*
Dy (r.s) = h™(r) = h*(s) = 5 ~(5) - (r =),

and where /* is the Fenchel conjugate:

*
h*(r) oy 5P ((r,v) — h(v)).

Given the Bregman Hamiltonian in Eq. (16), Betancourt, Jordan, and Wilson [ibid.]
follow a standard sequence of steps to obtain a symplectic integrator. First, the Breg-
man Hamiltonian is time-varying, and it is thus lifted into a time-invariant Hamiltonian
on an augmented configuration space that includes time as an explicit variable and in-
cludes a conjugate energy variable in the phase space. Second, the Hamiltonian is split
into a set of component Hamiltonians, each of which can be solved analytically (or
nearly so via simple numerical methods). Third, the component dynamics are com-
posed symmetrically to form the full dynamics. In particular, Betancourt, Jordan, and
Wilson [ibid.] illustrate how to form a symmetric leapfrog integrator (a particular kind
of symplectic integrator) for the Bregman Hamiltonian. They prove that the error be-
tween this integrator and the true dynamics is of order O (€2), where € is the step size
in the discretization.

Betancourt, Jordan, and Wilson [ibid.] also present empirical results for a quadratic
objective function, f(x) = (X~!x, x), on a 50-dimensional Euclidean space, where

Yij = p\i*jl’

and p = 0.9. This experiment was carried out in the setting of Eq. (12), for various
choices of p, C and N. Representative results are shown in Figure 1(a), which com-
pare the leapfrog integrator with the three-sequence version of Nesterov acceleration
from Eq. (15). Here we see that both approaches yield stable, oscillatory dynamics
whose asymptotic convergence rate is approximately O (k~29%). Moreover, as shown
in Figure 1(b), the symplectic integrator remains stable when a larger step size is chosen,
whereas the three-sequence Nesterov algorithm becomes unstable.

Interestingly, however, while the initial rate is the same, the three-sequence algo-
rithm exhibits exponential convergence near the optimum. This behavior does not
hold in general (e.g., Betancourt, Jordan, and Wilson [ibid.] show that it does not hold
for quartic functions), but it is nonetheless an interesting feature of the three-sequence
method in the case of quadratic objectives. Betancourt, Jordan, and Wilson [ibid.] show
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Figure 2: (a) By incorporating gradient flow into the leapfrog integration of the
Bregman Hamiltonian dynamics we recover the same asymptotic exponential
convergence near the minimum of the objective exhibited by the dynamical Nes-
terov algorithm. (b) These modified Hamiltonian dynamics remain stable even
as we increase the step size, allowing for more efficient computation and the
advantageous asymptotic behavior.
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that it arises from an implicit gradient flow that is a side effect of the three-sequence
discretization. Moreover, they note that it is possible to mimic this flow within the sym-
plectic integrator. When this is done the results for the quadratic objective are as shown
in Figure 2(a). We see that a symplectic integrator that incorporates gradient flow and
the three-sequence integrator yield convergence profiles that are essentially equivalent
in this case.

But it is also true that the symplectic approach is topologically more stable than the
three-sequence method, a fact which is revealed if one chooses a more aggressive step
size. This is exhibited in Figure 2(b), where the symplectic integrator converges while
the three-sequence Nesterov method diverges when the step size is increased.

In summary, this section has exhibited a connection between symplectic integration
and the acceleration phenomenon in optimization. When the latter is construed as a
continuous-time phenomenon, symplectic integration appears to provide an effective
and flexible way to obtain discrete-time approximations. Much remains to be done,
however, to tighten this link. In particular, we would like to obtain necessary and suf-
ficient conditions for stable integrators that achieve oracle rates, and it is not yet clear
what role symplectic geometry will play in uncovering those conditions.

3 Acceleration and the Escape from Saddle Points in Nonconvex
Optimization

In this section we turn to nonconvex optimization. Although the general nonconvex
setting harbors many intractable problems about which little can be said regarding com-
putational or statistical efficiency, it turns out that for a wide range of problems in
statistical learning, there is sufficient mathematical structure present in the nonconvex
setting that useful mathematical results can be obtained. Indeed, in many cases the ideas
and algorithms from convex optimization—suitably modified—can be carried over to
the nonconvex setting. In particular, for gradient-based optimization, the same algo-
rithms that perform well in the convex setting also tend to yield favorable performance
in the nonconvex setting. In this sense, convex optimization has served as a laboratory
for nonconvex optimization, in addition to having many natural applications of its own.

A useful first foothold on nonconvex optimization is obtained by considering the cri-
terion of first-order stationarity. Given a differentiable function f : XX — R, on some
well-behaved Euclidean domain X of dimension d, we define first-order stationary
points to be those points x € X where the gradient vanishes: ||V f(x)|| = 0. Although
first-order stationary points can in general be associated with many kinds of topological
singularity, for many statistical learning problems it suffices to consider the categoriza-
tion into points that are global minima, local minima, local maxima and saddle points.
Of these, local maxima are rarely viewed as problematic—simple modifications of gra-
dient descent, such as stochastic perturbation, can suffice to ensure that algorithms do
not get stuck at local maxima. Local minima have long been viewed as the core concern
in nonconvex optimization for statistical learning problems. Recent work has shown,
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however, that in a wide range of nonconvex statistical learning problems, local min-
ima are provably absent, or, in empirical studies, even when local minima are present
they do not appear to be discovered by gradient-based algorithms. Such results have
been obtained for smooth semidefinite programs (Boumal, Voroninski, and Bandeira
[2016]), matrix completion (Ge, J. D. Lee, and Ma [2016]), synchronization and Max-
Cut (Bandeira, Boumal, and Voroninski [2016] and Mei, Misiakiewicz, Montanari, and
Oliveira [2017]), multi-layer neural networks (Choromanska, Henaff, Mathieu, Arous,
and LeCun [2014] and Kawaguchi [2016]) matrix sensing Bhojanapalli, Neyshabur,
and Srebro [2016] and robust principal components analysis (Ge, Jin, and Y. Zheng
[2017]).

As for global minima, while they are unambiguously the desirable end states for
optimization algorithms, when there are multiple global minima it will generally be
necessary to impose additional criteria (e.g., statistical) to single out preferable global
minima, and to ask that an optimization algorithm respect this preference. We will not
discuss these additional criteria here.

It remains to consider saddle points. Naively one might view these as akin to local
maxima, in the sense that it is plausible that a simple perturbation could suffice for a
gradient-based algorithm to roll down a direction of negative curvature. Such an ar-
gument has support from a recent theoretical result: J. D. Lee, Simchowitz, Jordan,
and Recht [2016] have shown that under regularity conditions gradient descent will
converge asymptotically and almost surely to a (local) minimum and thus avoid saddle
points. In particular, a gradient-based algorithm that is initialized at a random point in
X will avoid any and all saddle points in the asymptotic limit. While this result helps to
emphasize the strength of gradient descent, it is of limited practical in that it is asymp-
totic (providing no rate of convergence); moreover, critically, it does not provide any
insight into the rate of escape of saddle points as a function of dimension. While under
suitable regularity all directions are escape directions for local maxima, it could be that
only one direction is an escape direction for a saddle point. The computational burden
of finding that direction could be significant; perhaps exponential in dimension. Given
that modern statistical learning problems can involve many hundreds of thousands or
millions of dimensions, such a burden would be fatal.

We thus focus our discussion on saddle points. To tie the discussion here to the
discussion of the previous section, we take a dynamical systems perspective and study
the extent to which acceleration (second-order dynamics) is able to improve the rate
of escape of saddle points in gradient-based optimization. Intuitively, there is a narrow
region around a saddle point in which the flow is principally directed towards the saddle
point, and it seems plausible that an accelerated algorithm is able to bypass such a region
more effectively than a non-accelerated algorithm. Whether this is actually true has
been an open question in the literature.

To understand how dynamics and geometry interact in the neighborhood of saddle
points, it is necessary to go beyond first-order stationarity, which lumps saddle points
together with local minima, and to impose a condition that excludes saddle points. We
define a second-order stationary point to be a point x € X such that |V f(x)|| = 0
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and A (V2 f(x)) = 0. This definition includes local minima, but it also allows
degenerate saddle points, in which the smallest eigenvalue of the Hessian is zero, and
so we also define a strict saddle point to be apointx € % for which A ;. (V2 f (x)) < 0.
These two definitions jointly allow us to separate local minima from most saddle points.
In particular, if all saddle points are strict, then an algorithm that converges to a second-
order stationary point necessarily converges to a local minimum. (See Ge, Huang, Jin,
and Yuan [2015] for further discussion.)

It turns out that these requirements are reasonable in practical applications. Indeed, it
it has been shown theoretically that all saddle points are strict in many of the nonconvex
problems mentioned earlier, including tensor decomposition, phase retrieval, dictionary
learning and matrix completion (Ge, Huang, Jin, and Yuan [2015], J. Sun, Qu, and
J. Wright [2016b,a], Bhojanapalli, Neyshabur, and Srebro [2016], and Ge, J. D. Lee,
and Ma [2016]). Coupled with the fact (mentioned above) that there is a single global
minimum in such problems, we see that an algorithm that converges to a second-order
stationary point will actually converge to a global minimum.

To obtain rates of convergence, we need to weaken the definitions of stationarity
to allow an algorithm to arrive in a ball of size € > 0 around a stationary point, for
varying €. We define an e-first-order stationary point as a point x € X such that
IV f(x)|| < e. Similarly we define an e-second-order stationary point as apointx € X
for which A i, (V2 f(x)) = —./p€, where p is the Hessian Lipschitz constant. (We
have followed Nesterov and Polyak [2006] in using a parameterization for the Hessian
that is relative to size of the gradient.)

Finally, we need to impose smoothness conditions on f that are commensurate with
the goal of finding second-order stationary points. In particular, we require both the
gradient and the Hessian to be Lipschitz:

(17) IVf(x1) =V f(x2)]| = €llx1 —xe
(18) IV2f (x1) = V2 f (x2)I| < pllx1 = xell.

for constants 0 < £, p < 00, and for all x1, xo € X.

Before turning to algorithmic issues, let us calibrate our expectations regarding achiev-
able rates of convergence by considering the simpler problem of finding an e-first-order
stationary point, under a Lipschitz condition solely on the gradient. Nesterov [1998]
has shown that if gradient descent is run with fixed learning rate n = %, and the ter-
mination condition is |V f (x)|| < e, then the output will be an e-first-order stationary
point, and the algorithm will terminate within the following number of iterations:

where X is the point at which the algorithm is initialized. While the rate here is less
favorable than in the case of smooth convex functions—where it is O (€)'—the rate

In Section 1 we expressed rates in terms of the achieved € after a given number of iterations; here we use
the inverse function, expressing the number of iterations in terms of the accuracy. Expressed in the former
way, the rate here is O (1/+/k).
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Algorithm 1 Perturbed Gradient Descent (PGD)
fork =0,1,...,do
if |V f(xx)| < g and no perturbation in last T steps then
Xp < Xi + & Ep ~ Ul’lif(Bo(r)>
X1 =Xk =NV f (Xk)

retains the essential feature from the convex setting that it is independent of dimension.
Recall, however, that saddle points are e-first-order stationary points, and thus this re-
sult describes (inter alia) the rate of approach to a saddle point. The question that we
now turn to is the characterization of the rate of escape from a saddle point, where we
expect that dimensionality will rear its head.

Turning to algorithmic considerations, we first note that—in contradistinction to the
convex case—pure gradient descent will not suffice for convergence to a local min-
imum. Indeed, in the presence of saddle points, the rate of convergence of gradient
descent can depend exponentially on dimension (Du, Jin, J. D. Lee, Jordan, Poczos,
and A. Singh [2018]). Thus we need to move beyond gradient descent to have a hope
of efficient escape from saddle points. We could avail ourselves of Hessians, in which
case it would be relatively easy to identify directions of escape (as eigenvectors of the
Hessian), but as discussed earlier we wish to avoid the use of Hessians on computational
grounds. Instead, we focus on gradient descent that is augmented with a stochastic per-
turbation. Ge, Huang, Jin, and Yuan [2015] and Jin, Ge, Netrapalli, Kakade, and Jordan
[2017] studied such an augmentation in which a homogeneous stochastic perturbation
(uniform noise in a ball) is added sporadically to the current iterate. Specifically, noise
is added when: (1) the norm of the gradient at the current iterate is small, and (2) the
most recent such perturbation is at least T steps in the past, where T is an algorithmic
hyperparameter. We refer to this algorithm as “perturbed gradient descent” (PGD); see
Algorithm 1.

We can now state a theorem, proved in Jin, Ge, Netrapalli, Kakade, and Jordan
[ibid.], that provides a convergence rate for PGD. Note that PGD has various algorithm
hyperparameters, including r (the size of the ball from which the perturbation is drawn),
T (the minimum number of time steps between perturbations), n (the step size), and
g (the bound on the norm of the gradient that triggers a perturbation). As shown in
Jin, Ge, Netrapalli, Kakade, and Jordan [ibid.], all of these hyperparameters can be
specified as explicit functions of the Lipschitz constants £ and p. The only remaining
hyperparameters are a constant quantifying the probability statement in the theorem,
and a universal scaling constant.

Theorem 2 (Theorem). Assume that the function f is L-smooth and p-Hessian Lip-
schitz. Then, with high probability, an iterate Xy of PGD (Algorithm 1) will be an
e-second order stationary point after the following number of iterations k:

(4 ()
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We see that the first factor is exactly the same as for e-first-order stationary points
with pure gradient descent. The penalty incurred by incorporating the perturbation—
and thereby avoiding saddle points—is quite modest—it is only polylogarithmic in the
dimension d.

With this convergence result as background, we turn to the main question of this
section: Does acceleration aid in the escape from saddle points? In particular, can we
improve on the rate in Theorem 2 by incorporating acceleration into the perturbed gradi-
ent descent algorithm? We will see that the answer is “yes”; moreover, we will see that
a continuous-time dynamical-systems perspective will play a key role in establishing
the result.

A major challenge in analyzing accelerated algorithms is that the objective function
does not decrease monotonically as is the case for gradient descent. In the convex case,
we met this challenge by exploiting the Lagrangian/Hamiltonian formulation to design
a Lyapunov function; see Eq. (11). These Lyapunov functions, however, involve the
global minimum x*, which is unknown to the algorithm. This is not problematic in the
convex setting, as terms involving x* can be bounded using convexity; in the nonconvex
setting, however, it is fatal.

To overcome this problem in the nonconvex setting, Jin, Netrapalli, and Jordan
[2017] developed a Hamiltonian that is appropriate for the analysis of nonconvex prob-
lems. Specializing to Euclidean geometry, the function takes the following form:

1
(19) E, = 2—”||Vt||2 + f(xt);

a sum of kinetic energy and potential energy terms. Let us consider using this Hamilto-
nian to analyze the following second-order differential equation:

(20) X+ 0%+ Vf(x)=0.

Integrating both sides, we obtain:

@D (o) + 50 = F)+ 530 -6 [ x(0Pe

The integral shows that the Hamiltonian decreases monotonically with time ¢, and the
decrease is given by the dissipation term 6 fzzlz x(¢)2dt. Note that Eq. (21) holds regard-
less of the convexity of f(+).

Although the Hamiltonian decreases monotonically in continuous time, Jin, Netra-
palli, and Jordan [ibid.] show that this is nof the case in discrete time (in the nonconvex
setting). Thus, once again, the complexity associated with acceleration manifests itself
principally in the transition to discrete time. Jin, Netrapalli, and Jordan [ibid.] were able
to resolve this problem by isolating a condition under which the change of the Hamil-
tonian is indeterminate (it may decrease or increase), and show that under the comple-
ment of this condition, the Hamiltonian necessarily decreases. Roughly speaking, the
condition arises when the function is “too nonconvex.” Moreover, this condition can
be assayed algorithmically, and the algorithm can be modified to ensure decrease of the
Hamiltonian when the condition arises.
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Algorithm 2 Perturbed Accelerated Gradient Descent (PAGD)

fork =0,1,...,do

if |V f(xx)| < € and no perturbation in last S steps then
Xp < Xg + & & ~ Unif (By(r))

Yk = Xk + AkVi

Xk1 = Yi — NV f(yk)

Vi+1 = Xk41 — Xk

if f(xk) < f(yx)+(VS(¥k). Xk —¥&) — 51Xk — yx||* then
(Xk41, Vikr1) = Negative-Curvature-Exploitation(xg , vi)

R AR

Perturbation lines 3-4
Standard AGD lines 5-7
Negative Curvature Exploitation (NCE) lines 8-9

The overall algorithm, Perturbed Accelerated Gradient Descent (PAGD), is presented
in Algorithm 2. Steps 3 and 4 are identical to the PGD algorithm. Steps 5, 6 and 7
replace gradient descent in the latter algorithm with accelerated gradient descent (cf.
Eq. (3)). Step 8 measures the “amount of nonconvexity,” and if it is too large, makes
a call to a function called “Negative-Curvature-Exploitation.” This function does one
of two things: (1) if the momentum is large, it zeros out the momentum; (2) if the mo-
mentum is small, it conducts a local line search along the direction of the momentum.
Jin, Netrapalli, and Jordan [2017] prove that this overall algorithm yields monotone de-
crease in the Hamiltonian. Moreover, they use this result to prove the following theorem
regarding the convergence rate of PAGD. (As in the case of PGD, we are not specifying
the settings of the various algorithm hyperparameters; we refer to Jin, Netrapalli, and
Jordan [ibid.] for these settings. We note, however, that all hyperparameters are func-
tions of the Lipschitz constants £ and p, with the exception of a constant quantifying
the probability statement in the theorem, and a universal scaling constant.)

Theorem 3. Assume that the function f is £-smooth and p-Hessian Lipschitz. Then,
with high probability, at least one of iterates, Xi, of PAGD (Algorithm 2) will be an
e-second order stationary point after the following number of iterations.

2 VA(f (x0) = f) d
0 ( p 67/40 log® (;)) .

Comparing this result to Theorem 2, we see that the rate has improved from 1/€? to
1/€7/*. Thus we see that acceleration provably improves upon gradient descent in the
nonconvex setting—acceleration hastens the escape from saddle points. We also see
that, once again, there is a mild—polylogarithmic—dependence on the dimension d.

The core of the proofs of Theorems 2 and 3 revolves around the study of the local
geometry around saddlepoints and its interaction with gradient-descent dynamics. As
depicted in Figures 3 and 4, there is a slab-like region in the neighborhood of a saddle
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Figure 3: Perturbation ball in three dimensions and “thin pancake” stuck region.

point in which gradient descent will be “stuck”—taking an exponential amount of time
to escape. This region is not flat, but instead varies due to the variation of the Hessian
in this neighborhood. The Lipschitz assumption gives us control over this variation.
To analyze the width of the stuck region, and thus its volume as a fraction of the per-
turbation ball, Jin, Netrapalli, and Jordan [ibid.] study the rate of escape of a pair of
gradient-descent (or accelerated-gradient-descent) sequences that start on the sides of
the stuck region. These initial points are a distance r apart along the direction given
by the minimum eigenvector of the Hessian, V2 f (x), at the saddle point. The critical
value r for which at least one of the two sequences escapes the stuck region quickly
can be computed, and this provides an estimate of the volume of the stuck region. The
overall result is that this volume is small compared to that of the perturbation ball, and
thus the perturbation is highly likely to cause the optimization algorithm to leave the
stuck region (and not return).

4 Underdamped Langevin Diffusion

Our focus thus far has been on dynamical systems which are deterministic, with stochas-
ticity introduced in a limited way—as a perturbation that ensures fast escape from a
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Figure 4: Gradient flow and “narrow band” stuck region in two dimensions.

saddle point. The particular perturbation that we have analyzed—a uniform perturba-
tion in a ball—is sufficient for fast escape, but it is not necessary. Given the success of
this simple choice, however, we are motivated to study more thoroughgoing stochastic
approaches to our problem. We may wish to investigate, for example, whether a less
homogeneous perturbation might suffice. Also, recalling the statistical learning setting
that motivates us, even if the optimization problem is formulated as a deterministic one,
the underlying data that parameterize this problem are best viewed as random, such
that algorithm tractories become stochastic processes, and algorithm outputs become
random variables. Thus, taking a stochastic-process point of view opens the door to
connecting algorithmic results to inferential results.

We thus turn to a discussion of stochastic dynamics. Given our continuous-time
focus, these stochastic dynamics will be expressed as stochastic differential equations.
Moreover, we will again be interested in second-order (“momentum”) dynamics, and
will investigate the extent to which such dynamics can yield improvements over first-
order dynamics.

The classical connection between gradient descent and stochastic differential equa-
tions is embodied in the overdamped Langevin diffusion:

dx; = =V f(x;)dt + ~/2d B,

where x; € R4 and B; is d-dimensional standard Brownian motion. Under mild reg-
ularity conditions, it is known that the invariant distribution of this continuous-time
process is proportional to p*(x) o exp(—(f(x))). Thus samples from p*(x) can be
obtained by solving the diffusion numerically. Such a numerical solution is generally
referred to as “Langevin Markov chain Monte Carlo” or “Langevin MCMC.”
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Asymptotic guarantees for overdamped Langevin MCMC were established in
Gelfand and Mitter [1991]. The first explicit proof of non-asymptotic convergence of
overdamped Langevin MCMC for log-smooth and strongly log-concave distributions
was given by Dalalyan [2017], who showed that discrete, overdamped Langevin dif-
fusion achieves € error, in total variation distance, in O(d /€?) steps. Following this,
Durmus and Moulines [2016] proved that the same algorithm achieves € error, in 2-
Wasserstein distance, in O(d /€2) steps.?

Our second-order perspective motivates us to consider underdamped Langevin dif-
fusion:

dve = —yvedt —uV f(x;)dt + \/2yudB;
(23) dx, :tht,

where u and y are parameters. It can be shown that the invariant distribution of this
continuous-time process is proportional to exp(—( f (x)+||v||5/2u)). Thus the marginal
distribution of x is proportional to exp(— f (x)) and samples from p* (x) x exp(—f(x))
can be obtained by solving the underdamped Langevin diffusion numerically and ignor-
ing the momentum component.

Underdamped Langevin diffusion is interesting because it is analogous to acceler-
ated gradient descent; both are second-order dynamical systems. Moreover, it contains
a Hamiltonian component, and its discretization can be viewed as a form of Hamilto-
nian MCMC. Hamiltonian MCMC has been empirically observed to converge faster to
the invariant distribution compared to standard Langevin MCMC (Betancourt, Byrne,
Livingstone, and Girolami [2017]).

In recent work, Cheng, Chatterji, Bartlett, and Jordan [2017] have analyzed un-
derdamped Langevin diffusion. They have shown that—in the same setting analyzed
by Durmus and Moulines [2016] for overdamped Langevin diffusion—that the under-
damped algorithm achieves a convergence rate of O(\/d_ /€) in 2-Wasserstein distance.
This is a significant improvement over the O(d /€?) rate of overdamped Langevin dif-
fusion, both in terms of the accuracy parameter € and the dimension d.

5 Discussion

The general topic of gradient-based optimization, and its application to large-scale sta-
tistical inference problems, is currently very active. Let us highlight one particular set
of questions that appear likely to attract ongoing attention in coming years. Note that
optimization methods are used classically in the statistical setting to solve point estima-
tion problems, where the core problem is to output a single point in the configuration

2 Recall that the Wasserstein distance, Wa (i, n), between probability measures w and 7 is defined as
follows:

1/2
(22) Wz(u,n):( inf /le—yllﬁdi(x,y)) ,
n)

[4SINO7

where ¢ ranges over the set of transference plans I'(i, 7).
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space that has desirable statistical properties. But the broader problem is to provide
in addition an indication of the uncertainty associated with that output, in the form of
some summary of a probability distribution. Optimization ideas can be relevant here
as well, by considering a configuration space that is a space of probability distribu-
tions. Relatedly, one can ask to converge not to a single point, but to a distribution
over points. The Hamiltonian approach naturally yields oscillatory solutions, and, as
we have seen, some work is required to obtain algorithms that converge to a point. This
suggests that the Hamiltonian approach may in fact be easier to employ in the setting of
distributional convergence than in the point estimation setting, and thereby provide an
algorithmic bridge between point estimation and broader inference problems. Indeed,
in Bayesian inference, Hamiltonian formulations (and symplectic integration, in the
form of leapfrog integrators) have been successfully employed in the setting of Markov
chain Monte Carlo algorithms, where the momentum component of the Hamiltonian
(empirically) provides faster mixing. Deeper connections between acceleration and
computationally-efficient inference are clearly worth pursuing.
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