
Feature Engineering
and Selection

CS 294: Practical Machine Learning
October 1st, 2009

Alexandre Bouchard-Côté

Abstract supervised setup
• Training :
• : input vector

• y : response variable
– : binary classification
– : regression
– what we want to be able to predict, having

observed some new .

xi =

xi,1

xi,2
...

xi,n

, xi,j ∈ R

Concrete setup

“Danger”

Input Output

xi,1

xi,2
...

xi,n

Featurization

“Danger”

Input OutputFeatures

xi,1

xi,2
...

xi,n

Outline

• Today: how to featurize effectively
– Many possible featurizations
– Choice can drastically affect performance

• Program:
– Part I : Handcrafting features: examples, bag

of tricks (feature engineering)
– Part II: Automatic feature selection

Part I: Handcrafting
Features

Machines still need us

Example 1: email classification

• Input: a email message
• Output: is the email...

– spam,
– work-related,
– personal, ...

PERSONAL

• Input: (email-valued)
• Feature vector:

• Learn one weight vector for each class:

• Decision rule:

Basics: bag of words
x

f(x) =

f1(x)
f2(x)

...
fn(x)

, e.g. f1(x) =

{
1 if the email contains “Viagra”
0 otherwise

Indicator or
Kronecker

delta function

ŷ = argmaxy〈wy, f(x)〉

wy ∈ Rn, y ∈ {SPAM,WORK,PERS}

Feature vector hashtable

 extractFeature(Email e) {

 result <- hashtable

 for (String word : e.getWordsInBody())
 result.put("UNIGRAM:" + word, 1.0)

 String previous = "#"
 for (String word : e.getWordsInBody()) {
 result.put("BIGRAM:"+ previous + " " + word, 1.0)
 previous = word
 }

 return result
 }

f(x)

Implementation: exploit sparsity

Feature template 1:
UNIGRAM:Viagra

Feature template 2:
BIGRAM:Cheap Viagra

• Each user inbox is a separate learning
problem
– E.g.: Pfizer drug designer’s inbox

• Most inbox has very few training
instances, but all the learning problems
are clearly related

Features for multitask learning

• Solution: include both user-specific and
global versions of each feature. E.g.:
– UNIGRAM:Viagra
– USER_id4928-UNIGRAM:Viagra

• Equivalent to a Bayesian hierarchy under
some conditions (Finkel et al. 2009)

Features for multitask learning
[e.g.:Daumé 06]

x x

y y

w w

w

U
s
e
r

1

U
s
e
r

2

...

• In multiclass classification, output space
often has known structure as well

• Example: a hierarchy:

Structure on the output space

Emails

Spam Ham

Advance
fee frauds

Spamvertised
sites

Backscatter Work

Mailing lists

Personal

• Slight generalization of the learning/
prediction setup: allow features to depend
both on the input x and on the class y

w ∈ Rm,

ŷ = argmaxy〈w, f(x, y)〉

Structure on the output space

Before: • One weight/class:

• Decision rule:

wy ∈ Rn,

ŷ = argmaxy〈wy, f(x)〉

After: • Single weight:

• New rule:

• At least as expressive: conjoin each
feature with all output classes to get the
same model

• E.g.: UNIGRAM:Viagra becomes
– UNIGRAM:Viagra AND CLASS=FRAUD
– UNIGRAM:Viagra AND CLASS=ADVERTISE
– UNIGRAM:Viagra AND CLASS=WORK
– UNIGRAM:Viagra AND CLASS=LIST
– UNIGRAM:Viagra AND CLASS=PERSONAL

Structure on the output space

Exploit the information in the hierarchy by
activating both coarse and fine versions of
the features on a given input:

Structure on the output space

 ...
UNIGRAM:Alex AND CLASS=PERSONAL
UNIGRAM:Alex AND CLASS=HAM
 ...

Emails

Spam Ham

Advance

fee frauds

Spamvertised

sites

Backscatter Work

Mailing lists

Personal

x y

Structure on the output space

• Not limited to hierarchies
– multiple hierarchies
– in general, arbitrary featurization of the output

• Another use:
– want to model that if no words in the email

were seen in training, it’s probably spam
– add a bias feature that is activated only in

SPAM subclass (ignores the input):
CLASS=SPAM

Dealing with continuous data

• Full solution needs HMMs (a sequence of
correlated classification problems): Alex
Simma will talk about that on Oct. 15

• Simpler problem: identify a single sound
unit (phoneme)

“Danger”

“r”

Dealing with continuous data
• Step 1: Find a coordinate system where

similar input have similar coordinates
– Use Fourier transforms and knowledge

about the human ear

Time domain:

Sound 2Sound 1

Frequency domain:

Sriram Sankararaman Clustering

Dealing with continuous data
• Step 2 (optional): Transform the

continuous data into discrete data
– Bad idea: COORDINATE=(9.54,8.34)
– Better: Vector quantization (VQ)

– Run k-mean on the training data as a
preprocessing step

– Feature is the index of the nearest
centroid
CLUSTER=1

CLUSTER=2

Dealing with continuous data
Important special case: integration of the
output of a black box
– Back to the email classifier: assume we

have an executable that returns, given a
email e, its belief B(e) that the email is
spam

– We want to model monotonicity
– Solution: thermometer feature

B(e) > 0.8 AND
CLASS=SPAM

B(e) > 0.6 AND
CLASS=SPAM

B(e) > 0.4 AND
CLASS=SPAM... ...

fi(x, y) =
{

log B(e) if y = SPAM
0 otherwise

Dealing with continuous data

Another way of integrating a qualibrated
black box as a feature:

Recall: votes
are combined

additively

Part II: (Automatic)
Feature Selection

What is feature selection?
• Reducing the feature space by throwing

out some of the features
• Motivating idea: try to find a simple,

“parsimonious” model
– Occam’s razor: simplest explanation that

accounts for the data is best

What is feature selection?

UNIGRAM:Viagra 0

UNIGRAM:the 1
BIGRAM:the presence 0
BIGRAM:hello Alex 1
UNIGRAM:Alex 1
UNIGRAM:of 1
BIGRAM:absence of 0
BIGRAM:classify email 0
BIGRAM:free Viagra 0
BIGRAM:predict the 1

…
BIGRAM:emails as 1

UNIGRAM:Viagra 0
BIGRAM:hello Alex 1
BIGRAM:free Viagra 0

Vegetarian No
Plays video
games

Yes

Family history No
Athletic No
Smoker Yes
Gender Male
Lung capacity 5.8L
Hair color Red
Car Audi
…

Weight 185
lbs

Family
history

No

Smoker Yes

Task: classify emails as spam, work, ...

Data: presence/absence of words

Task: predict chances of lung disease

Data: medical history survey

X X

Reduced X
Reduced X

Outline
• Review/introduction

– What is feature selection? Why do it?
• Filtering
• Model selection

– Model evaluation
– Model search

• Regularization
• Summary recommendations

Why do it?
• Case 1: We’re interested in features—we want

to know which are relevant. If we fit a model, it
should be interpretable.

• Case 2: We’re interested in prediction; features
are not interesting in themselves, we just want to
build a good classifier (or other kind of
predictor).

Why do it? Case 1.

• What causes lung cancer?
– Features are aspects of a patient’s medical history
– Binary response variable: did the patient develop lung cancer?
– Which features best predict whether lung cancer will develop?

Might want to legislate against these features.

• What causes a program to crash? [Alice Zheng ’03, ’04, ‘05]

– Features are aspects of a single program execution
• Which branches were taken?
• What values did functions return?

– Binary response variable: did the program crash?
– Features that predict crashes well are probably bugs

We want to know which features are relevant; we don’t
necessarily want to do prediction.

Why do it? Case 2.

• Common practice: coming up with as many features as
possible (e.g. > 106 not unusual)
– Training might be too expensive with all features
– The presence of irrelevant features hurts generalization.

• Classification of leukemia tumors from microarray gene
expression data [Xing, Jordan, Karp ’01]
– 72 patients (data points)
– 7130 features (expression levels of different genes)

• Embedded systems with limited resources
– Classifier must be compact
– Voice recognition on a cell phone
– Branch prediction in a CPU

• Web-scale systems with zillions of features
– user-specific n-grams from gmail/yahoo spam filters

We want to build a good predictor.

Get at Case 1 through Case 2

• Even if we just want to identify features, it
can be useful to pretend we want to do
prediction.

• Relevant features are (typically) exactly
those that most aid prediction.

• But not always. Highly correlated features
may be redundant but both interesting as
“causes”.
– e.g. smoking in the morning, smoking at night

Feature selection vs.
Dimensionality reduction

• Removing features:
– Equivalent to projecting data onto lower-dimensional linear subspace

perpendicular to the feature removed

• Percy’s lecture: dimensionality reduction
– allow other kinds of projection.

• The machinery involved is very different
– Feature selection can can be faster at test time
– Also, we will assume we have labeled data. Some dimensionality

reduction algorithm (e.g. PCA) do not exploit this information

Outline
• Review/introduction

– What is feature selection? Why do it?
• Filtering
• Model selection

– Model evaluation
– Model search

• Regularization
• Summary

Filtering
Simple techniques for weeding out
irrelevant features without fitting model

Filtering
• Basic idea: assign heuristic score to each

feature to filter out the “obviously” useless
ones.
– Does the individual feature seems to help prediction?
– Do we have enough data to use it reliably?
– Many popular scores [see Yang and Pederson ’97]

• Classification with categorical data: Chi-squared, information
gain, document frequency

• Regression: correlation, mutual information
• They all depend on one feature at the time (and the data)

• Then somehow pick how many of the highest
scoring features to keep

Comparison of filtering methods for text
categorization [Yang and Pederson ’97]

Filtering
• Advantages:

– Very fast
– Simple to apply

• Disadvantages:
– Doesn’t take into account interactions between features:

Apparently useless features can be useful when
grouped with others

• Suggestion: use light filtering as an efficient initial
step if running time of your fancy learning
algorithm is an issue

Outline
• Review/introduction

– What is feature selection? Why do it?
• Filtering
• Model selection

– Model evaluation
– Model search

• Regularization
• Summary

Model Selection
• Choosing between possible models of

varying complexity
– In our case, a “model” means a set of features

• Running example: linear regression model

Linear Regression Model

• Recall that we can fit (learn) the model by minimizing
the squared error:

Input :

Response :

Parameters:

Prediction :

Least Squares Fitting
(Fabian’s slide from 3 weeks ago)

0 20
0

Error or “residual”

Prediction

Observation

Sum squared error:

Naïve training error is misleading

• Consider a reduced model with only those features
for
– Squared error is now

• Is this new model better? Maybe we should compare
the training errors to find out?

• Note

– Just zero out terms in to match .

• Generally speaking, training error will only go up in a
simpler model. So why should we use one?

Input :

Response :

Parameters:

Prediction :

Overfitting example 1

• This model is too rich for the data
• Fits training data well, but doesn’t generalize.

0 2 4 6 8 10 12 14 16 18 20-15

-10

-5

0

5

10

15

20

25

30

Degree 15 polynomial

(From Fabian’s lecture)

Overfitting example 2
• Generate 2000 , i.i.d.
• Generate 2000 , i.i.d. completely

independent of the ’s
– We shouldn’t be able to predict at all from

• Find
• Use this to predict for each by

It really looks like we’ve
found a relationship
between and ! But
no such relationship
exists, so will do no
better than random on
new data.

Model evaluation
• Moral 1: In the presence of many irrelevant

features, we might just fit noise.
• Moral 2: Training error can lead us astray.
• To evaluate a feature set , we need a better

scoring function
• We’re not ultimately interested in training error;

we’re interested in test error (error on new data).
• We can estimate test error by pretending we

haven’t seen some of our data.
– Keep some data aside as a validation set. If we don’t

use it in training, then it’s a better test of our model.

K-fold cross validation
• A technique for estimating test error
• Uses all of the data to validate
• Divide data into K groups .
• Use each group as a validation set, then average all validation

errors

X1

Learn
X2

X3X4

X5

X6

X7

tes
t

K-fold cross validation
• A technique for estimating test error
• Uses all of the data to validate
• Divide data into K groups .
• Use each group as a validation set, then average all validation

errors

X1

Learn
X2

X3X4

X5

X6

X7

test

K-fold cross validation
• A technique for estimating test error
• Uses all of the data to validate
• Divide data into K groups .
• Use each group as a validation set, then average all validation

errors

X1

…
Learn

X2

X3X4

X5

X6

X7

test

K-fold cross validation
• A technique for estimating test error
• Uses all of the data to validate
• Divide data into K groups .
• Use each group as a validation set, then average all validation

errors

X1

Learn
X2

X3X4

X5

X6

X7

Model Search

• We have an objective function
– Time to search for a good model.

• This is known as a “wrapper” method
– Learning algorithm is a black box
– Just use it to compute objective function, then

do search
• Exhaustive search expensive

– for n features, 2n possible subsets s
• Greedy search is common and effective

Model search

• Backward elimination tends to find better models
– Better at finding models with interacting features
– But it is frequently too expensive to fit the large

models at the beginning of search
• Both can be too greedy.

Backward elimination

Initialize s={1,2,…,n}
Do:
 remove feature from s
 which improves K(s) most
While K(s) can be improved

Forward selection

Initialize s={}
Do:
 Add feature to s
 which improves K(s) most
While K(s) can be improved

Model search
• More sophisticated search strategies exist

– Best-first search
– Stochastic search
– See “Wrappers for Feature Subset Selection”, Kohavi and John

1997
• For many models, search moves can be evaluated

quickly without refitting
– E.g. linear regression model: add feature that has most

covariance with current residuals
• YALE can do feature selection with cross-validation and

either forward selection or backwards elimination.
• Other objective functions exist which add a model-

complexity penalty to the training error
– AIC: add penalty to log-likelihood (number of features).
– BIC: add penalty (n is the number of data points)

Outline
• Review/introduction

– What is feature selection? Why do it?
• Filtering
• Model selection

– Model evaluation
– Model search

• Regularization
• Summary

Regularization
• In certain cases, we can move model

selection into the induction algorithm

• This is sometimes called an embedded
feature selection algorithm

Regularization
• Regularization: add model complexity penalty to

training error.
•

for some constant C
• Find
• Regularization forces weights to be small, but

does it force weights to be exactly zero?
– is equivalent to removing feature f from the

model
• Depends on the value of p …

• p = 2: Euclidean

• p = 1: Taxicab or Manhattan

• General case:

p metrics and norms

||!w||2 =
√

w2
1 + · · · + w2

n

||!w||1 = |w1| + · · · + |wn|

||!w||p = p
√

|w1|p + · · · + |wn|p

0 < p ≤ ∞

Univariate case: intuition
Penalty

Feature
weight
value

Univariate case: intuition
Penalty

Feature
weight
value

L1 penalizes more than L2
when the weight is small

Univariate example: L2

+ =

• Case 1: there is a lot of data supporting
our hypothesis

Regularization term Data likelihood
By itself, minimized

by w=1.1

Objective function
Minimized by

w=0.95

Univariate example: L2

+ =

• Case 2: there is NOT a lot of data
supporting our hypothesis

Regularization term Data likelihood
By itself, minimized

by w=1.1

Objective function
Minimized by

w=0.36

Univariate example: L1

+ =

• Case 1, when there is a lot of data
supporting our hypothesis:
– Almost the same resulting w as L2

• Case 2, when there is NOT a lot of data
supporting our hypothesis

• Get w = exactly zero

Regularization term Data likelihood
By itself, minimized

by w=1.1

Objective function
Minimized by

w=0.0

Level sets of L1 vs L2 (in 2D)

Weight of
feature #1

Weight of
feature #2

Multivariate case: w gets cornered
• To minimize , we can solve

 by (e.g.) gradient descent.

• Minimization is a tug-of-war between the two terms

• To minimize , we can solve
 by (e.g.) gradient descent.

• Minimization is a tug-of-war between the two terms

Multivariate case: w gets cornered

• To minimize , we can solve
 by (e.g.) gradient descent.

• Minimization is a tug-of-war between the two terms

Multivariate case: w gets cornered

• To minimize , we can solve
 by (e.g.) gradient descent.

• Minimization is a tug-of-war between the two terms
• w is forced into the corners—components are zeroed

– Solution is often sparse

Multivariate case: w gets cornered

L2 does not zero components

L2 does not zero components

• L2 regularization does not promote sparsity
• Even without sparsity, regularization promotes

generalization—limits expressiveness of model

Lasso Regression [Tibshirani ‘94]

• Simply linear regression with an L1 penalty
for sparsity.

• Compare with ridge regression (introduced
by Fabian 3 weeks ago):

ŵ = argminw

n∑

i=1

(yi −w!xi)2 + C||w||1

ŵ = argminw

n∑

i=1

(yi −w!xi)2 + C||w||22

Lasso Regression [Tibshirani ‘94]

• Simply linear regression with an L1 penalty
for sparsity.

• Two questions:
– 1. How do we perform this minimization?

• Difficulty: not differentiable everywhere
– 2. How do we choose C?

• Determines how much sparsity will be obtained
• C is called an hyperparameter

ŵ = argminw

n∑

i=1

(yi −w!xi)2 + C||w||1

Question 1: Optimization/learning
• Set of discontinuity has Lebesgue

measure zero, but optimizer WILL hit them
• Several approaches, including:

– Projected gradient, stochastic projected
subgradient, coordinate descent, interior
point, orthan-wise L-BFGS [Friedman 07,
Andrew et. al. 07, Koh et al. 07, Kim et al. 07,
Duchi 08]

– More on that on the John’s lecture on
optimization

– Open source implementation:edu.berkeley.nlp.math.OW_LBFGSMinimizer in

http://code.google.com/p/berkeleyparser/

Question 2: Choosing C
• Up until a few years ago

this was not trivial
– Fitting model: optimization

problem, harder than
least-squares

– Cross validation to choose
C: must fit model for every
candidate C value

• Not with LARS! (Least
Angle Regression,
Hastie et al, 2004)
– Find trajectory of w for all

possible C values
simultaneously, as
efficiently as least-squares

– Can choose exactly how
many features are wanted

Figure taken from Hastie et al (2004)

• Not to be confused: two othogonal uses
of L1 for regression:
– lasso for sparsity: what we just described

–L1 loss: for robustness (Fabian’s lecture).

Remarks

Intuition
Penalty

x

L1 penalizes more than L2
when x is small (use this for
sparsity)

L1 penalizes less than L2
when x is big (use this for
robustness)

• L1 penalty can be viewed as a laplace
prior on the weights, just as L2 penalty
can viewed as a normal prior
– Side note: also possible to learn C

efficiently when the penalty is L2 (Foo, Do,
Ng, ICML 09, NIPS 07)

• Not limited to regression: can be
applied to classification, for example

Remarks

• For large scale problems, performance of
L1 and L2 is very similar (at least in NLP)
– A slight advantage of L2 over L1 in accuracy
– But solution is 2 orders of magnitudes

sparser!
– Parsing reranking task:

L1 Vs L2 [Gao et al ‘07]

(Higher F1
is better)

• NLP example: back to the email
classification task

• Zipf law: frequency of a word is inversely
proportional to its frequency rank.
– Fat tail: many n-grams are seen only once in

the training
– Yet they can be very useful predictors
– E.g. 8-gram “today I give a lecture on feature

selection” occurs only once in my mailbox, but
it’s a good predictor that the email is WORK

When can feature selection
hurt?

Outline
• Review/introduction

– What is feature selection? Why do it?
• Filtering
• Model selection

– Model evaluation
– Model search

• Regularization
• Summary

Summary: feature engineering
• Feature engineering is often crucial to get

good results
• Strategy: overshoot and regularize

– Come up with lots of features: better to include
irrelevant features than to miss important
features

– Use regularization or feature selection to
prevent overfitting

– Evaluate your feature engineering on DEV set.
Then, when the feature set is frozen, evaluate
on TEST to get a final evaluation (Daniel will
say more on evaluation next week)

Summary: feature selection
When should you do it?
– If the only concern is accuracy, and the whole

dataset can be processed, feature selection not
needed (as long as there is regularization)

– If computational complexity is critical
(embedded device, web-scale data, fancy
learning algorithm), consider using feature
selection

• But there are alternatives: e.g. the Hash trick, a
fast, non-linear dimensionality reduction technique
[Weinberger et al. 2009]

– When you care about the feature themselves
• Keep in mind the correlation/causation issues
• See [Guyon et al., Causal feature selection, 07]

Summary: how to do feature selection
•Filtering
•L1 regularization
(embedded
methods)
•Wrappers

•Forward
selection
•Backward
selection
•Other search
•Exhaustive

C
om

putational cost

• Good preprocessing
step

• Fails to capture
relationship between
features

•Filtering
•L1 regularization
(embedded
methods)
•Wrappers

•Forward
selection
•Backward
selection
•Other search
•Exhaustive

C
om

putational cost

Summary: how to do feature selection

• Fairly efficient
– LARS-type algorithms now

exist for many linear
models.

•Filtering
•L1 regularization
(embedded
methods)
•Wrappers

•Forward
selection
•Backward
selection
•Other search
•Exhaustive

C
om

putational cost

Summary: how to do feature selection

• Most directly optimize
prediction performance

• Can be very expensive,
even with greedy search
methods

• Cross-validation is a
good objective function to
start with

•Filtering
•L1 regularization
(embedded
methods)
•Wrappers

•Forward
selection
•Backward
selection
•Other search
•Exhaustive

C
om

putational cost

Summary: how to do feature selection

• Too greedy—ignore
relationships between
features

• Easy baseline
• Can be generalized in

many interesting ways
– Stagewise forward

selection
– Forward-backward search
– Boosting

•Filtering
•L1 regularization
(embedded
methods)
•Wrappers

•Forward
selection
•Backward
selection
•Other search
•Exhaustive

C
om

putational cost

Summary: how to do feature selection

• Generally more effective
than greedy

•Filtering
•L1 regularization
(embedded
methods)
•Wrappers

•Forward
selection
•Backward
selection
•Other search
•Exhaustive

C
om

putational cost

Summary: how to do feature selection

• The “ideal”
• Very seldom done in

practice
• With cross-validation

objective, there’s a
chance of over-fitting
– Some subset might

randomly perform quite
well in cross-validation

•Filtering
•L1 regularization
(embedded
methods)
•Wrappers

•Forward
selection
•Backward
selection
•Other search
•Exhaustive

C
om

putational cost

Summary: how to do feature selection

Extra slides

Feature engineering case study:
Modeling language change [Bouchard et al. 07,09]

‘fish’ ‘fear’

Hawaiian iʔa makaʔu

Samoan iʔa mataʔu

Tongan ika

Maori ika mataku

Feature engineering case study:
Modeling language change [Bouchard et al. 07,09]

‘fish’ ‘fear’

Hawaiian iʔa makaʔu

Samoan iʔa mataʔu

Tongan ika

Maori ika mataku

Proto-Oceanic

‘fish’
POc *ika

*k > ʔ

Tasks: • Proto-word
reconstruction

• Infer sound changes

Feature engineering case study:
Modeling language change [Bouchard et al. 07,09]

• Featurize sound changes
– E.g.: substitution are generally more frequent than

insertions, deletions, changes are branch specific, but
there are cross-linguistic universal, etc.

• Particularity: unsupervised learning setup
– We covered feature engineering for supervised setups

for pedagogical reasons; most of what we have seen
applies to the unsupervised setup

! "#

$%

&

'

(

) * +,

-

.

/

012

3

4 5

6 78

9

:

;<

=

>

?

@

f

gdb c

n

ç

m

j

k

hv

t

s

r

qp A

z

B

C x

• What is a protein?
– A protein is a chain of amino acids.

• Proteins fold into a 3D conformation by minimizing energy
– “Native” conformation (the one found in nature) is the lowest

energy state
– We would like to find it using only computer search.
– Very hard, need to try several initialization in parallel

• Regression problem:
– Input: many different conformation of the same sequence
– Output: energy

• Features derived from:
φ and ψ torsion angles.

• Restrict next wave of
 search to agree with
 features that predicted
 high energy

Feature selection case study:
Protein Energy Prediction [Blum et al ‘07]

Featurization
• Torsion angle features can be binned

• Bins in the Ramachandran plot correspond to
common structural elements
– Secondary structure: alpha helices and beta sheets

φ1 ψ1 φ2 ψ2 φ3 ψ4 φ5 ψ5 φ6 ψ6

0 75.3 -61.6 -24.8 -68.6 -51.9 -63.3 -37.6 -62.8 -42.3

G A A

φ

ψ

(180, 180)

(-180, -180)

G

E

E

A

B

B

Results of LARS for predicting
protein energy

• One column for each torsion angle feature
• Colors indicate frequencies in data set

– Red is high, blue is low, 0 is very low, white is never
– Framed boxes are the correct native features
– “-” indicates negative LARS weight (stabilizing), “+”

indicates positive LARS weight (destabilizing)

Other things to check out
• Bayesian methods

– David MacKay: Automatic Relevance Determination
• originally for neural networks

– Mike Tipping: Relevance Vector Machines
• http://research.microsoft.com/mlp/rvm/

• Miscellaneous feature selection algorithms
– Winnow

• Linear classification, provably converges in the presence of
exponentially many irrelevant features

– Optimal Brain Damage
• Simplifying neural network structure

• Case studies
– See papers linked on course webpage.

http://research.microsoft.com/mlp/rvm/
http://research.microsoft.com/mlp/rvm/

Acknowledgments
• Useful comments by Mike Jordan, Percy Liang
• A first version of these slides was created by Ben Blum

