### Feature Engineering and Selection

CS 294: Practical Machine Learning October 1<sup>st</sup>, 2009

Alexandre Bouchard-Côté

#### Abstract supervised setup

- Training :  $\{(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)\}$
- $\boldsymbol{x}_i$  : input vector

$$\boldsymbol{x}_{i} = \begin{bmatrix} x_{i,1} \\ x_{i,2} \\ \vdots \\ x_{i,n} \end{bmatrix}, \quad x_{i,j} \in \mathbb{R}$$

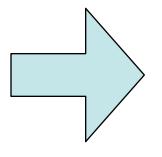
- *y* : response variable
  - $y \in \{-1, 1\}$ : binary classification
  - $-y \in \mathbb{R}$  : regression
  - what we want to be able to predict, having observed some new  $oldsymbol{x}$ .

#### **Concrete setup**

#### <u>Input</u>

<u>Output</u>







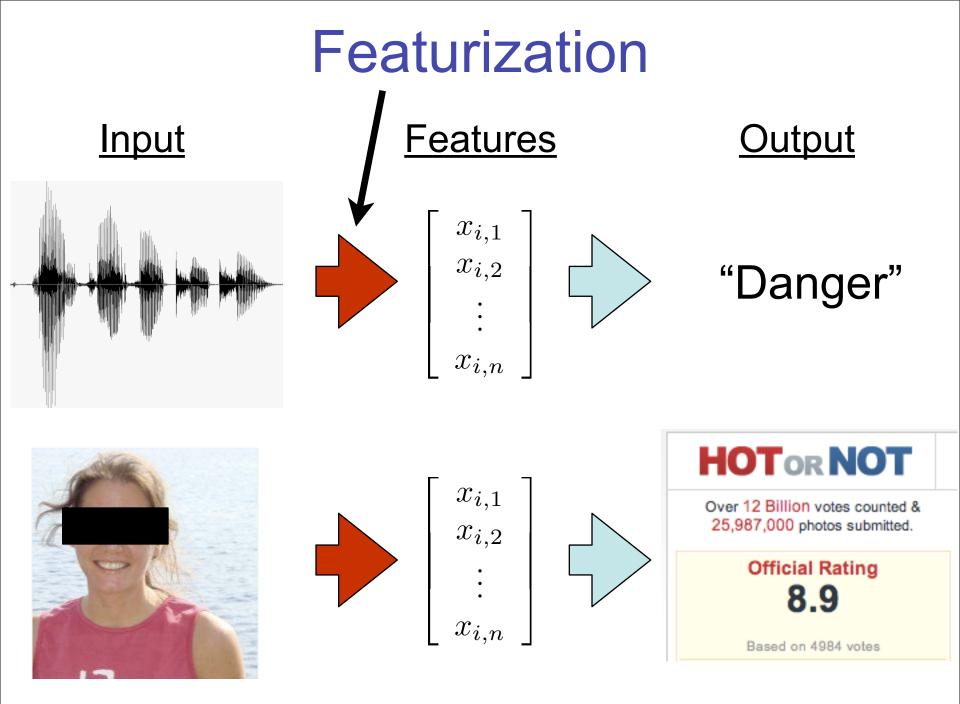




Over 12 Billion votes counted & 25,987,000 photos submitted.



Based on 4984 votes



#### Outline

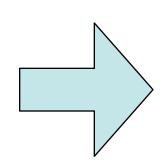
- Today: how to featurize effectively
  - Many possible featurizations
  - Choice can drastically affect performance
- Program:
  - Part I : Handcrafting features: examples, bag of tricks (feature engineering)
  - Part II: Automatic feature selection

## Part I: Handcrafting Features

Machines still need us

#### **Example 1: email classification**







- Input: a email message
- Output: is the email...
  - spam,
  - work-related,
  - personal, ...

#### Basics: bag of words

Indicator or

Kronecker

delta function

- Input: x (email-valued)
- Feature vector:

$$f(\boldsymbol{x}) = \begin{bmatrix} f_1(\boldsymbol{x}) \\ f_2(\boldsymbol{x}) \\ \vdots \\ f_n(\boldsymbol{x}) \end{bmatrix}, \quad \text{e.g. } f_1(\boldsymbol{x}) = \begin{cases} 1 \text{ if the email contains "Viagra"} \\ 0 \text{ otherwise} \end{cases}$$

- Learn one weight vector for each class:  $w_y \in \mathbb{R}^n, y \in \{\text{SPAM}, \text{WORK}, \text{PERS}\}$
- Decision rule:  $\hat{y} = \operatorname{argmax}_y \langle w_y, f(\boldsymbol{x}) \rangle$

#### Implementation: exploit sparsity Feature vector hashtable $f(\boldsymbol{x})$ extractFeature(Email e) { Feature template 1: **UNIGRAM:**Viagra result <- hashtable for (String word : e.getWordsInBody()) result.put("UNIGRAM:" + word, 1.0) String previous = "#" for (String word : e.getWordsInBody()) { result.put("BIGRAM:"+ previous + " " + word, 1.0) previous = word return result Feature template 2: } **BIGRAM:**Cheap Viagra

#### Features for multitask learning

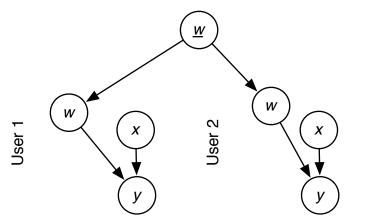
 Each user inbox is a separate learning problem

– E.g.: Pfizer drug designer's inbox

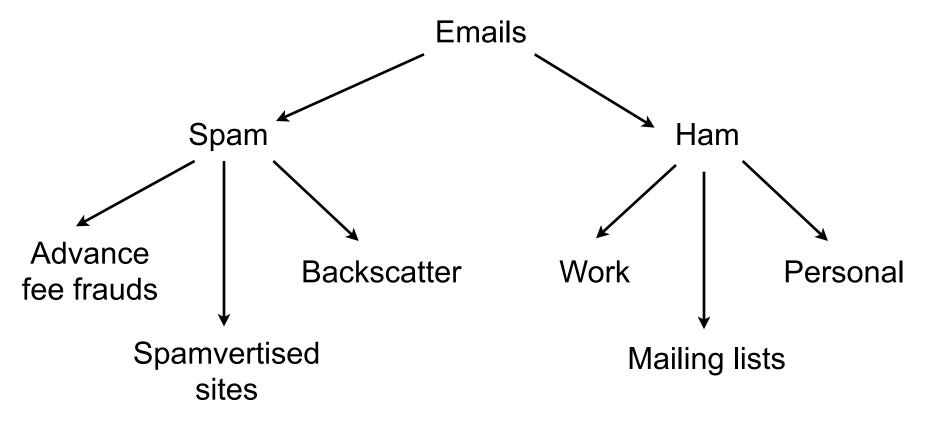
 Most inbox has very few training instances, but all the learning problems are clearly related

#### Features for multitask learning [e.g.:Daumé 06]

- Solution: include both user-specific and global versions of each feature. E.g.: – UNIGRAM:Viagra
  - USER\_id4928-UNIGRAM: Viagra
- Equivalent to a Bayesian hierarchy under some conditions (Finkel et al. 2009)



- In multiclass classification, output space often has known structure as well
- Example: a hierarchy:



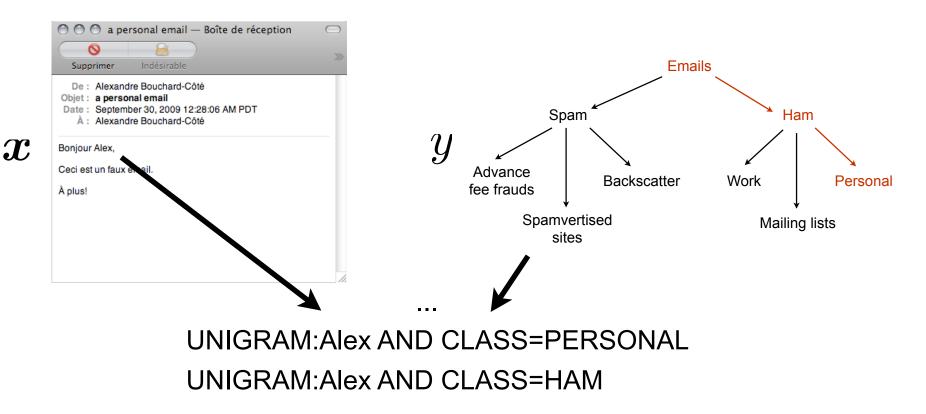
- Slight generalization of the learning/ prediction setup: allow features to depend both on the input x and on the class y
- <u>Before:</u> One weight/class:  $w_y \in \mathbb{R}^n$ ,
  - Decision rule:  $\hat{y} = \operatorname{argmax}_y \langle w_y, f(\boldsymbol{x}) \rangle$

<u>After:</u> • Single weight:  $w \in \mathbb{R}^m$ ,

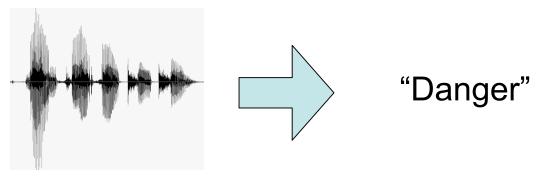
• New rule: 
$$\hat{y} = \operatorname{argmax}_y \langle w, f(\boldsymbol{x}, y) \rangle$$

- At least as expressive: conjoin each feature with all output classes to get the same model
- E.g.: UNIGRAM: Viagra becomes
  - UNIGRAM: Viagra AND CLASS=FRAUD
  - UNIGRAM: Viagra AND CLASS=ADVERTISE
  - UNIGRAM: Viagra AND CLASS=WORK
  - UNIGRAM: Viagra AND CLASS=LIST
  - UNIGRAM: Viagra AND CLASS=PERSONAL

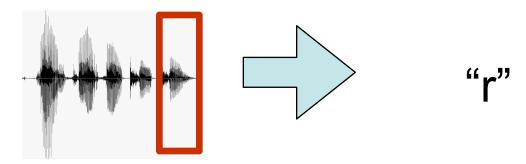
Exploit the information in the hierarchy by activating both coarse and fine versions of the features on a given input:



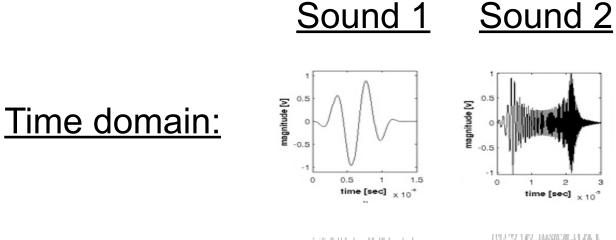
- Not limited to hierarchies
   multiple hierarchies
  - in general, arbitrary featurization of the output
- Another use:
  - want to model that if no words in the email were seen in training, it's probably spam
  - add a *bias* feature that is activated only in SPAM subclass (ignores the input): CLASS=SPAM



- Full solution needs HMMs (a sequence of correlated classification problems): Alex Simma will talk about that on Oct. 15
- Simpler problem: identify a single sound unit (phoneme)



- Step 1: Find a coordinate system where similar input have similar coordinates
  - Use Fourier transforms and knowledge about the human ear





time [sec] x 10

0

Frequency domain:

- Step 2 (optional): Transform the continuous data into discrete data
  - -Bad idea: COORDINATE=(9.54,8.34)
  - -Better: Vector quantization (VQ)
    - Run k-mean on the training data as a preprocessing step
    - Feature is the index of the nearest centroid



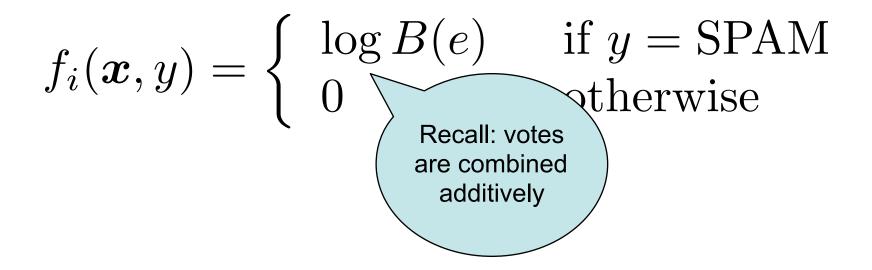
Important special case: integration of the output of a black box

- Back to the email classifier: assume we have an executable that returns, given a email *e*, its belief B(*e*) that the email is spam
- –We want to model monotonicity –Solution: thermometer feature

B(e) > 0.4 ANDB(e) > 0.6 ANDB(e) > 0.8 ANDCLASS=SPAMCLASS=SPAMCLASS=SPAM

. . .

Another way of integrating a qualibrated black box as a feature:



Part II: (Automatic) Feature Selection

#### What is feature selection?

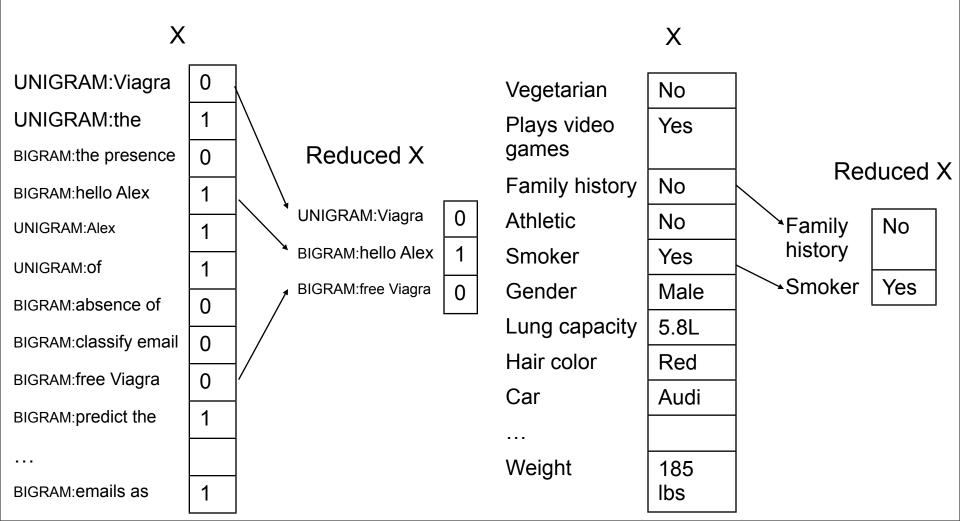
- Reducing the feature space by throwing out some of the features
- Motivating idea: try to find a simple, "parsimonious" model
  - Occam's razor: simplest explanation that accounts for the data is best

#### What is feature selection?

Task: classify emails as spam, work, ...

Data: presence/absence of words

Task: predict chances of lung disease Data: medical history survey



### Outline

- Review/introduction
  - What is feature selection? Why do it?
- Filtering
- Model selection
  - Model evaluation
  - Model search
- Regularization
- Summary recommendations

## Why do it?

 <u>Case 1</u>: We're interested in *features*—we want to know which are relevant. If we fit a model, it should be *interpretable*.

 <u>Case 2</u>: We're interested in *prediction;* features are not interesting in themselves, we just want to build a good classifier (or other kind of predictor).

#### Why do it? Case 1.

We want to know which features are relevant; we don't necessarily want to do prediction.

- What causes lung cancer?
  - Features are aspects of a patient's medical history
  - Binary response variable: did the patient develop lung cancer?
  - Which features best predict whether lung cancer will develop?
     Might want to legislate against these features.
- What causes a program to crash? [Alice Zheng '03, '04, '05]
  - Features are aspects of a single program execution
    - Which branches were taken?
    - What values did functions return?
  - Binary response variable: did the program crash?
  - Features that predict crashes well are probably bugs

#### Why do it? Case 2.

We want to build a good predictor.

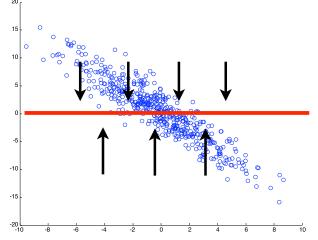
- Common practice: coming up with as many features as possible (e.g. > 10<sup>6</sup> not unusual)
  - Training might be too expensive with all features
  - The presence of irrelevant features hurts generalization.
- Classification of leukemia tumors from microarray gene expression data [Xing, Jordan, Karp '01]
  - 72 patients (data points)
  - 7130 features (expression levels of different genes)
- Embedded systems with limited resources
  - Classifier must be compact
  - Voice recognition on a cell phone
  - Branch prediction in a CPU
- Web-scale systems with zillions of features
  - user-specific n-grams from gmail/yahoo spam filters

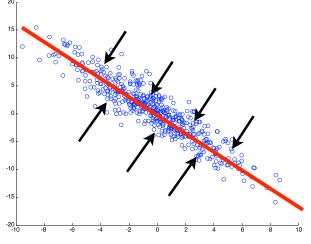
### Get at Case 1 through Case 2

- Even if we just want to identify features, it can be useful to *pretend* we want to do prediction.
- Relevant features are (typically) exactly those that most aid prediction.
- But not always. Highly correlated features may be redundant but both interesting as "causes".
  - -e.g. smoking in the morning, smoking at night

#### Feature selection vs. Dimensionality reduction

- Removing features:
  - Equivalent to projecting data onto lower-dimensional linear subspace perpendicular to the feature removed
- Percy's lecture: dimensionality reduction
  - allow other kinds of projection.
- The machinery involved is very different
  - Feature selection can can be faster at test time
  - Also, we will assume we have labeled data. Some dimensionality reduction algorithm (e.g. PCA) do not exploit this information





### Outline

- Review/introduction
  - What is feature selection? Why do it?
- Filtering
- Model selection
  - Model evaluation
  - Model search
- Regularization
- Summary

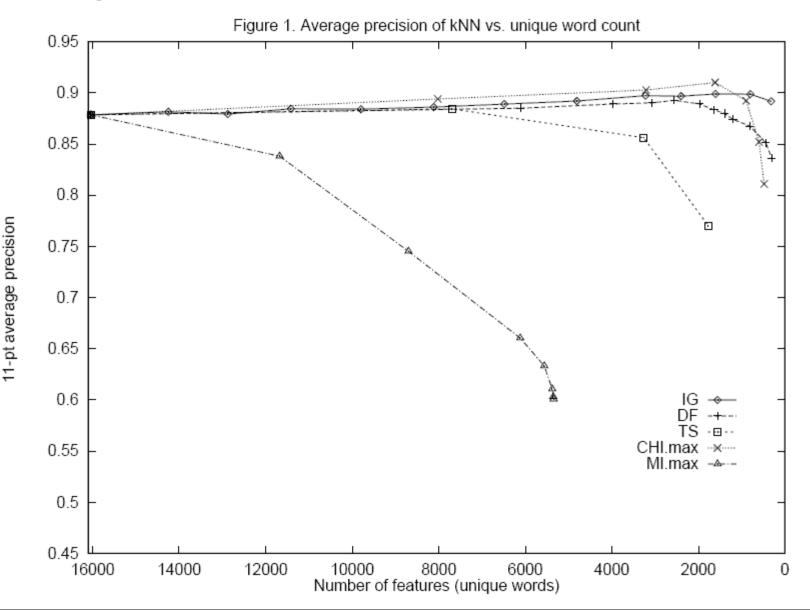
# Filtering

Simple techniques for weeding out irrelevant features without fitting model

### Filtering

- Basic idea: assign heuristic score to each feature *f* to filter out the "obviously" useless ones.
  - Does the individual feature seems to help prediction?
  - Do we have enough data to use it reliably?
  - Many popular scores [see Yang and Pederson '97]
    - Classification with categorical data: Chi-squared, information gain, document frequency
    - Regression: correlation, mutual information
    - They all depend on one feature at the time (and the data)
- Then somehow pick how many of the highest scoring features to keep

# Comparison of filtering methods for text categorization [Yang and Pederson '97]



### Filtering

- Advantages:
  - Very fast
  - Simple to apply
- Disadvantages:
  - Doesn't take into account interactions between features: Apparently useless features can be useful when grouped with others
- Suggestion: use light filtering as an efficient initial step if running time of your fancy learning algorithm is an issue

### Outline

- Review/introduction
  - What is feature selection? Why do it?
- Filtering
- Model selection
  - Model evaluation
  - Model search
- Regularization
- Summary

# **Model Selection**

 Choosing between possible models of varying complexity

- In our case, a "model" means a set of features

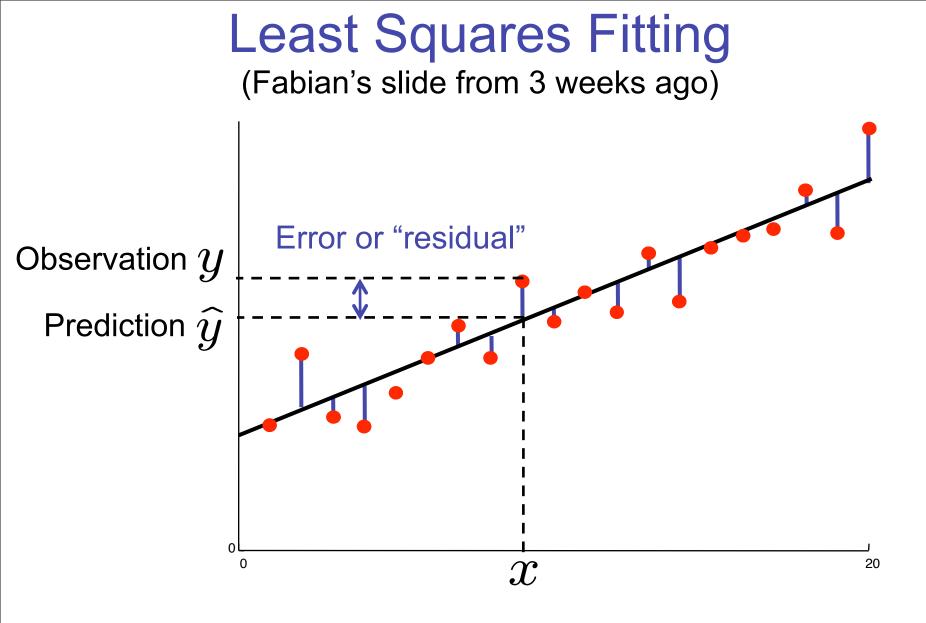
• Running example: linear regression model

#### **Linear Regression Model**

Input :  $oldsymbol{x} \in \mathbb{R}^d$  Parameters:  $oldsymbol{w} \in \mathbb{R}^{d+1}$ Response :  $y \in \mathbb{R}$  Prediction :  $y = oldsymbol{w}^ op oldsymbol{x}$ 

 Recall that we can fit (learn) the model by minimizing the squared error:

$$\hat{oldsymbol{w}} = \mathrm{argmin}_{oldsymbol{w}} \sum_{i=1}^n (y_i - oldsymbol{w}^ op oldsymbol{x}_i)^2$$



Sum squared error:  $L(w) = \sum_{i=1}^{n} (y_i - w^{\top} x_i)^2$ 

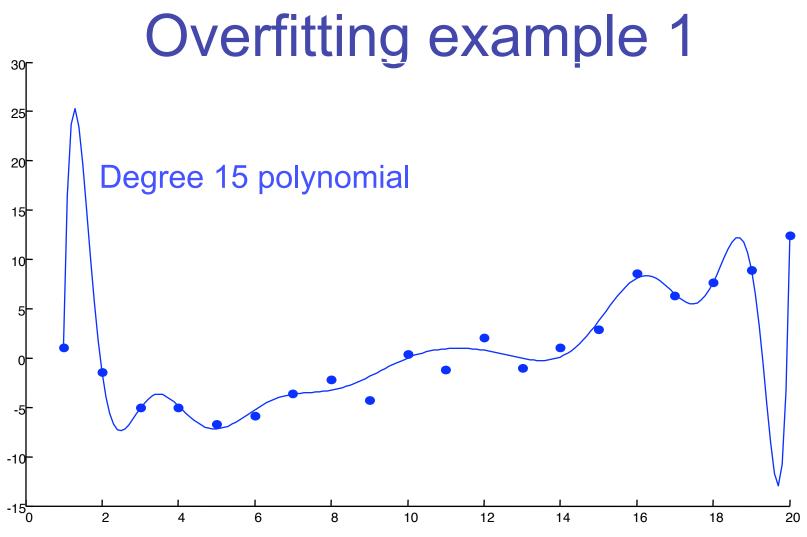
# Naïve training error is misleading

Input:  $\boldsymbol{x} \in \mathbb{R}^d$ Parameters:  $\boldsymbol{w} \in \mathbb{R}^{d+1}$ Response :  $y \in \mathbb{R}$ Prediction :  $y = \boldsymbol{w}^\top \boldsymbol{x}$ 

- Consider a reduced model with only those features  $x_f$ for  $f \in s \subseteq \{1, 2, \dots, d\}$ – Squared error is now  $L_s(w_s) = \sum_{i=1}^n (y_i - w_s^\top x_{i,s})^2$
- Is this new model better? Maybe we should compare the training errors to find out?
- Note  $\min_{\boldsymbol{w}_s} L_s(\boldsymbol{w}_s) \geq \min_{\boldsymbol{w}} L(\boldsymbol{w})$

- Just zero out terms in  $oldsymbol{w}$  to match  $oldsymbol{w}_s$  .

 Generally speaking, training error will only go up in a simpler model. So why should we use one?

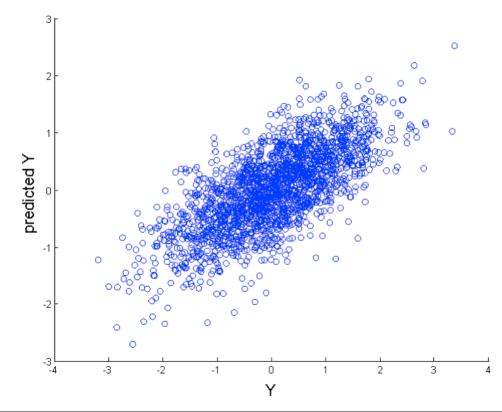


- This model is too rich for the data
- Fits training data well, but doesn't generalize.

(From Fabian's lecture)

# **Overfitting example 2**

- Generate 2000  $x_i \in \mathbb{R}^{1000}$ ,  $x_i \sim \mathcal{N}(0, I)$  i.i.d. Generate 2000  $y_i \in \mathbb{R}$ ,  $y_i \sim \mathcal{N}(0, 1)$  i.i.d. *completely* independent of the  $x_i$ 's
  - We shouldn't be able to predict y at all from x
- Find  $\hat{\boldsymbol{w}} = \operatorname{argmin}_{\boldsymbol{w}} L(\boldsymbol{w})$
- Use this to predict  $y_i$  for each  $\boldsymbol{x}_i$  by  $\hat{y}_i = \hat{\boldsymbol{w}}^{ op} \boldsymbol{x}_i$

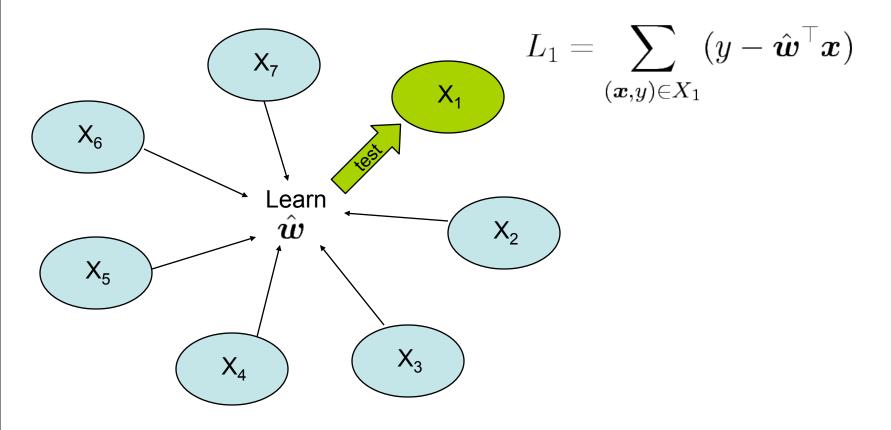


It really looks like we've found a relationship between  $\boldsymbol{x}$  and y ! But no such relationship exists, so  $\hat{m{w}}$  will do no better than random on new data.

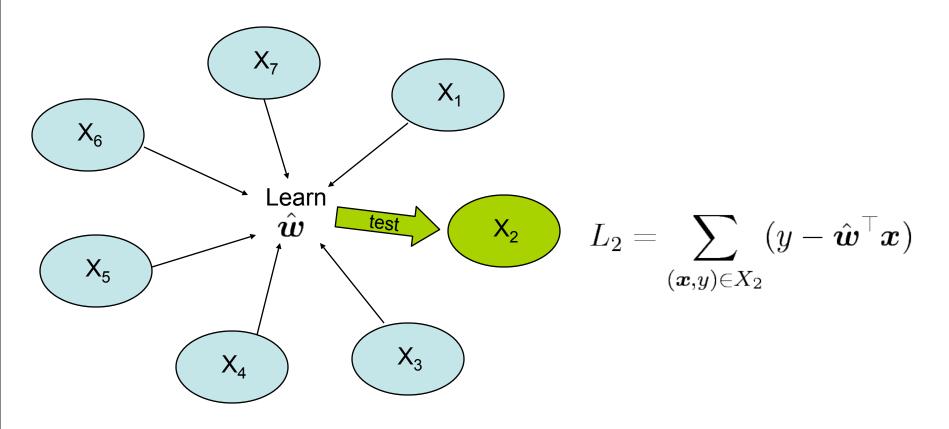
#### Model evaluation

- Moral 1: In the presence of many irrelevant features, we might just fit noise.
- Moral 2: Training error can lead us astray.
- To evaluate a feature set s , we need a better scoring function K(s)
- We're not ultimately interested in *training* error; we're interested in *test* error (error on new data).
- We can estimate test error by pretending we haven't seen some of our data.
  - Keep some data aside as a validation set. If we don't use it in training, then it's a better test of our model.

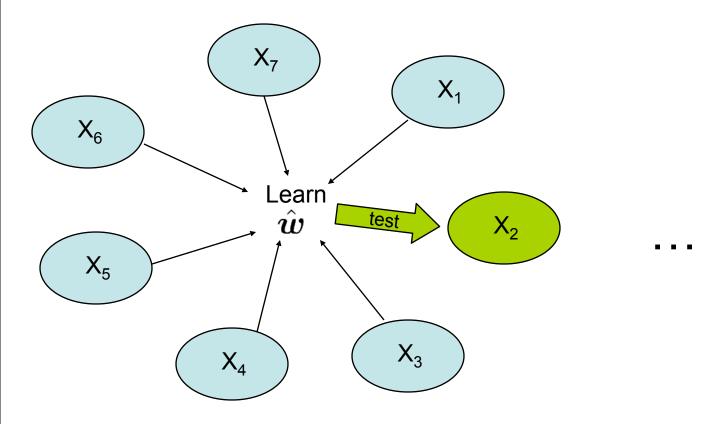
- A technique for estimating test error
- Uses all of the data to validate
- Divide data into K groups  $\{X_1, X_2, \ldots, X_K\}$ .
- Use each group as a validation set, then average all validation errors



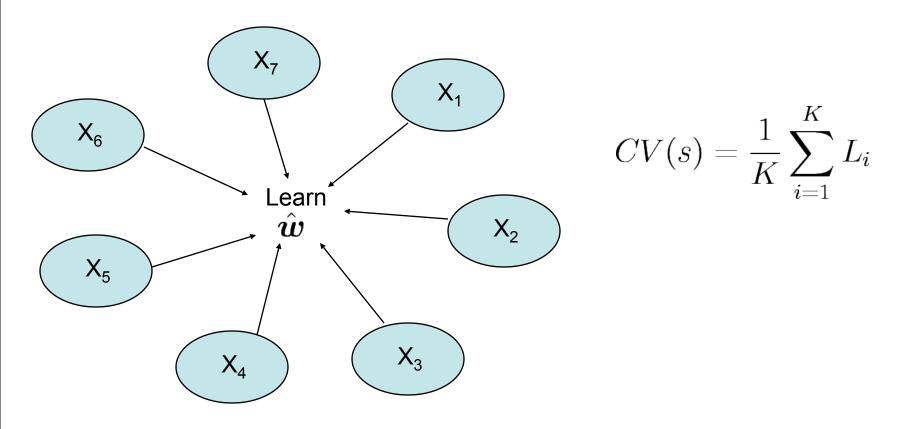
- A technique for estimating test error
- Uses all of the data to validate
- Divide data into K groups  $\{X_1, X_2, \ldots, X_K\}$ .
- Use each group as a validation set, then average all validation errors



- A technique for estimating test error
- Uses all of the data to validate
- Divide data into K groups  $\{X_1, X_2, \dots, X_K\}$ .
- Use each group as a validation set, then average all validation errors



- A technique for estimating test error
- Uses all of the data to validate
- Divide data into K groups  $\{X_1, X_2, \ldots, X_K\}$ .
- Use each group as a validation set, then average all validation errors



# Model Search

- We have an objective function K(s) = CV(s)– Time to search for a good model.
- This is known as a "wrapper" method
  - Learning algorithm is a black box
  - Just use it to compute objective function, then do search
- Exhaustive search expensive
   for *n* features, 2<sup>n</sup> possible subsets s
- Greedy search is common and effective

#### Model search

#### **Forward selection**

```
Initialize s={}
Do:
    Add feature to s
    which improves K(s) most
While K(s) can be improved
```

#### **Backward elimination**

```
Initialize s={1,2,...,n}
Do:
```

remove feature from s which improves K(s) most While K(s) can be improved

- Backward elimination tends to find better models
  - Better at finding models with interacting features
  - But it is frequently too expensive to fit the large models at the beginning of search
- Both can be too greedy.

#### Model search

- More sophisticated search strategies exist
  - Best-first search
  - Stochastic search
  - See "Wrappers for Feature Subset Selection", Kohavi and John 1997
- For many models, search moves can be evaluated quickly without refitting
  - E.g. linear regression model: add feature that has most covariance with current residuals
- YALE can do feature selection with cross-validation and either forward selection or backwards elimination.
- Other objective functions exist which add a modelcomplexity penalty to the training error
  - AIC: add penalty d to log-likelihood (number of features).
  - BIC: add penalty  $d \log n$  (*n* is the number of data points)

# Outline

- Review/introduction
  - What is feature selection? Why do it?
- Filtering
- Model selection
  - Model evaluation
  - Model search
- Regularization
- Summary

# Regularization

- In certain cases, we can move model selection *into* the induction algorithm
- This is sometimes called an *embedded* feature selection algorithm

## Regularization

- Regularization: add model complexity penalty to training error.
- $J(\boldsymbol{w}) = L(\boldsymbol{w}) + C \|\boldsymbol{w}\|_p = \sum_{i=1}^{\infty} (y_i \boldsymbol{w}^\top \boldsymbol{x}_i)^2 + C \|\boldsymbol{w}\|_p$

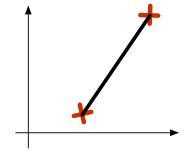
for some constant C

- Find  $\hat{\boldsymbol{w}} = \operatorname{argmin}_w J(w)$
- Regularization forces weights to be small, but does it force weights to be exactly zero?
  - $w_f = 0$  is equivalent to removing feature f from the model
- Depends on the value of  $p \dots$

#### p metrics and norms

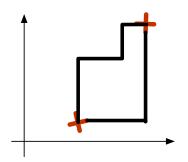
• *p* = 2: Euclidean

$$||\vec{w}||_2 = \sqrt{w_1^2 + \dots + w_n^2}$$



• *p* = 1: Taxicab or Manhattan

$$||\vec{w}||_1 = |w_1| + \dots + |w_n|$$

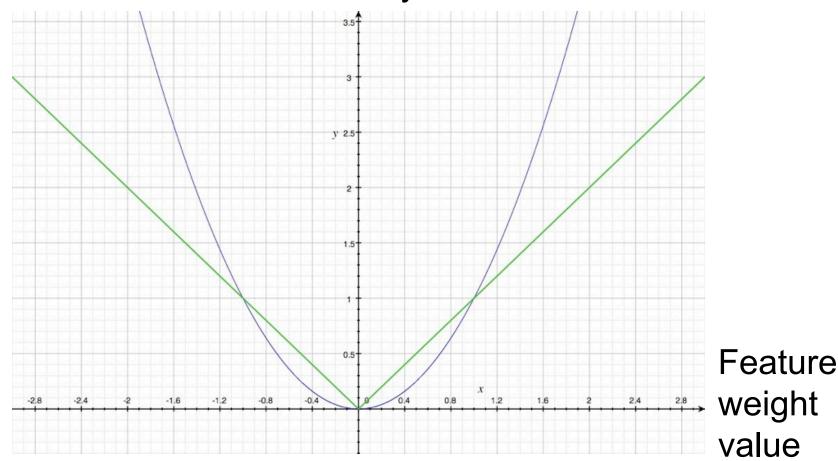


• General case: 0

$$||\vec{w}||_p = \sqrt[p]{|w_1|^p + \dots + |w_n|^p}$$

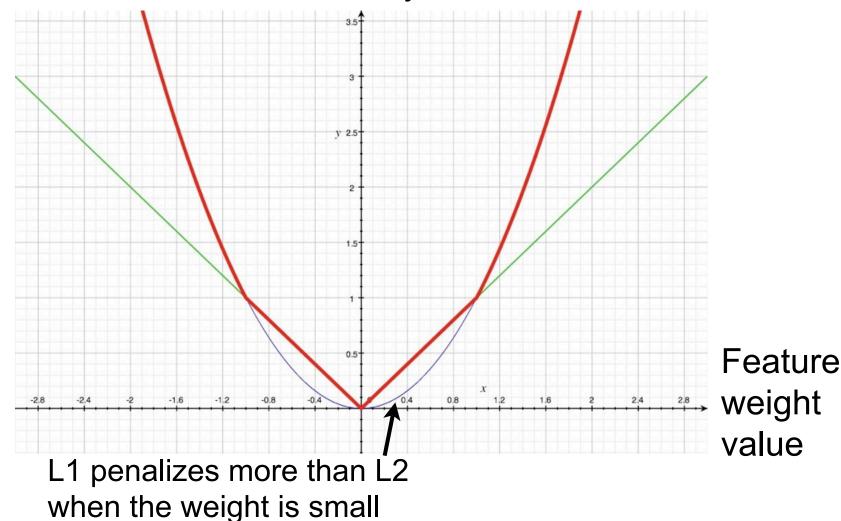
#### Univariate case: intuition

Penalty



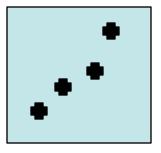
#### Univariate case: intuition

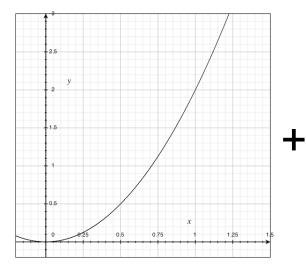
Penalty



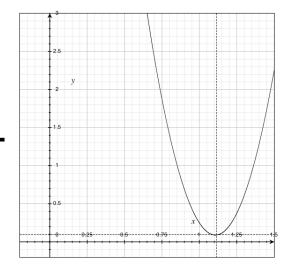
# Univariate example: L<sub>2</sub>

• Case 1: there is a lot of data supporting our hypothesis

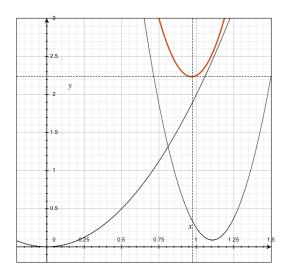




Regularization term



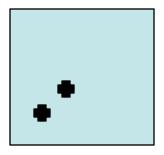
Data likelihood By itself, minimized by w=1.1



Objective function Minimized by w=0.95

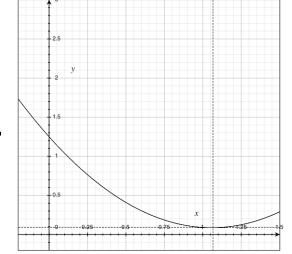
# Univariate example: L<sub>2</sub>

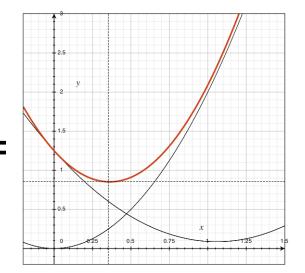
• Case 2: there is NOT a lot of data supporting our hypothesis





Regularization term



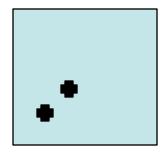


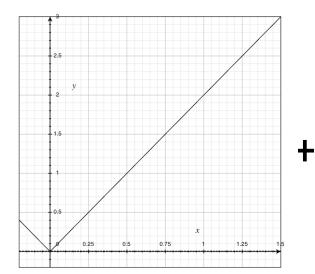
Data likelihood By itself, minimized by w=1.1

Objective function Minimized by w=0.36

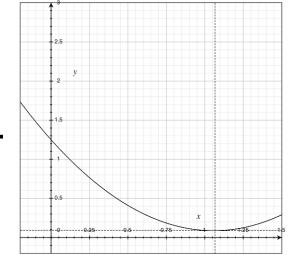
# Univariate example: L<sub>1</sub>

- Case 1, when there is a lot of data supporting our hypothesis:
  - Almost the same resulting w as L2
- Case 2, when there is NOT a lot of data supporting our hypothesis
- Get w = exactly zero

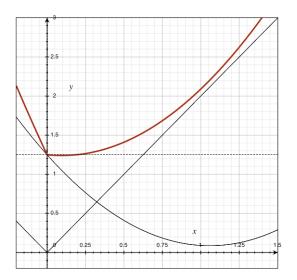




Regularization term



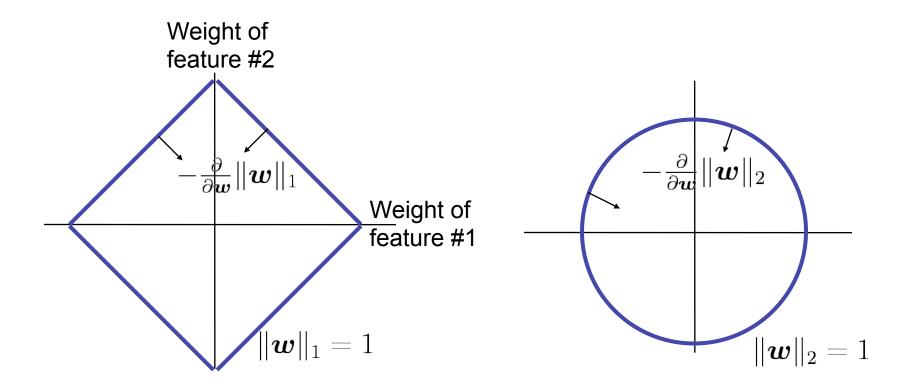
Data likelihood By itself, minimized by w=1.1



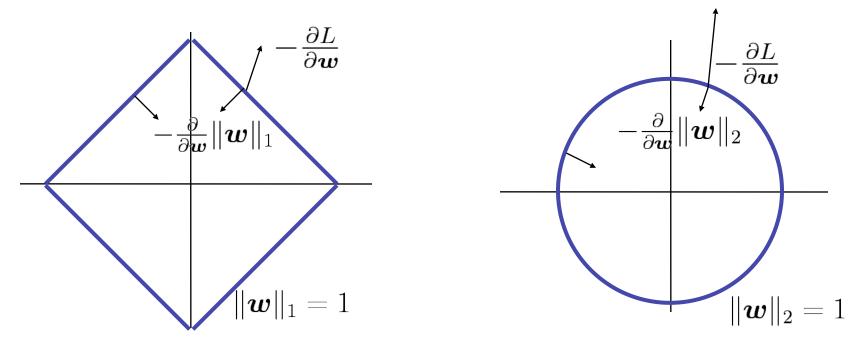
Objective function Minimized by w=0.0

#### Level sets of $L_1$ vs $L_2$ (in 2D)

$$egin{aligned} \|oldsymbol{w}\|_1 &= \sum_{f=0}^d |w_f| & \|oldsymbol{w}\|_2 &= \sqrt{\sum_{f=0}^d w_f^2} \end{aligned}$$

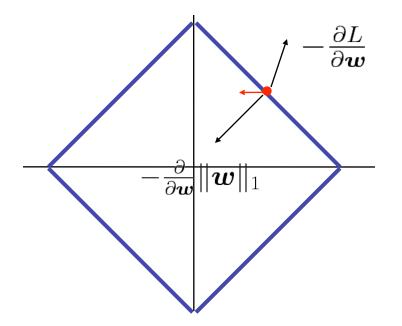


• To minimize  $J(w) = L(w) + ||w||_p$ , we can solve  $\frac{\partial J}{\partial w} = 0$  by (e.g.) gradient descent.



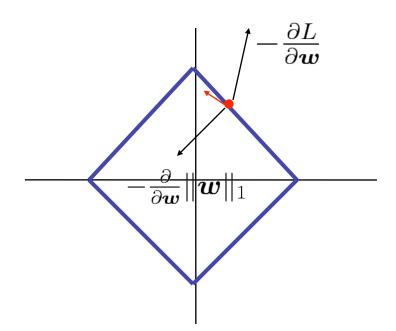
Minimization is a tug-of-war between the two terms

• To minimize  $J(w) = L(w) + ||w||_p$ , we can solve  $\frac{\partial J}{\partial w} = 0$  by (e.g.) gradient descent.



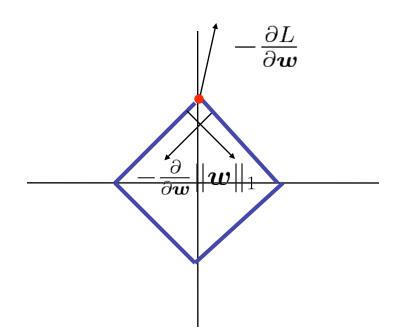
• Minimization is a tug-of-war between the two terms

• To minimize  $J(w) = L(w) + ||w||_p$ , we can solve  $\frac{\partial J}{\partial w} = 0$  by (e.g.) gradient descent.



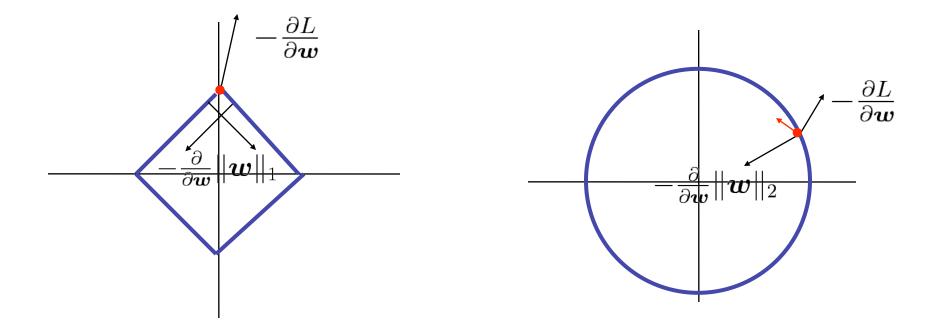
• Minimization is a tug-of-war between the two terms

• To minimize  $J(w) = L(w) + ||w||_p$ , we can solve  $\frac{\partial J}{\partial w} = 0$  by (e.g.) gradient descent.

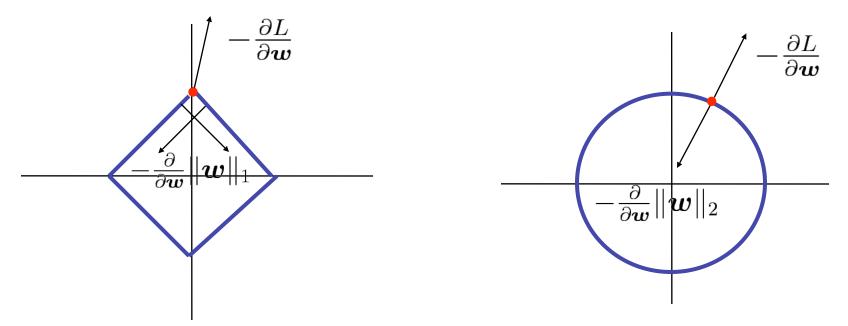


- Minimization is a tug-of-war between the two terms
- w is forced into the corners—components are zeroed
  - Solution is often sparse

#### L<sub>2</sub> does not zero components



## L<sub>2</sub> does not zero components



- L<sub>2</sub> regularization does not promote sparsity
- Even without sparsity, regularization promotes generalization—limits expressiveness of model

#### Lasso Regression [Tibshirani '94]

Simply linear regression with an L<sub>1</sub> penalty for sparsity.

$$\hat{\boldsymbol{w}} = \operatorname{argmin}_{\boldsymbol{w}} \sum_{i=1}^{n} (y_i - \boldsymbol{w}^{\top} \boldsymbol{x}_i)^2 + C ||\boldsymbol{w}||_1$$

 Compare with ridge regression (introduced by Fabian 3 weeks ago):

$$\hat{\boldsymbol{w}} = \operatorname{argmin}_{w} \sum_{i=1}^{n} (y_i - \boldsymbol{w}^{\top} \boldsymbol{x}_i)^2 + C ||\boldsymbol{w}||_2^2$$

## Lasso Regression [Tibshirani '94]

Simply linear regression with an L<sub>1</sub> penalty for sparsity.

$$\hat{\boldsymbol{w}} = \operatorname{argmin}_{w} \sum_{i=1}^{n} (y_i - \boldsymbol{w}^{\top} \boldsymbol{x}_i)^2 + C||\boldsymbol{w}||_1$$

- Two questions:
  - 1. How do we perform this minimization?
    - Difficulty: not differentiable everywhere
  - -2. How do we choose C?
    - Determines how much sparsity will be obtained
    - C is called an hyperparameter

### **Question 1: Optimization/learning**

- Set of discontinuity has Lebesgue measure zero, but optimizer WILL hit them
- Several approaches, including:
  - Projected gradient, stochastic projected subgradient, coordinate descent, interior point, orthan-wise L-BFGS [Friedman 07, Andrew et. al. 07, Koh et al. 07, Kim et al. 07, Duchi 08]
  - More on that on the John's lecture on optimization
  - Open source implementation: \_edu.berkeley.nlp.math.OW\_LBFGSMinimizer in http://code.google.com/p/berkeleyparser/

# Question 2: Choosing C

 $\hat{\mathcal{G}}$ 

- Up until a few years ago this was not trivial
  - Fitting model: optimization problem, harder than least-squares
  - Cross validation to choose
     C: must fit model for every candidate C value
- Not with LARS! (Least Angle Regression, Hastie et al, 2004)
  - Find trajectory of w for all possible C values simultaneously, as efficiently as least-squares
  - Can choose exactly how many features are wanted

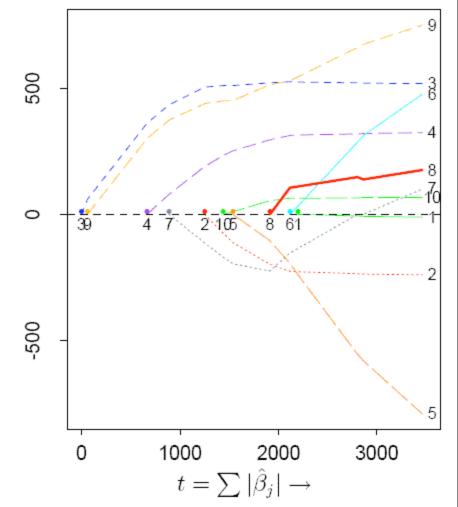


Figure taken from Hastie et al (2004)

#### Remarks

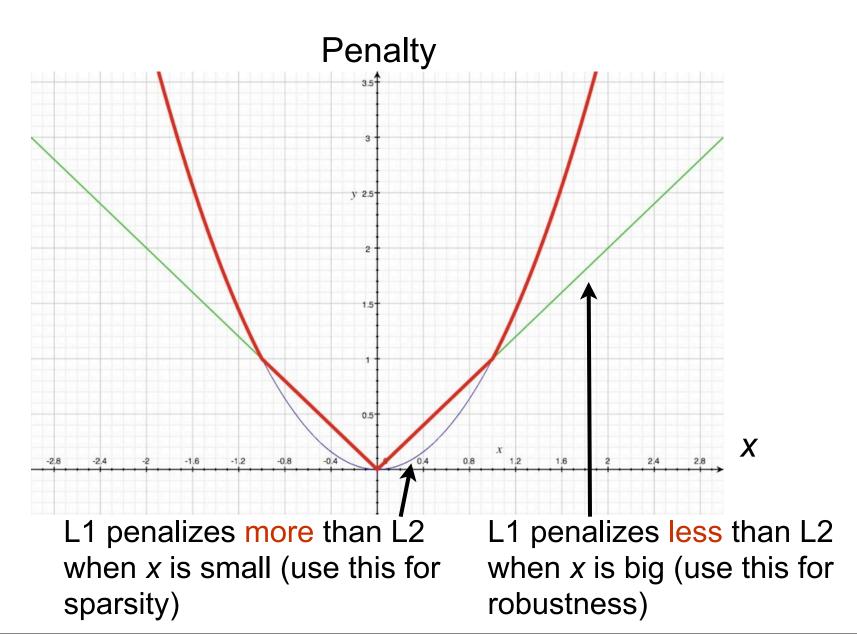
- Not to be confused: two othogonal uses of L1 for regression:
  - lasso for sparsity: what we just described

$$\hat{oldsymbol{w}} = \mathrm{argmin}_{oldsymbol{w}} \sum_{i=1}^n (y_i - oldsymbol{w}^ op oldsymbol{x}_i)^2 + egin{bmatrix} C\sum_{f=1}^d |oldsymbol{w}_f| \ f=1 \end{bmatrix}$$

-L1 loss: for robustness (Fabian's lecture).

$$\hat{w} = \operatorname{argmin}_{w} \left| \sum_{i=1}^{n} |y_i - w^T x_i| \right| + C ||w||_p$$

## Intuition



# Remarks

- L1 penalty can be viewed as a laplace prior on the weights, just as L2 penalty can viewed as a normal prior
  - Side note: also possible to learn C
     efficiently when the penalty is L2 (Foo, Do, Ng, ICML 09, NIPS 07)
- Not limited to regression: can be applied to classification, for example

# $L_1 Vs L_2$ [Gao et al '07]

- For large scale problems, performance of L1 and L2 is very similar (at least in NLP)
  - A slight advantage of L2 over L1 in accuracy
  - But solution is 2 orders of magnitudes sparser!
  - Parsing reranking task:

(Higher F1

is better)

|          | F-Score | # features | time (min) | # train iter |
|----------|---------|------------|------------|--------------|
| Baseline | 0.8986  |            |            |              |
| ME/L2    | 0.9176  | 1,211,026  | 62         | 129          |
| ME/L1    | 0.9165  | 19,121     | 37         | 174          |
| AP       | 0.9164  | 939,248    | 2          | 8            |
| Boosting | 0.9131  | 6,714      | 495        | 92,600       |
| BLasso   | 0.9133  | 8,085      | 239        | 56,500       |

# When can feature selection hurt?

- NLP example: back to the email classification task
- Zipf law: frequency of a word is inversely proportional to its frequency rank.
  - Fat tail: many n-grams are seen only once in the training
  - Yet they can be very useful predictors
  - E.g. 8-gram "today I give a lecture on feature selection" occurs only once in my mailbox, but it's a good predictor that the email is WORK

# Outline

- Review/introduction
  - What is feature selection? Why do it?
- Filtering
- Model selection
  - Model evaluation
  - Model search
- Regularization
- Summary

# Summary: feature engineering

- Feature engineering is often crucial to get good results
- Strategy: overshoot and regularize
  - Come up with lots of features: better to include irrelevant features than to miss important features
  - Use regularization or feature selection to prevent overfitting
  - Evaluate your feature engineering on DEV set.
     Then, when the feature set is frozen, evaluate on TEST to get a final evaluation (Daniel will say more on evaluation next week)

# Summary: feature selection

When should you do it?

- If the only concern is accuracy, and the whole dataset can be processed, feature selection not needed (as long as there is regularization)
- If computational complexity is critical (embedded device, web-scale data, fancy learning algorithm), consider using feature selection
  - But there are alternatives: e.g. the Hash trick, a fast, non-linear dimensionality reduction technique [Weinberger et al. 2009]

– When you care about the feature themselves

- Keep in mind the correlation/causation issues
- See [Guyon et al., Causal feature selection, 07]

- •Filtering
- •L<sub>1</sub> regularization (embedded methods)
- •Wrappers
  - •Forward selection
  - Backward selection
  - Other search
  - Exhaustive

#### •*Filtering*

- L<sub>1</sub> regularization
   (embedded methods)
- •Wrappers
  - •Forward selection
  - Backward selection
  - Other search
  - Exhaustive

- Good preprocessing step
- Fails to capture relationship between features

- •Filtering
- •L<sub>1</sub> regularization (embedded methods)
- •Wrappers
  - •Forward selection
  - Backward selection
  - Other search
  - Exhaustive

- Fairly efficient
  - LARS-type algorithms now exist for many linear models.

- •Filtering
- •L<sub>1</sub> regularization (embedded methods)
- •<u>Wrappers</u>
  - •Forward selection
  - Backward selection
  - Other search
  - Exhaustive

- Most directly optimize prediction performance
- Can be very expensive, even with greedy search methods
- Cross-validation is a good objective function to start with

- Filtering
- •L<sub>1</sub> regularization (embedded methods)
- •Wrappers

•<u>Forward</u> <u>selection</u>

- •<u>Backward</u> <u>selection</u>
- Other search
- Exhaustive

- Too greedy—ignore relationships between features
- Easy baseline
- Can be generalized in many interesting ways
  - Stagewise forward selection
  - Forward-backward search
  - Boosting

Computational cos

Č+

- Filtering
  L<sub>1</sub> regularization
- (embedded methods)
- •Wrappers
  - •Forward selection
  - Backward selection
  - •<u>Other search</u>
  - Exhaustive

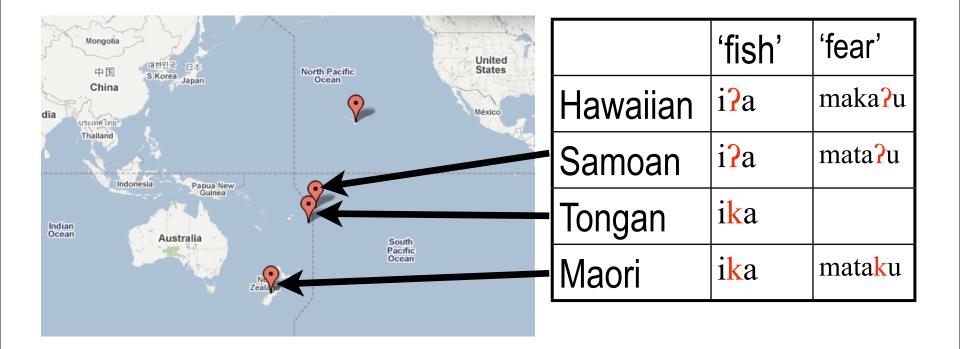
• Generally more effective than greedy

- •Filtering
- •L<sub>1</sub> regularization (embedded methods)
- •Wrappers •Forward
  - selection
    - Backward selection
    - Other search
    - Exhaustive

- The "ideal"
- Very seldom done in practice
- With cross-validation objective, there's a chance of over-fitting
  - Some subset might randomly perform quite well in cross-validation

# Extra slides

### Feature engineering case study: Modeling language change [Bouchard et al. 07,09]



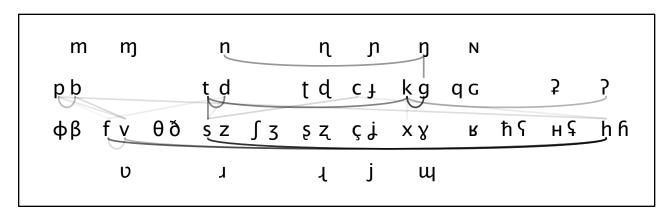
### Feature engineering case study: Modeling language change [Bouchard et al. 07,09]

| (*k > ?       |        |        |           | 'fish'       | 'fear'                |
|---------------|--------|--------|-----------|--------------|-----------------------|
|               |        |        | Hawaiian  | i <b>?</b> a | maka <mark>?</mark> u |
| Proto-Oceanic |        |        | Samoan    | i <b>?</b> a | mata?u                |
|               |        |        | Tongan    | ika          |                       |
|               | 'fish' |        | Maori     | ika          | mata <mark>k</mark> u |
| POc           | *ika   | Tasks: | • Proto-w | ord          |                       |

- Proto-word reconstruction
  - Infer sound changes

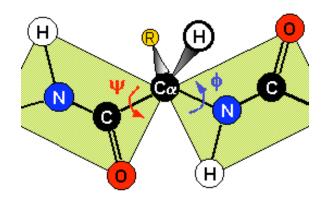
# Feature engineering case study: Modeling language change [Bouchard et al. 07,09]

- Featurize sound changes
  - E.g.: substitution are generally more frequent than insertions, deletions, changes are branch specific, but there are cross-linguistic universal, etc.
- Particularity: unsupervised learning setup
  - We covered feature engineering for supervised setups for pedagogical reasons; most of what we have seen applies to the unsupervised setup



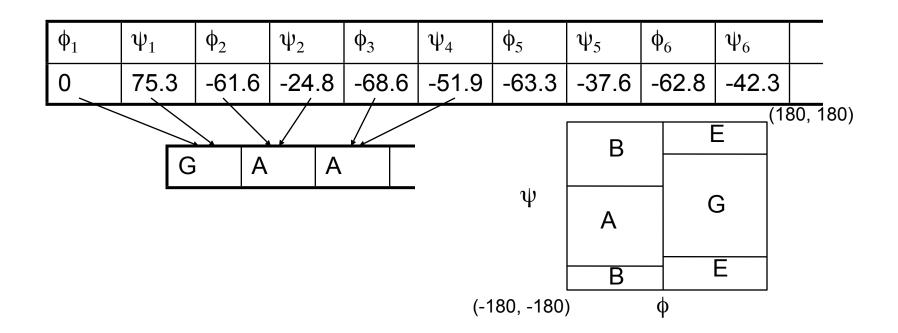
# Feature selection case study: Protein Energy Prediction [Blum et al '07]

- What is a protein?
  - A protein is a chain of amino acids.
- Proteins fold into a 3D conformation by minimizing energy
  - "Native" conformation (the one found in nature) is the lowest energy state
  - We would like to find it using only computer search.
  - Very hard, need to try several initialization in parallel
- Regression problem:
  - Input: many different conformation of the same sequence
  - Output: energy
- Features derived from:  $\phi$  and  $\psi$  torsion angles.
- Restrict next wave of search to agree with features that predicted high energy



# Featurization

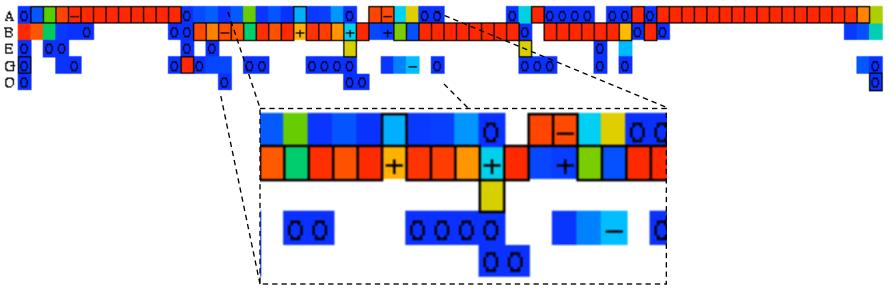
• Torsion angle features can be binned



- Bins in the Ramachandran plot correspond to common structural elements
  - Secondary structure: alpha helices and beta sheets

# Results of LARS for predicting protein energy

- One column for each torsion angle feature
- Colors indicate frequencies in data set
  - Red is high, blue is low, 0 is very low, white is never
  - Framed boxes are the correct native features
  - "-" indicates negative LARS weight (stabilizing), "+" indicates positive LARS weight (destabilizing)



# Other things to check out

#### Bayesian methods

- David MacKay: Automatic Relevance Determination
  - originally for neural networks
- Mike Tipping: Relevance Vector Machines
  - http://research.microsoft.com/mlp/rvm/
- Miscellaneous feature selection algorithms
  - Winnow
    - Linear classification, provably converges in the presence of exponentially many irrelevant features
  - Optimal Brain Damage
    - Simplifying neural network structure
- Case studies
  - See papers linked on course webpage.

# Acknowledgments

- Useful comments by Mike Jordan, Percy Liang
- A first version of these slides was created by Ben Blum