Combinatorial Stochastic Processes and Nonparametric Bayesian Modeling

Michael I. Jordan

Department of Electrical Engineering and Computer Science
Department of Statistics
University of California, Berkeley

http://www.cs.berkeley.edu/~jordan

Acknowledgments: Yee Whye Teh, Romain Thibaux
A Little Random Combinatorics Problem

• Consider the set of the permutations of the integers \(\{1, \ldots, n\} \)

• Consider the uniform distribution on this set

• Q: What is the probability that \(i \) and \(j \) appear together in the same cycle in this random process?
Nonparametric Bayesian Inference (Theme I)

• At the core of Bayesian inference lies Bayes’ theorem:

\[\text{posterior} \propto \text{likelihood} \times \text{prior} \]

• For parametric models, we let \(\theta \) be a Euclidean parameter and write:

\[p(\theta|x) \propto p(x|\theta)p(\theta) \]

• For nonparametric models, we let \(G \) be a general stochastic process (an “infinite-dimensional random variable”) and write:

\[p(G|x) \propto p(x|G)p(G) \]

which frees us to work with flexible data structures
Nonparametric Bayesian Inference (cont)

• Examples of stochastic processes we'll mention today include distributions on:
 – directed trees of unbounded depth and unbounded fan-out
 – partitions
 – sparse binary infinite-dimensional matrices
 – copulae
 – distributions

• A general mathematical tool: Lévy processes
Hierarchical Bayesian Modeling (Theme II)

- Hierarchical modeling is a key idea in Bayesian inference

- It’s essentially a form of recursion
 - in the parametric setting, it just means that priors on parameters can themselves be parameterized
 - in our nonparametric setting, it means that a stochastic process can have as a parameter another stochastic process

- We’ll use hierarchical modeling to build structured objects that are reminiscent of graphical models—but are nonparametric!
 - statistical justification—the freedom inherent in using nonparametrics needs the extra control of the hierarchy
What are “Parameters”?

- **Exchangeability**: invariance to permutation of the joint probability distribution of infinite sequences of random variables

Theorem (De Finetti, 1935). If \((x_1, x_2, \ldots)\) are infinitely exchangeable, then the joint probability \(p(x_1, x_2, \ldots, x_N)\) has a representation as a mixture:

\[
p(x_1, x_2, \ldots, x_N) = \int \left(\prod_{i=1}^{N} p(x_i | G) \right) dP(G)
\]

for some random element \(G\).

- The theorem would be false if we restricted ourselves to finite-dimensional \(G\)
Stick-Breaking

• A general way to obtain distributions on countably-infinite spaces

• A canonical example: Define an infinite sequence of beta random variables:

\[\beta_k \sim \text{Beta}(1, \alpha_0) \quad k = 1, 2, \ldots \]

• And then define an infinite random sequence as follows:

\[\pi_1 = \beta_1, \quad \pi_k = \beta_k \prod_{l=1}^{k-1} (1 - \beta_l) \quad k = 2, 3, \ldots \]

• This can be viewed as breaking off portions of a stick:

\[\beta_1 \quad \beta_2 (1-\beta_1) \quad \ldots \]
Constructing Random Measures

- It’s not hard to see that $\sum_{k=1}^{\infty} \pi_k = 1$

- Now define the following object:

$$G = \sum_{k=1}^{\infty} \pi_k \delta_{\phi_k},$$

where ϕ_k are independent draws from a distribution G_0 on some space

- Because $\sum_{k=1}^{\infty} \pi_k = 1$, G is a probability measure—it is a random measure

- The distribution of G is known as a Dirichlet process: $G \sim \text{DP}(\alpha_0, G_0)$

- What exchangeable marginal distribution does this yield when integrated against in the De Finetti setup?
Chinese Restaurant Process (CRP)

- A random process in which n customers sit down in a Chinese restaurant with an infinite number of tables
 - first customer sits at the first table
 - mth subsequent customer sits at a table drawn from the following distribution:

\[
P(\text{previously occupied table } i \mid \mathcal{F}_{m-1}) \propto n_i \\
P(\text{the next unoccupied table } \mid \mathcal{F}_{m-1}) \propto \alpha_0
\]

(1)

where n_i is the number of customers currently at table i and where \mathcal{F}_{m-1} denotes the state of the restaurant after $m - 1$ customers have been seated
The CRP and Clustering

- Data points are customers; tables are clusters
 - the CRP defines a prior distribution on the partitioning of the data and on the number of tables

- This prior can be completed with:
 - a likelihood—e.g., associate a parameterized probability distribution with each table
 - a prior for the parameters—the first customer to sit at table k chooses the parameter vector for that table (ϕ_k) from a prior G_0

- So we now have a distribution—or can obtain one—for any quantity that we might care about in the clustering setting
CRP Prior, Gaussian Likelihood, Conjugate Prior

\[\phi_k = (\mu_k, \Sigma_k) \sim N(a, b) \otimes IW(\alpha, \beta) \]

\[x_i \sim N(\phi_k) \quad \text{for a data point } i \text{ sitting at table } k \]
Exchangeability

- As a prior on the partition of the data, the CRP is exchangeable.

- The prior on the parameter vectors associated with the tables is also exchangeable.

- The latter probability model is generally called the Pólya urn model. Letting θ_i denote the parameter vector associated with the ith data point, we have:

 $$\theta_i | \theta_1, \ldots, \theta_{i-1} \sim \alpha_0 G_0 + \sum_{j=1}^{i-1} \delta_{\theta_j}$$

- From these conditionals, a short calculation shows that the joint distribution for $(\theta_1, \ldots, \theta_n)$ is invariant to order (this is the exchangeability proof).

- As a prior on the number of tables, the CRP is nonparametric—the number of occupied tables grows (roughly) as $O(\log n)$—we’re in the world of nonparametric Bayes.
Dirichlet Process Mixture Models

\[G \sim \text{DP}(\alpha_0 G_0) \]
\[\theta_i \mid G \sim G \quad i \in 1, \ldots, n \]
\[x_i \mid \theta_i \sim F(x_i \mid \theta_i) \quad i \in 1, \ldots, n \]
Marginal Probabilities

• To obtain the marginal probability of the parameters $\theta_1, \theta_2, \ldots$, we need to integrate out G

• This marginal distribution turns out to be the Chinese restaurant process (more precisely, it’s the Pólya urn model)
Protein Folding

- A protein is a folded chain of amino acids
- The backbone of the chain has two degrees of freedom per amino acid (phi and psi angles)
- Empirical plots of phi and psi angles are called Ramachandran diagrams
Protein Folding (cont.)

• We want to model the density in the Ramachandran diagram to provide an energy term for protein folding algorithms.

• We actually have a linked set of Ramachandran diagrams, one for each amino acid neighborhood.

• We thus have a linked set of clustering problems.
 – note that the data are *partially exchangeable*.
Haplotype Modeling

• Consider \(M \) binary markers in a genomic region

• There are \(2^M \) possible haplotypes—i.e., states of a single chromosome
 – but in fact, far fewer are seen in human populations

• A genotype is a set of unordered pairs of markers (from one individual)

\[
\begin{array}{ccc}
A & B & c \\
a & b & C \\
\end{array}
\quad\rightarrow\quad
\begin{array}{c}
\{A, a\} \\
\{B, b\} \\
\{C, c\} \\
\end{array}
\]

• Given a set of genotypes (multiple individuals), estimate the underlying haplotypes

• This is a clustering problem
Haplotype Modeling (cont.)

• A key problem is inference for the number of clusters

• Consider now the case of multiple groups of genotype data (e.g., ethnic groups)

• Geneticists would like to find clusters within each group but they would also like to share clusters between the groups
Natural Language Parsing

- Given a corpus of sentences, some of which have been parsed by humans, find a grammar that can be used to parse future sentences

```
S
  /   
NP VP
  /   /
lo vado a Roma
```

- Much progress over the past decade; state-of-the-art methods are statistical
Natural Language Parsing (cont.)

• Key idea: *lexicalization* of context-free grammars
 – the grammatical rules \(S \rightarrow \text{NP VP} \) are conditioned on the specific lexical items (words) that they derive

• This leads to huge numbers of potential rules, and (adhoc) shrinkage methods are used to control the counts

• Need to control the numbers of clusters (model selection) in a setting in which many tens of thousands of clusters are needed

• Need to consider related groups of clustering problems (one group for each grammatical context)
Nonparametric Hidden Markov Models

• An open problem—how to work with HMMs and state space models that have an unknown and unbounded number of states?

• Each row of a transition matrix is a probability distribution across “next states”

• We need to estimation these transitions in a way that links them across rows
Image Segmentation

- Image segmentation can be viewed as inference over partitions
 - clearly we want to be nonparametric in modeling such partitions

- Standard approach—use relatively simple (parametric) local models and relatively complex spatial coupling

- Our approach—use a relatively rich (nonparametric) local model and relatively simple spatial coupling
 - for this to work we need to combine information across images; this brings in the hierarchy
Hierarchical Nonparametrics—A First Try

- Idea: Dirichlet processes for each group, linked by an underlying G_0:

- Problem: the atoms generated by the random measures G_i will be distinct—i.e., the atoms in one group will be distinct from the atoms in the other groups—no sharing of clusters!

- Sometimes ideas that are fine in the parametric context fail (completely) in the nonparametric context... :-(

![Diagram](image-url)
Hierarchical Dirichlet Processes
(Teh, Jordan, Beal & Blei, 2006)

• We need to have the base measure G_0 be discrete
 – but also need it to be flexible and random
Hierarchical Dirichlet Processes
(Teh, Jordan, Beal & Blei, 2006)

- We need to have the base measure G_0 be discrete
 - but also need it to be flexible and random
- The fix: Let G_0 itself be distributed according to a DP:
 \[
 G_0 \mid \gamma, H \sim \text{DP}(\gamma H)
 \]
- Then
 \[
 G_j \mid \alpha, G_0 \sim \text{DP}(\alpha_0 G_0)
 \]

has as its base measure a (random) atomic distribution—samples of G_j will resample from these atoms
Hierarchical Dirichlet Process Mixtures

\[G_0 \mid \gamma, H \sim \text{DP}(\gamma H) \]
\[G_i \mid \alpha, G_0 \sim \text{DP}(\alpha_0 G_0) \]
\[\theta_{ij} \mid G_i \sim G_i \]
\[x_{ij} \mid \theta_{ij} \sim F(x_{ij}, \theta_{ij}) \]
Chinese Restaurant Franchise (CRF)

- First integrate out the G_i, then integrate out G_0
Chinese Restaurant Franchise (CRF)

- To each group there corresponds a restaurant, with an unbounded number of tables in each restaurant
- There is a global menu with an unbounded number of dishes on the menu
- The first customer at a table selects a dish for that table from the global menu
- Reinforcement effects—customers prefer to sit at tables with many other customers, and prefer to choose dishes that are chosen by many other customers
Protein Folding (cont.)

- We have a linked set of Ramachandran diagrams, one for each amino acid neighborhood.

![NONE, ALA, SER](image1)

![ARG, PRO, NONE](image2)
Protein Folding (cont.)

Marginal improvement over finite mixture

hdp: right additive model
Natural Language Parsing

• Key idea: *lexicalization* of context-free grammars

 – the grammatical rules \(S \rightarrow \text{NP VP} \) are conditioned on the specific lexical items (words) that they derive

• This leads to huge numbers of potential rules, and (adhoc) shrinkage methods are used to control the choice of rules
HDP-PCFG
(Liang, Petrov, Jordan & Klein, 2007)

• Based on a training corpus, we build a lexicalized grammar in which the rules are based on word clusters

• Each grammatical context defines a clustering problem, and we link the clustering problems via the HDP

<table>
<thead>
<tr>
<th>T</th>
<th>PCFG F_1</th>
<th>Size</th>
<th>HDP-PCFG F_1</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>60.4</td>
<td>2558</td>
<td>60.5</td>
<td>2557</td>
</tr>
<tr>
<td>4</td>
<td>76.0</td>
<td>3141</td>
<td>77.2</td>
<td>9710</td>
</tr>
<tr>
<td>8</td>
<td>74.3</td>
<td>4262</td>
<td>79.1</td>
<td>50629</td>
</tr>
<tr>
<td>16</td>
<td>66.9</td>
<td>19616</td>
<td>78.2</td>
<td>151377</td>
</tr>
<tr>
<td>20</td>
<td>64.4</td>
<td>27593</td>
<td>77.8</td>
<td>202767</td>
</tr>
</tbody>
</table>
Nonparametric Hidden Markov models

- A perennial problem—how to work with HMMs that have an unknown and unbounded number of states?

- A straightforward application of the HDP framework
 - multiple mixture models—one for each value of the “current state”
 - the DP creates new states, and the HDP approach links the transition distributions
Nonparametric Hidden Markov Trees

(Kivinen, Sudderth & Jordan, 2007)

- Hidden Markov trees in which the cardinality of the states is unknown a priori
- We need to tie the parent-child transitions across the parent states; this is done with the HDP
Nonparametric Hidden Markov Trees (cont.)

- Local Gaussian Scale Mixture (31.84 dB)
Nonparametric Hidden Markov Trees (cont.)

- Hierarchical Dirichlet Process Hidden Markov Tree (32.10 dB)
• Image segmentation can be viewed as inference over partitions
 – clearly we want to be nonparametric in modeling such partitions

• Image statistics are better captured by the Pitman-Yor stick-breaking processes than by the Dirichlet process
• So we want Pitman-Yor marginals at each site in an image

• The (perennial) problem is how to couple these marginals spatially
 – to solve this problem, we again go nonparametric—we couple the PY marginals using Gaussian process copulae
Image Segmentation (cont)

(Sudderth & Jordan, 2008)

- A sample from the coupled HPY prior:
Image Segmentation (cont)

(Sudderth & Jordan, 2008)

- Comparing the HPY prior to a Markov random field prior
Image Segmentation (cont)

(Sudderth & Jordan, 2008)
Beta Processes

• The Dirichlet process yields a multinomial random variable (which table is the customer sitting at?)

• Problem: in many problem domains we have a very large (combinatorial) number of possible tables
 – it becomes difficult to control this with the Dirichlet process

• What if instead we want to characterize objects as collections of attributes ("sparse features")?

• Indeed, instead of working with the sample paths of the Dirichlet process, which sum to one, let’s instead consider a stochastic process—the beta process—which removes this constraint

• And then we will go on to consider hierarchical beta processes, which will allow features to be shared among multiple related objects
Lévy Processes

- Stochastic processes with independent increments
 - e.g., Gaussian increments (Brownian motion)
 - e.g., gamma increments (gamma processes)
 - in general, (limits of) compound Poisson processes

- The Dirichlet process is not a Lévy process
 - but it’s a normalized gamma process

- The beta process assigns beta measure to small regions

- Can then sample to yield (sparse) collections of Bernoulli variables
Beta Processes

Concentration $c = 10$ Mass $\gamma = 2$
Examples of Beta Process Sample Paths

- Effect of the two parameters c and γ on samples from a beta process.
Beta Processes

• The marginals of the Dirichlet process are characterized by the Chinese restaurant process

• What about the beta process?
Indian Buffet Process (IBP)
(Griffiths & Ghahramani, 2005; Thibaux & Jordan, 2007)

- Indian restaurant with infinitely many dishes in a buffet line
- N customers serve themselves
 - the first customer samples $\text{Poisson}(\alpha)$ dishes
 - the ith customer samples a previously sampled dish with probability $\frac{m_k}{i+1}$
 then samples $\text{Poisson}\left(\frac{\alpha}{i}\right)$ new dishes
Indian Buffet Process (IBP)
(Griffiths & Ghahramani, 2005; Thibaux & Jordan, 2007)

- Indian restaurant with infinitely many infinite dishes
- N customers serve themselves
 - the first customer samples $\text{Poisson}(\alpha)$ dishes
 - the ith customer samples a previously sampled dish with probability $\frac{m_k}{i+1}$
 then samples $\text{Poisson}\left(\frac{\alpha}{i}\right)$ new dishes
Indian Buffet Process (IBP)
(Griffiths & Ghahramani, 2005; Thibaux & Jordan, 2007)

- Indian restaurant with infinitely many infinite dishes
- \(N \) customers serve themselves
 - the first customer samples \(\text{Poisson}(\alpha) \) dishes
 - the \(i \)th customer samples a previously sampled dish with probability \(\frac{m_k}{i+1} \)
 then samples \(\text{Poisson}(\frac{\alpha}{i}) \) new dishes
Indian Buffet Process (IBP)
(Griffiths & Ghahramani, 2005; Thibaux & Jordan, 2007)

- Indian restaurant with infinitely many infinite dishes
- N customers serve themselves
 - the first customer samples $\text{Poisson}(\alpha)$ dishes
 - the ith customer samples a previously sampled dish with probability $\frac{m_k}{i+1}$
 then samples $\text{Poisson}(\frac{\alpha}{i})$ new dishes
A hierarchical beta process is a beta process whose base measure is itself random and drawn from a beta process.
Fixing Naive Bayes

A hierarchical Bayesian model correctly takes the weight of the evidence into account and matches our intuition regarding which topic should be favored when observing this word.

This can be done nonparametrically with the hierarchical beta process.
The Phylogenetic IBP
(Miller, Griffiths & Jordan, 2008)

- We don’t always want objects to be exchangeable; sometimes we have side information to distinguish objects
 - but if we lose exchangeability, we risk losing computational tractability

- In the phylo-IBP we use a tree to represent various forms of partial exchangeability

- The process stays tractable (belief propagation to the rescue!)
Conclusions

- New directions for nonparametric Bayesian modeling

- In pursuing this line of research, it’s been helpful to think about exchangeability and partial exchangeability

- We haven’t discussed inference algorithms, but many interesting issues and new challenges arise

- For more details

 http://www.cs.berkeley.edu/~jordan