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Abstract

The relative case fatality rates (CFRs) between groups and countries are key measures of
relative risk that guide policy decisions regarding scarce medical resource allocation during the
ongoing COVID-19 pandemic. In the middle of an active outbreak when surveillance data
is the primary source of information, estimating these quantities involves compensating for
competing biases in time series of deaths, cases and recoveries. These include time- and severity-
dependent reporting of cases as well as time lags in observed patient outcomes. In the context
of COVID-19 CFR estimation, we survey such biases and their potential significances. Further,
we analyze theoretically the effect of certain biases, like preferential reporting of fatal cases, on
naive estimators of CFR. We provide a partially corrected estimator of these naïve estimates
that accounts for time lag and imperfect reporting of deaths and recoveries. We show that
collection of randomized data by testing the contacts of infectious individuals regardless of the
presence of symptoms would mitigate bias by limiting the covariance between diagnosis and
death. Our analysis is supplemented by theoretical and numerical results and a simple and fast
open-source codebase.

1 Introduction

As of May 18, 2020, the 2019 novel Coronavirus (SARS-CoV-2) outbreak has claimed at least
317, 000 lives out of 4.8 million confirmed cases worldwide, of which 1.8 million recovered (Dong
et al., 2020). Because the basic reproduction number R0 of the virus is high (estimated to fall
between 2 and 3 by Liu et al. 2020), public health organizations and local, state, and national
governments must allocate scarce resources to populations especially susceptible to death during
this pandemic. Therefore it is critical to have good estimates of the proportion of fatal infections of
COVID-19: this quantity is referred to as the absolute case fatality rate (CFR)1. It is additionally
important to understand the relative CFRs between different sub-populations (i.e., the ratio of their
absolute CFRs). We view the relative CFR as a useful target for data-informed resource allocation
protocols because it is a key measure of relative risk. Indeed, the absolute CFR is a measure of
absolute severity only for a particular population, since it averages out effects of medical care,
age, geography, genetics, and more. Practical decisions will ultimately be made based on coarse

1An important caveat at the outset: As Box 1 of Lipsitch et al. (2015) points out, “The CFR. . . is an ambiguous
term, as its definition and value depend on what qualifies an individual to be a ‘case.’” In this paper, we are defining
the CFR as the proportion of fatal infections; i.e., the proportion of deaths among all COVID-19 infected individuals.
This is a version of the CFR that is often called the infection fatality rate (IFR). As we will discuss, even this
definition is ambiguous for many reasons, including the cause of death. While no perfect definition exists, due in part
to the many biases described in Section 2, in any given analysis it will be important to choose a pertinent definition,
and to take care when making comparisons between analyses that have chosen different definitions.

1

https://github.com/aangelopoulos/cfr-covid-19


stratifications of these covariates; for example, a relative CFR that is specific to a geographical
region may be needed for resource planning and allocation. Similarly, a relative CFR that is specific
to sex or race is often sought to monitor for and ensure equitable treatment of patients within
hospitals across demographics. To facilitate such planning, we target the relative number of deaths
among total cases between groups of people (e.g., senior citizens in Italy) as a critical measure of
relative risk that informs decisions affecting human lives. Other such measures include prevalence
and risk of hospitalization.

It is widely believed that the naïve estimator of CFR, Enaive, obtained from a simple ratio of
reported deaths to reported cases (and which has a value of 6.6% when applied to the data of May
18, 2020), is biased (Fauci et al., 2020; Battegay et al., 2020). Indeed, an extensive epidemiological
literature has asserted this bias and presented methods that attempt to mitigate it (Donnelly et
al., 2003). Bias-mitigation methods are also present in a large literature on survey sampling and
weighting (Gelman, 2007). Despite this academic background, naïve estimates continue to be used,
reported, and cited in major publications (The Novel Coronavirus Pneumonia Emergency Response
Epidemiology Team, 2020; Z. Wu & McGoogan, 2020; Lipsitch, 2020).

Since publicly available health surveillance data for COVID-19 are heterogeneous and partially
observed, it is problematic to assert that any estimator uniformly outperforms the naïve estimator.
A variety of competing (and unknown) biases, both negative and positive, could conceivably cancel,
causing the naïve estimator to be closer to the true CFR despite its theoretical inadequacy. Statis-
tical wisdom would suggest that the conundrum of conflicting biases can be remedied by studying
the multi-stage process that relates data obtained by surveillance sampling to the populations that
are the target of inferential assertions. It is the goal of this paper to present such a statistical
perspective and explore some of its consequences for COVID-19.

Clarity on the potential biases underlying the use of data from surveillance sampling can help
to determine what additional datasets may be needed to mitigate bias. Examples which will in-
form our discussion include the New York seroprevalence study reported in Goodman & Rothfeld
(2020), which helped correct significant under-ascertainment of mild cases, and Verity et al. (2020),
who made use of individualized case data, polymerase-chain reaction (PCR) prevalence data, and
Bayesian inferential methods, resulting in a CFR estimate of 1.38%. These studies can improve
public-health response to COVID-19 insofar as they are accompanied by an understanding of their
implicit assumptions, including putative control of possible biases.

The remainder of this paper is organized as follows. In Section 2, we provide a statistical per-
spective on the many potential biases affecting absolute and relative CFR estimation. In Section 3,
we employ the general perspective to isolate some restricted contexts in which two naïve estima-
tors are unbiased, with implications on the need for contact tracing. In Section 4, we consider how
model-based inference can expand the contexts in which unbiased estimation is possible. We provide
an illustrative example, showing how an (approximate) maximum likelihood estimator from Reich
et al. (2012) can be applied to correct bias from relative reporting rates of fatal and resolved cases
using only surveillance data and an approximate horizon distribution of deaths. We discuss how
the general principle of coping with incomplete data via Poisson approximation and a log-linear
likelihood model can be more widely applied. In Section 5, we present results of this method on
COVID-19 data. Finally, in Section 6, we give a mathematical justification for contact tracing as
a data-collection methodology (Eames & Keeling, 2003; Chowell et al., 2009), and discuss how it
would mitigate many of the problematic biases at their source.
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2 Sources of bias in COVID-19 surveillance data

In Figure 1, we present a graphical model that captures aspects of the data-generating process for
COVID-19 surveillance data. Graphical models provide a general formal language for reasoning
about the probabilistic and causal structure of collections of random variables (see, e.g., Jordan
2004). In this paper, it suffices to think of the model in Figure 1 informally as a depiction of
dependencies among population-level and sampled quantities in surveillance data. Our objective is
to consider biases that may arise along each edge of the graph. Prior work on SARS, H1N1, H7N9,
H5N1, MERS, and HIV has identified or even quantified many of these biases (Atkins et al., 2015;
Woodruff et al., 2014); see Lipsitch et al. (2015) for a review. The diagram also depicts the pop-
ulation eligible to be sampled (the “sampling frame”) through collection of surveillance data from
standard hospital reports and death certificates. Asymptomatic carriers are excluded from the sam-
pling frame because testing is currently not recommended or available for asymptomatic individuals.
We roughly categorize biases as: under-ascertainment of mild cases, time lags, interventions, group
characteristics, and imperfect reporting and attribution. Extensive (but not comprehensive) discus-
sion of the magnitude and direction of these biases corroborated by COVID-19-specific evidence is
included in the subsections below.

These competing biases can often be expressed in terms of ratios of edge weights (conditional
probabilities) from Figure 1. For example, with A → B denoting the value of the edge between
nodes A and B, if the probability of reporting a fatal case is greater than reporting an infection
(DF→RF

D→RC > 1), then ignoring other biases, Enaive will be upwardly biased by a factor b > 1. How-
ever, because biases can compete with one another, this does not mean 1

bEnaive is always a better
estimator than Enaive. Speaking loosely, the bias incurred by under-ascertainment of asymptomatic
cases could be 1

b , canceling out the former bias. Accordingly, the total error of any estimator is
indeterminate. Therefore, the use of estimators based on surveillance data requires being clear
on underlying assumptions. Statisticians and public health officials should proceed with multiple
estimation strategies, armed with an understanding of the accompanying biases, and they should
endeavor to collect additional data that mitigates the biases (as we describe in Section 6).

Figure 1 conveys two important takeaways regarding the estimation of CFR. First and fore-
most, information about edges outside the sampling frame cannot be inferred from data within
the sampling frame alone. Even within the frame, data is compromised by the biases listed in the
subsections below. Each incoming edge to D can bias CFR estimates up or down, depending on
its ratio to other incoming edges. This cannot be disentangled only by looking at the value of D.
Secondly, even within the sampling frame, the relative values and time lags of D→ DF and D→ DR
affect the estimation of CFR. However, these edges may be the only ones subject to correction using
population-level surveillance data alone. This motivates our choice of an illustrative estimator of
relative CFR, adapted from Reich et al. (2012). In particular, the estimator is based on assumptions
under which estimation of relative CFR is possible while correcting for the relative values and time
lags of D→ DF and D→ DR.

In the following subsections, we will cite evidence for the existence, magnitudes, and directions
of certain biases from Figure 1. Our analysis was done in mid-April. We categorize biases resulting
from one of five phenomena: under-ascertainment of mild cases; time lags; interventions; group
characteristics; and imperfect reporting and attribution.
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Edge Notes and some potential sources of sampling and estimation bias
S → E Social distancing, occupation, family size, behavior.
S → U COVID-negative people who are not diagnosed.
S → D Assay specificity and sensitivity, test availability.
S → S1 Group characteristics such as genetics and immunity. Exposure to flu.
E → AC,S2 Infectious dose, route of transmission, and group characteristics.
E → S3 Presence of other underlying medical conditions.
AC → U,D Random sampling, contact tracing, test availability.
S1 → U Assay specificity and sensitivity, case severity.
S2 → U Assay specificity and sensitivity, case severity, test availability.
S3 → U Misattribution of symptoms, assay specificity and sensitivity, comorbidities.
S1 → D Misattribution of symptoms, assay specificity and sensitivity, group characteristics such as access

to and effectiveness of medical care.
S2 → D Delays in seeking care, government intervention, contact tracing, group characteristics.
S3 → D Assay specificity and sensitivity, contact tracing and test availability.
U → UF,UR Group characteristics, particularly comorbidities.
D → DF Misattribution, group characteristics, imperfect reporting.
D → DR Survey non-response, group characteristics, imperfect reporting.
D → RC Imperfect reporting: errors, change in case definition, release of incorrect data. Time lag.
DF → RF Imperfect reporting, national reporting guidelines, ease of reporting.
DR → RR Imperfect reporting, national reporting guidelines, ease of reporting.

Figure 1. Some sources of bias arising from COVID-19 health surveillance data. For
simplicity, nodes in this diagram can be thought of as representing the number of people in the
labeled state. Each edge represents a conditional probability of transitioning between states and has
an associated time lag. S1 represents COVID-19 negative people with flu symptoms. S2 represents
people with symptoms caused by COVID-19. S3 represents COVID-19 positive people with symptoms
caused by another underlying health condition. The sampling frame of population surveillance data
based on standard hospital reporting is in light blue; values of edges outside the sampling frame
cannot be inferred only with data from within the sampling frame. Relative time lag introduces bias
across all edges.
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2.1 Under-ascertainment of mild cases

Diagnosing severe cases more often than mild cases will falsely increase CFR. In Figure 1, this
bias corresponds most directly to spuriously increasing AC → U and S2 → U and/or decreasing
AC → D and S2 → U. This bias may have high magnitude, since the true number of infections
is likely to be several times as high as the reported number of cases in countries where testing is
limited (Fauci et al., 2020). The significantly lower CFR in South Korea, a country with widespread
testing, corroborates this explanation (Dong et al., 2020). A recent serology study from New York
City (reported in Goodman & Rothfeld 2020) suggests the prevalence of COVID-19 is 21.2%, much
higher than the confirmed case count. This indicates that the number of infections may be much
larger than surveillance data implies globally.

2.2 Time lags

Deaths and recoveries are reported after cases are confirmed, which artificially decreases the naïve
CFR (Wilson et al., 2020). More specifically, when a number of new cases is reported without delay,
Enaive becomes biased downward since the deaths yet to occur from the new cases will be missing
from the numerator. In Figure 1, this means a time lag is incurred across edges D → DF and
D → DR. The value of this time lag depends on how early on in the disease’s course a patient is
diagnosed. The median value of the lag across D→ DF was estimated by Linton et al. in China in
early February to be 6.7 days (Lognormal 95% CI: 5.3, 8.3) (Linton et al., 2020). Tracking individual
cases and including them only after death or recovery would solve this problem. However, data on
individuals is rare, as hospitals and/or governments generally report population-level data only.

Fortunately, these edges are within the sampling frame, so we can have some hope of correcting
the bias incurred by this time lag. In Section 4, we implement an estimator that handles this
correction directly, and discuss the many further assumptions that must be made to assure its
validity even within the sampling frame. In reality however, time lags affect every edge in Figure 1.
The “incubation period,” for example, creates lag across edges E→ AC,S1,S2, S3, and was estimated
at median 4.3 days based on Linton et al. The time between onset and hospital admission, which is
not perfectly represented by the graphical model, creates lag across edges S1,S2, S3 → D and had
an estimated median of 1.5 days among recovered cases and 5.1 days among fatal ones (Linton et
al., 2020). The large discrepancy between hospitalization lags of patients with different outcomes
suggests the presence of an unknown bias factor. For example, earlier hospitalization may result in
more effective treatment, canceling out the propensity of severe cases to seek care more quickly in
the data collected by Linton et al. A complete discussion of the effects of all time lags across edges
in Figure 1 is outside the scope of this paper.

2.3 Interventions

Data collected after a recent government intervention targeted to lower transmission of COVID-
19 could produce a spuriously increased CFR. One primary tool of governments is the imposition
of social-distancing measures, which decrease the amount and initial dose of exposures, thereby
lowering S → E. One incubation period after such a measure is enacted, the number of new
cases will decrease, but the number of new deaths will not, since these deaths will be from cases
diagnosed before the government intervention. This will upwardly bias the CFR for a few weeks
after the intervention.
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As in other pandemic influenzas, there may be a direct biological effect of increasing the infectious
dose, leading to higher fatality rates (Paulo et al., 2010). Given an effective government intervention
like social distancing, the infectious dose would decrease, directly lowering U → UF and D → DF
and increasing U → UR and D → DR. This will upwardly bias current CFR estimates for some
weeks after the initial intervention, since new deaths will still occur from cases whose onset time
was before the intervention. The Centre for Evidence Based Medicine has a helpful page dedicated
to COVID-19 viral dynamics like these (Heneghan et al., 2020).

Interventions to improve the quality of medical care can cause a drastic decrease in CFR, par-
ticularly when treatment options (e.g., drugs, blood transfusions, ventilators) become available or if
training of healthcare workers (HCWs) improves. The effect can be highly pronounced in developing
countries (Siddique, 1994) and is the subject of active study today (Hsiang et al., 2020; Warne et
al., 2020). By the same logic as above, these interventions can lead to a spuriously increased CFR
estimate. However, interventions that improve accessibility of medical care, such as the new health
facilities being constructed around the world (Lardieri, 2020; J. Wang et al., 2020), can also increase
testing and reporting. This increase will likely result in better data in the long term due to higher
ascertainment of mild cases, although we have no data to support this conjecture.

2.4 Group characteristics

It is already well understood that certain groups have a higher CFR than other groups. In other
words, the edges D → DF, D → DR, U → UF, and U → UR will have different values based
on the characteristics of the sampled population, which could cause bias in either direction when
estimating CFR. For example, the risk of death may be 34 to 73 times lower in people under 65 years
old compared to those over 65 (Ioannidis et al., 2020). Furthermore, the incidences of comorbidities
such as obesity, heart disease, smoking, genetics, and diabetes correlate with nation, socioeconomic
status, race, sex, and more (Cai, 2020; Lee et al., 2014; Sliwa et al., 2008). In the context of
surveillance data, without knowing the proportion of these groups in the sampling frame, which
may not be uniform in time, the CFR can be biased in either direction. Chin et al. argue that
incorporating county-level data about these covariates can result in a more equitable public-health
response (Chin et al., 2020).

2.5 Imperfect reporting and attribution

Both the definition of a “case” and also the criteria under which an individual is eligible for testing
can bias CFR estimates. Case definition, even within one nation, can change case counts dramati-
cally. On February 12th, for example, the Chinese government changed the definition of “confirmed
case” to include symptom-based diagnoses, resulting in a 600% increase in cases that day (Worl-
dometer, 2020). Without information on how deaths were attributed beforehand, we do not know
the magnitude of this bias. Serious problems have been introduced by poor reporting on behalf
of governments. For example, the Johns Hopkins GitHub stopped providing surveillance data on
recovered cases within the United States, because they argued the quality of the data was too
low (CSSEGISandData, 2020). Furthermore, because testing is often reserved for the most severe
cases (see the referenced Remarks from the White House), S2 → D is inflated while AC → D is
deflated (United States Federal Government, 2020). This will spuriously increase Enaive. Evidently,
detailed knowledge of how cases, deaths, and recoveries are defined and reported are prerequisite to
understanding these biases, even if it will be impossible to correct for them without finer-grained
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data.
Sensitivity and specificity of COVID-19 tests certainly affect all of AC,S1,S2, S3 → D and

AC,S1, S2,S3 → U. A diagnostic test with a high false discovery rate will increase S → S1,
incorrectly inflating the denominator of Enaive and spuriously decreasing the CFR. Nonetheless,
assays have improved with time; the initial test developed by the US Centers for Disease Control
was ineffective (Sharfstein et al., 2020). Still, the serology assay used by Bendavid et al. (2020)
had a putative sensitivity of 80% and specificity of 99.5%, which may still be too low to provide
estimates of a small prevalence.

Distinctly from under-ascertainment, reporting of infectious disease by healthcare providers in
the United States is often incomplete and normally has a mean time delay of 12-40 days depending
on the pathogen (Jajosky & Groseclose, 2004). This means edges D → RC, DF → RF, and
DR→ RR are not 1.0. Because deaths are more likely to be reported by healthcare providers than
confirmed cases or recoveries, ignoring time delay, D → RC is less than DF → RF, biasing Enaive

upward. Depending on the relative time delays across these edges, estimators may be biased in either
direction. For example, if D → RC is lagged more than D → RD, it would bias Enaive downward
during the growth phase of an epidemic. To our knowledge, these time delays, which occur on a
hospital-by-hospital basis, have not been quantified, and it is not obvious in what direction they will
skew. The magnitude of this bias could be quite large for COVID-19. On Friday, April 17th, the
Wuhan government reported 1,290 new fatalities, increasing their cumulative death toll by 50% in
one day. They claimed the revision was because “medical workers . . .might have been preoccupied
with saving lives, and there existed delayed reporting, underreporting, or misreporting.” This is a
salient example of a high-magnitude bias from reporting errors that we can not correct, since we do
not know at what time those deaths truly occurred (Kuo, 2020).

Evidence from past epidemics also indicates this bias may be significant for COVID-19. Even for
severe illnesses such as Hepatitis C, healthcare providers can underreport cases by up to 12x (Klevens
et al., 2014). Historically, the magnitude of underreporting depends heavily on ease of reporting for
HCWs (e.g., electronic vs paper systems) and also mandatory reporting laws (Chorba et al., 1989;
Panackal et al., 2002).

Finally, although survivorship bias may be small, misattribution of deaths (i.e., increased weight
of S3 → D) may be significant. A recent JAMA article argued that COVID-19 positive patients
with cardiac injury have a relative risk of death of 4.26 compared to those with no cardiac injury.
Most of those patients also had abnormal electrocardiograms (Shi et al., 2020). Another case
study described a healthy 53-year-old woman who tested positive for COVID-19, did not show any
respiratory involvement, but developed acute myopericarditis with systolic dysfunction (Inciardi
et al., 2020). Kidney involvement has also been found (Ronco & Reis, 2020). It is unclear how
deaths in the presence of multiple diagnoses are being counted, and indeed, to which disease they
should be attributed. Disentangling these relationships may be possible with regression on high-
resolution clinical data. However, we have not seen this level of detail reflected in surveillance data.
Comparisons with historical mortality data suggest tens of thousands of deaths are misattributed
or unreported (J. Wu et al., 2020).

3 Naïve estimators

We access publicly available data courtesy of Johns Hopkins University, consisting of time-series
data of recoveries, deaths, and confirmed cases stratified across several dozen groups (in this case,
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primarily geographic locations) (Dong et al., 2020). Our computations were performed on April 18,
2020. We denote cohorts or groups of cases by indices g, belonging to a set G. For example, g could
be “people under 60 years of age,” or “people in Wuhan.” For time points t = 1, 2, . . . , T = 41, we
collect daily data as follows: for each group g ∈ G we collect Rgt , D

g
t , and Cgt , which correspond

to the number of new recoveries, new deaths, and new cases reported on day t within group g. We
drop the group superscript g for population quantities:

Rt :=
∑
g∈G

Rgt , Dt :=
∑
g∈G

Dg
t , Ct :=

∑
g∈G

Cgt . (1)

3.1 An estimator based on dividing deaths by cases

In early March 2020, the WHO estimate of the CFR, 3.4% was widely reported (Stelter, 2020; Ghe-
breyesus, 2020). This estimate is obtained from a naïve estimator;2 specifically, the raw proportion
of deaths among confirmed cases. Formally, as of March 6, 2020,

Enaive =

∑
tDt∑
tCt
≈ 3.4%. (2)

As of April 18, 2020, Enaive was 6.9%. However, as we establish in Appendix A, in a setting without
time delays, the naïve CFR is asymptotically unbiased for the true CFR if and only if the probability
of reporting is the same for fatal and non-fatal cases. Moreover, it is unbiased in finite samples if
and only if reporting is perfect. As discussed in Section 2, this is not true in the case of COVID-19.
We also derive the finite-sample expectation of the estimator. Even asymptotically, the expectation
of this estimator can become unboundedly far away from the true CFR as reporting goes to zero or
the CFR goes to zero.

The naïve estimator requires no complex modeling or tuning parameters and is easy to interpret.
As we argued in Section 2, there is no uniformly best method of measuring the CFR, and the naïve
estimator should be viewed as one in a constellation of estimators giving a heuristic idea of the
causal CFR. Nonetheless, the naïve estimator can be improved at little cost, and indeed, in this
work, we suggest applying a simple correction for time-dependent reporting rates and alleviate two
problems with the naïve estimator: time-lag between death and recovery, and time-dependence in
the reporting rates of fatal and non-fatal cases.

3.2 An estimator based on observed outcomes

One can view the time lag in the numerator above (across the D → DF link) as a consequence of
“censoring” the data: a case has been identified, but the outcome is hidden. Methods for handling
censored data have been studied for several decades in the statistical literature; in particular, in
the context of the bootstrap (Efron, 1981). Although it is not the focus of our work, several
others have already applied the bootstrap to COVID-19 data to find confidence intervals for other
epidemiological parameters such as R0 (Read et al., 2020; Linton et al., 2020). This should also be
done for the CFR for COVID-19, as Jewell et al. (2007) did for SARS, although the structure of
the data used in that work differs from the current setting.

2To be clear, the exact form of their estimates is not made explicit in the WHO report.
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definition

ψt,g probability of diagnosis, given death from COVID-19, onset at time t, and membership in group g
φt,g probability of diagnosis, given recovery from COVID-19, onset at time t, and membership in group g
pt,g probability of death, given onset at time t, within group g
ηt probability of death t days after onset, given death occurs

Table 1. Parameters and variables relevant to our likelihood models

There is also a very simple estimator that avoids censoring by using only observed data, namely:

Eobs =

∑T
t=1Dt∑T

t=1Dt +
∑T

t=1Rt
≈ 20.7%. (3)

The CFR calculated by this estimator is upwardly biased, and we will briefly discuss why. This
estimator accounts for the inflation of the denominator in the naïve estimator via the relative time
lag between D→ RC and D→ DF. However, it assumes we observe the same fraction of recovered
cases and fatal cases at the time of estimation. Thus, it has introduced a new bias, the relative
reporting rate and time lag between D→ DF and D→ DR. We formalize the asymptotic inferential
target of this estimator in Appendix B. Note that in all cases, Eobs ≥ Enaive. In fact, Eobs is exactly
3Enaive on April 18th. This large discrepancy is due to under-reporting of recoveries, specifically
within the United States, as we note in Section 2. The United States has, as of April 19, roughly
40, 000 deaths and 70, 000 recoveries (Dong et al., 2020). Meanwhile, Spain has 20, 000 deaths and
80, 000 recoveries. Clearly, the reporting of recoveries in both nations is infrequent, and in the United
States, it may be more than doubly so. The estimator Eobs illustrates the dangers of correcting one
of many biases without considering total error. The estimator Enaive and the estimator we present
in the next section do not use this recovery data.

4 Likelihood models

In this section, we describe a parametric model that, with respect to several strong modeling assump-
tions, accounts for two biases: time-varying reporting and disease-delayed mortality. For definitions
and discussion of our model parameters, see Table 1. With reference to Figure 1, the model accounts
for the time-dependence of D → DF and from D → DR (i.e., it models how the values of these
conditional probabilities change as a function of time), and also for the time delay across those same
edges. This model was previously used by Reich et al. (2012) for CFR estimation of influenza. It
is a covariate-independent reporting model that assumes all non-fatal cases eventually recover, so
it does not utilize the time series of recoveries. Similar parametric models have been used for CFR
estimation during other pandemics (Ejima et al., 2012; Frome & Checkoway, 1985). When none of
the biases in Section 2 other than the time dependence and time delay across D→ DF and D→ DR
are large and the mathematical assumptions stated below are satisfied, this estimator has a smaller
total error than Enaive and Eobs, evidenced by empirical evaluations in Reich et al. (2012).

Suppose that an individual is in group g and has infection onset at time ton. Such a case
has three possible outcomes, whose probabilities we define below (4). For further information, see
also Table (2). First, the individual may eventually recover and be diagnosed. This occurs with
probability ρ(1)ton,g, see Eq. (4a). Secondly, they may eventually die, having been diagnosed. This
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diagnosed undiagnosed

death included in scenario 1 included in scenario 3
recovery included in scenario 2 included in scenario 3

Table 2. Outcome scenarios for COVID-19 patients, for patients with onset at time ton and in group
g. In our notation, scenario i occurs with probability ρ(i)ton,g and has count N (i)

ton,g, for i = 1, 2, 3.

occurs with probability ρ(2)ton,g; see Eq. (4b). Finally, they may go entirely undiagnosed. This occurs
with the remaining probability, ρ(3)ton,g; see Eq. (4c). In summary:

ρ
(1)
ton,g = φton,g (1− pton,g) , (4a)

ρ
(2)
ton,g = ψton,gpton,g, (4b)

ρ
(3)
ton,g = 1− ρ(1)ton,g − ρ

(2)
ton,g = pton,g (1− ψton,g) + (1− pton,g)(1− φton,g) . (4c)

Accordingly, at each onset time ton and for each group g, there are N (1)
ton,g, N

(2)
ton,g, and N

(3)
ton,g

individuals who eventually recover, die, or go undiagnosed respectively. Given a total number of
cases within group g with onset at time ton, denotedN∗ton,g, we model the outcomes via amultinomial
model :

(N
(1)
ton,g, N

(2)
ton,g, N

(3)
ton,g)

ind.∼ Multinomial
(
N∗ton,g, ρ

(1)
ton,g, ρ

(2)
ton,g, ρ

(3)
ton,g

)
, for all ton and g. (5)

We assume these are independent across onset times and group. Furthermore, we assume knowledge
of certain horizon probabilities. In order to define an estimator, we also need probabilities ηt,ton,g,
for t ≥ 0. These are probabilities that, given an individual is in group g and has onset of infection
at time ton, they die t days later. We make the assumption that ηt,ton,g ≡ ηt for all ton, g. That is,
these probabilities are time- and group-invariant. See Reich et al. (2012) for further analysis and
evaluation of this model.

The estimator: Let Nton,g denote the reported total number of cases of COVID-19 with onset at
time ton in group g. Unfortunately, this is not the quantity of true interest. Instead, as mentioned
above, we need N∗ton,g, which is the number of number of both reported and unreported cases. Let
E denote the expectation operator. In particular, EN?

ton,g
will be an expectation with respect to

the multinomial model in Equation 5 indexed by N?
ton,g. As a simplifying assumption, we assume

ρ
(2)
ton,g ≡ pg; that is, the group-specific death probability or CFR is time-invariant. If the pg are

small, then N∗t,g ≈ Nt,g/φt,g, in which case from our multinomial (5), it is easy to check that:

EN?
ton,g

[
N

(2)
ton,g

]
= N

(2)
ton,gρ

(2)
ton,g ≈ Nton,g

ρ
(2)
ton,g

φton,g
. (6)

In particular, if we assume that death is a rare event, then a Poisson approximation will be accurate:

N
(2)
ton,g ∼ Poisson

(
Nton,g

ρ
(2)
ton,g

φton,g

)
, (7)
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where Nton,g denotes the number of cases with onset at time ton within group g. In view of (4b),
this may be rewritten as:

N
(2)
ton,g ∼ Poisson

(
Nton,g

ψton,gpton
φton,g

)
. (8)

If we make either an assumption that the reporting rates are group-invariant, or that there is perfect
fatal-case reporting, ψt,g ∝ φt,g, then it is possible to rewrite the model in the form:

log
{
E
[
N

(2)
ton,g

]}
≈ log {Nton,g + β0 + αton + γg} , (9)

where β0 is a proportionality constant, γg is a group-specific parameter (the relative CFR), and αton
is a time-specific parameter. Finally, given these values, along with the death probabilities ηt, an
expectation-maximization scheme can be carried out to compute a maximum-likelihood estimator.
For further details, see sections 3.2 and 3.3 of Reich et al. (2012). They show empirically that as
long as pg stays below 0.05, and their assumptions are approximately satisfied, the estimated CFR
has relative error < 0.1 as compared to the ground truth. Their results also indicate that this model
is insensitive to various misspecifications, including the distribution of deaths, ηt. We confirm this
in Figure 2 by sampling parameters of ηt from their estimated confidence intervals (Linton et al.,
2020).

5 Results

We report the results of our analysis of open-sourced COVID-19 data from Johns Hopkins, under the
assumption that the reporting rates ψt and φt are group-invariant. We contribute an open-source
multithreaded implementation of Reich et al. and a plotting utility that will allow reproducibility
of these results, as shown in Figure 2. Finally, we report the relative CFR of women to men in
Germany and Belgium using sex-disaggregated data from Riffe (2020).

5.1 Estimates of Relative CFRs

The corrected relative CFRs, calculated for six combinations of nations, are listed in Figure 2. In
some cases, such as the comparison between England (GBR) and Italy (ITA), our estimator flips
the direction of the relative CFR. In other words, Enaive and Eobs suggest that England has a higher
CFR than Italy, while EReich suggests otherwise. The same effect happens in the case of Switzerland
(CHE) vs Germany (DEU), with an additional shrinkage in the distance towards 1, indicating the
relative CFR is more similar than Enaive and Eobs would suggest. The estimate of the relative CFR
for Spain (ESP) to South Korea (KOR) predicted by EReich is high at 30.27. Although we assumed
in Section 4 that the relative CFR is constant in time, we report our results as a time series in
Figure 2. We obtain this time series by calculating results as if we had run our estimator on every
day between April 2, 2020 and April 16, 2020 using the cumulative data.

Using the data from Riffe (2020), we calculated the relative CFR of women to men in Germany
and Belgium. In Germany, Enaive = 1.51 and EReich = 1.14 (Sensitivity 1.14 − 1.22). In Belgium,
Enaive = 1.68 and EReich = 1.25 (Sensitivity 1.13 − 1.26). Time series data of recoveries is not
available, so we could not calculate Eobs. We chose Germany and Belgium because the data from
these nations had about two months of seemingly reliable, day-by-day, sex-disambiguated data that
roughly matched the numbers from Johns Hopkins. The dataset from Riffe et al. was still under
development at the time we ran these estimates.
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Estimator AUT/KOR CHE/DEU GBR/ITA IRN/DEU ESP/KOR IRN/BEL
Enaive 1.37 1.59 1.01 2.03 4.96 0.44
Eobs 1.49 1.5 2.8 1.69 7.28 0.21

EReich
1.15

(0.83, 1.55)
0.81

(0.62, 1.23)
0.68

(0.58, 0.94)
2.03

(1.99, 2.37)
30.27

(12.75, 55.23)
0.38

(0.27, 0.44)

Figure 2. The estimators Enaive, Eobs, and EReich presented as time series from April 2,
2020 to April 16, 2020. Our estimator, in red, implements the correction for time-dependent
relative reporting rates between countries identified by their ISO abbreviations. Sensitivity of our
results to misparameterization of ηt is reported by setting ηt to be a discretized Gamma distribution
with mean (12.8, 17.5) and variance (5.2,9.1), the lower and upper extremes of the 95% confidence
intervals referenced (Linton et al., 2020). The ribbon shows the maximum and minimum values of
the estimator EReich at each time point under any combination of these conditions. The expectation
maximization algorithm converged in all cases with negligible variance. We include the relative CFR
of Spain to South Korea as an example of two countries for which our assumptions are particularly
badly violated. Consequently, the method is unstable in that case (although we have no ground truth
data for confirmation). Notice each plot has a different vertical axis scaling. We have included an
orange line at a relative CFR of 1 to indicate the point when two countries have the same estimated
CFR; this provides a reference point between the plots.

5.2 Choosing ηt

As described in Section 4, we assume access to probabilities ηt that indicate the probability of death
occurring for a fatal case t days post-onset of COVID-19. Since our model indexes time by day,
we need to set ηt for integers t ≥ 0. Our choice of distribution is the best-fit discretized Gamma
distribution to the fatality time horizons from Chinese data (shape parameter k = 4.726 and scale
θ = 3.174) (Linton et al., 2020). These parameters were roughly consistent across several other
studies (Mizumoto & Chowell, 2020; W. Wang et al., 2020). We discretized the probability density
function ηt to the days t = 0, . . . , T . Formally, after selecting a mean parameter tavg > 0, we
determine the probabilities ηt by3

ηt ∝ tk−1e−t/θ, t = 0, . . . , T. (10)

Stated differently, for a given mean parameter tavg, we define a probability measure η ∈ RT
+,

on t ∈ {0, . . . , T}, according to (10). See Figure 3 for an illustration of this distribution. In our
3The notation ∝ is hiding a positive normalization constant to make η a probability measure.
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Figure 3. Illustration of distribution of death times for fatal cases, ηt, in days post
onset. Our method assumes knowledge of the probability of death for a fatal case t days post-onset
of COVID-19. This data was estimated by fitting a Gamma distribution to the fatality time horizons
from Chinese data in early February, 2020 (Linton et al., 2020). We discretize the distribution by day
and also truncate it to 25 days long, both for numerical stability and also because very few deaths
occurred past this point in the real data. The mean time to death was 15.0 (95% CI 12.8 − 17.5).
The standard deviation was 6.9 (95% CI 5.2 − 9.1), which we also used in our sensitivity analysis
above. The three separate gamma distributions plotted above have different choices of mean value
for illustrative purposes, to show the qualitative effect of changing the parameter.

experiments, we truncate at T = 25, both for numerical stability and also because very few deaths
occur after 25 days in the data used to fit the Gamma distribution.

6 Discussion

We emphasize again that the procedure that we have presented for estimation of relative CFR
seeks to address only a subset of the biases that impinge upon the ascertainment of this important
population-level parameter. We explicitly account for the time-dependence of reporting rates that
may differ between fatal and non-fatal cases. We have separate time-dependent reporting rates for
cases that will eventually be fatal or non-fatal, addressing the fact that reporting is higher among
severe cases. Deaths are known to vary with some combination of healthcare quality and age,
which can be quantified with a relative CFR estimate. Our covariate-independent reporting rate
assumption likely does not hold in practice. Indeed, the relative CFR of Spain with respect to Korea
(two countries whose time-dependent reporting rates are probably different) yields a value of 30.27,
likely speaking to the limitations of this method, although we do not have ground truth. Although
Reich et al. present extensive experimental evaluations and some theory indicating that the method
outperforms Enaive under given modeling assumptions, it is not generally possible to check how
closely these assumptions hold, due to overparameterization of the unrestricted model. This issue
may be mitigated by working with domain experts who understand each group’s sampling and
reporting patterns. Another issue is that our estimator uses parameters ηt that are not estimated
strictly from surveillance data but rather from individualized death times (Linton et al., 2020).
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Figure 4. Under the assumptions in the
contact-tracing scenario, Enaive converges
in few samples to an unbiased estima-
tor of the CFR. The bound on the num-
ber of samples N derived in the Appendix A,
N ≥ d log(δ/p)log(1−q)e (Eq. 16) was used to calculate
the values in the table. Notice N is a func-
tion of δ/p (the acceptable relative error) and
q (the reporting rate). The empirical distribu-
tion functions of Enaive with different parame-
ters of p and N and a reporting rate q = 0.7 are
plotted. Notice that as p decreases, detecting
a case will require larger N .

We believe that the maximum-likelihood es-
timator that we have presented may provide a
more valid correction of relative reporting rates
between German women and men rather than
between South Korean people and Italian peo-
ple, given that reporting rates by sex may be
closer to identical than reporting rates by coun-
try, although biases by sex still exist (Guerra-
Silveira & Abad-Franch, 2013). Demographers
have argued that releasing data stratified by
sex, age, and other demographic groups would
aid in understanding the spread and fatality
rates of COVID-19 (Dowd et al., 2020). Al-
though certain teams like Riffe (2020) are cur-
rently assembling this data, many agencies are
reporting such strata infrequently or not at all,
making data collection difficult. To our knowl-
edge, there is no well-established data reposi-
tory (like the Johns Hopkins repository) that
contains time-series data of deaths and cases
stratified by sex, age, etc.

Many of the key biases that we reviewed in
Section 2 remain unaddressed in current data-
collection and data-analysis pipelines. Varia-
tions in the nature of the population within
the sampling frame that gets tested, due to
government- or geography-specific protocols will
cause any CFR estimate to be unreliable. In
particular, details in the definitions of terms
across countries and times can result in severe
bias in time series data; for example, China’s
explicit policy was that they would not report
asymptomatic cases until April 1, 2020, when
the policy changed (Jiang, 2020). Accounting
for many of the biases we have discussed may
be possible with great effort by many data an-
alysts. However, it is equally important for
the statistical community to channel much of
its energy into a unison clarion call to govern-
ments: to get estimates to support consequen-
tial policy-making, we need more and better
data.

Contact tracing is a particularly powerful
way to obtain data that allow otherwise in-
tractable biases to be controlled, since it ex-
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pands the sampling frame to include a much larger portion of our target population, specifically
mild cases. Contact tracing is the process of reaching out to all individuals (“contacts”) who were
recently exposed to a known COVID-19 positive individual, removing them from circulation, and
monitoring their health. The same is done for contacts of contacts, and so on, for an appropriate
number of iterations. We suggest that all of these contacts should be tested for COVID-19 one
incubation period after exposure, regardless of whether or not they are symptomatic. The num-
ber of data points gleaned from this strategy will be lower than the number of data points from
surveillance data. However, the population sampled using this strategy would be closer to the target
population, since it would include asymptomatic cases. Furthermore, there is no issue with time
lag, since these cases can be tracked systematically. Specifically, assume the non-response rate to
contact tracing is identical for asymptomatic and symptomatic cases. As we prove in Appendix A,
this is the exact condition under which Enaive is an asymptotically unbiased estimator. Moreover,
the estimator has desirable finite-sample properties in such a setting. Letting p be the true CFR
and q be the reporting rate among infected cases, we have that Enaive lies within a range δ of p in
N = d log(δ/p)log(1−q)e samples; see Eq. 16 below. As seen in Figure 4, N does not need to be too large to
insure that the bias of Enaive is small, although with small p, sampling any fatal cases requires N
to be on the order of 1

p in this simplified model.
Contact tracing does not eliminate all biases. The assumption that non-response rates do not

vary by case severity will not hold unless responses are mandatory, possibly introducing significant
error, especially as p becomes small. Assay sensitivity and specificity may still cause errors. Most
importantly, care must be taken to make valid inferences about the desired target population based
on individualized contact tracing data that may come from a restricted sample. One major hurdle
is estimation of p when it is small: as shown in Figure 4, if death is an very rare event, N would
need to be large in order to ensure enough fatal cases are sampled. Finally, such data may be easier
to collect and release in some countries and jurisdictions than others. For example, within the
United States, medical privacy and consent laws may make it difficult to ever test a truly random
sample of the population, or to release the fine-grained data necessary for corrected estimators.
These challenges, outside the scope of our work, are well studied in the field of survey sampling and
reweighting.
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A Derivation of the expectation of Enaive

In this section we derive the expectation of Enaive. Our derivation will employ a stripped-down
notation, since here we deal with individual random variables for each COVID-19 infected person
instead of time-series data. Index the infected population with the integers {1, · · · , N}. Let Ti ∼
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Ber(p) be a Bernoulli random variable representing whether or not person i ∈ {1, . . . , N} died, and
let Wi ∼ Ber(q) be a Bernoulli random variable representing whether or not person i was diagnosed
with the virus. We want to estimate p, but we only have the reported number of deceased patients
with COVID-19, Vi = TiWi, i ∈ {1, . . . , N}. Defining r := Cov(Ti,Wi), the joint distribution of
(Ti,Wi) can be expressed as a contingency table:

Ti = 1 Ti = 0

Wi = 1 r + pq q(1− p)− r
Wi = 0 p(1− q)− r 1 + r − p− q + pq

Several of the results discussed in the main paper follow as simple consequences of the calculation
of the expectation of Enaive: (1)Enaive is unbiased for p in finite samples if and only if q = 1; (2)
Enaive is unbiased for p as N →∞ if and only if r = 0; (3) if there is an ε > 0 error in the estimation
of r, for example due to incorrect attribution of fatalities to COVID-19, then Enaive has unbounded
expectation q → 0 and unbounded relative error as p → 0; and (4) if r = 0, the smallest N such
that |E [Enaive]− p| ≤ δ is N = d log(δ/p)log(1−q)e.

The distribution of Vi is Bernoulli withP [Vi = 1] = r+pq. Also define γ1 = P [Wi = 1 | Ti = 1] =
(r + pq)/p. Applying the tower property of conditional expectation and using the exchangeability
of the (Ti,Wi) pairs, we have:

E

[ ∑N
i=1 Vi∑N
j=1Wi

]
=

N∑
i=1

E

[
V1∑N
j=1Wj

]
= NE

[
T1E

[
W1

1

W1 +
∑N

l=2Wl

∣∣∣∣∣ T1
]]

. (11)

Since W1 is independent of W2,...,N , we can express the sum in the denominator as a binomial
random variable, B ∼ Bin(N − 1, q), since it is a sum of N − 1 i.i.d. Bernoulli random variables
(W2, . . . ,WN ) with parameter q. Note the fact that E

[
1

1+B

]
= ((1 − (1 − q)N ))/Nq. Then,

evaluating the innermost expectation first:

NE

[
T1E

[
W1

1

W1 +B

∣∣∣∣ T1]] = NE

[
T1γ1E

[
1

1 +B

] ∣∣∣∣ T1] = p
γ1
q

(1− (1− q)N ). (12)

Finally, substituting for γ1, we obtain the final form:

E [Enaive] =
r + pq

q
(1− (1− q)N ). (13)

Recall that q is the probability of reporting given an infection, and p is the probability of death given
an infection. Since 1− q = 0 implies r = 0 because W becomes deterministic, Enaive is unbiased for
p if and only if q = 1. Moreover, if q 6= 1, taking N →∞ shows Enaive is asymptotically biased for
p if and only if r = 0. Both of these conditions are violated for any real disease. Interestingly this
empirical CFR is not constrained to be an underestimate, and can overestimate p if p ≤ r(1−(1−q)N )

q(1−q)N .
Under the assumption r ≥ ε, the (asymptotic) overestimate can be unboundedly bad. This

may arise if there is an ε error in estimating the covariance (which we assume to be nonnegative),
because some people are diagnosed with COVID-19 but their death is not caused by COVID-19. In
this context:

lim
q→0

r + pq

q
≥ lim

q→0

ε+ pq

q
=∞. (14)
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In other words, as the rate of reporting, q, decreases or the covariance between death and reporting
increases, the CFR estimate gets worse, ultimately becoming infinitely bad, as long as there is
a spuriously positive relationship between death and diagnosis. Similarly, the ratio Enaive/p can
become infinitely bad as the product pq decreases. Note that if there is no spurious relationship,
r → 0 as p→ 0 or q → 0 since W and T become deterministic under those conditions. In the case
of COVID-19, neither q nor p are near zero, but the limiting case helps to exhibit the qualitative
performance of the estimator—it gets more bias-prone with smaller p and q and with larger r.

Finally, assume that W and T are independent so r = 0. Then, |E [Enaive]−p| ≤ δ implies that

p| − (1− q)N | ≤ δ =⇒ N log(1− q) ≤ log(δ/p) =⇒ N ≥ log(δ/p)

log(1− q)
. (15)

Constraining N to be the smallest N ∈ N such that |E [Enaive]− p| ≤ δ gives

N = d log(δ/p)

log(1− q)
e. (16)

B Derivation of the asymptotics of Eobs

We borrow notation and proof technique from Reich et al. (2012). We use the same notation as the
main paper. This proof applies to the group-independent reporting rate model. In Reich et al., a
similar proof is shown that applies in the case of the constant-proportion assumption.

In addition to the notation in the main paper, define: dt,g := E[Dt,g] = N∗t,gpgψt and rt,g :=
E[Rt,g] = N∗t,g(1−pg)φt. Also, introduce two nonrandom functions, Fd(t)→ [0, 1] and Fr(t)→ [0, 1],
where Fd represents the fraction of confirmed, fatal cases who have died by time t. Similarly Fr
represents the fraction of confirmed, non-fatal cases who have recovered by time t. During an active
outbreak, we have Fd < 1 and Fr < 1. Finally, define T as the current time; all sums over time
below have an upper limit of T unless otherwise specified. We seek an asymptotic limit for:

Eobs =
Fd(T )Σt2Dt2,g

(Fd(T )Σt1Dt1,g) + (Fr(T )Σt1Rt1,g)
. (17)

By the weak law of large numbers, Dt,g and Rt,g converge to their expectations, so we have:

Fd(T )Dt,g

N∗t,g

p→ Fd(T )dt,g
N∗t,g

= Fd(T )pgψt, (18)

and similarly,
Fr(T )Rt,g
N∗t,g

p→ Fr(T )rt,g
N∗t,g

= Fr(T )(1− pg)φt. (19)

Now we focus on the denominator. We have to introduce a “smoothness” assumption: the
number of infected people at each timestep, N∗t1,g, has a constant ratio with respect to the number
of infected people at each other timestep, N∗t2,g. In particular, λt1,t2,g corresponds roughly to the
growth rate of the disease. Although this quantity would vary based on many factors in a real
setting, we assume it to be a constant here. In particular, as N∗t1,g →∞ and N∗t2,g →∞,

N∗t1,g
N∗t2,g

→ λt1,t2,g. (20)
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Therefore, we have by Slutsky’s theorem that:

Fd(T )Dt1,g + Fr(T )Rt1,g
N∗t2,g

p→ λt1,t2,g(Fd(T )pgψt1 + Fr(T )(1− pg)φt1). (21)

Now, applying the weak law of large numbers and our assumption:

Fd(T )Dt1,g + Fr(T )Rt1,g
N∗t2,g

=
N∗t1,g
N∗t2,g

(
Fd(T )Dt1,g

N∗t1,g
+
Fr(T )Rt1,g
N∗t1,g

)
p→ λt1,t2,g(Fd(T )pgψt1+Fr(T )(1−pg)φt1).

(22)
Then, by Slutsky’s theorem on the sum which is the denominator of Eobs divided by N∗t2,g,

Σt1

[
Fd(T )Dt1,g + Fr(T )Rt1,g

N∗t2,g

]
p→ Σt1λt1,t2,g(Fd(T )pgψt1 + Fr(T )(1− pg)φt1). (23)

Now, considering one term from the sum over t2 in Eobs, we have:

Fd(T )Dt2,g

Σt1Fd(T )Dt1,g + Fr(T )Rt1,g
=

Fd(T )Dt2,g/N
∗
t2,g

Σt1(Fd(T )Dt1,g + Fr(T )Rt1,g)/N
∗
t2,g

(24)

p→ Fd(T )pgψt2
Σt1(λt1,t2,g(Fd(T )pgψt1 + Fr(T )(1− pg)φt1))

. (25)

Finally, rearranging terms and appealing once more to Slutsky’s theorem:

Eobs
p→ Σt2

Fd(T )pgψt
Fd(T )(Σt1λt1,t2,gpgψt) + Fr(T )(Σt1λt1,t2,g(1− pg)φt)

. (26)

This is clearly a biased estimator of pg.
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