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Abstract supervised setup
• Training : 
•     : input vector

• y   : response variable
–                 : binary classification
–                 : regression
– what we want to be able to predict, having 

observed some new    .  

xi =





xi,1

xi,2
...

xi,n




, xi,j ∈ R
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Outline

• Today: how to featurize effectively
– Many possible featurizations
– Choice can drastically affect performance

• Program:
– Part I : Handcrafting features: examples, bag 

of tricks (feature engineering)
– Part II: Automatic feature selection



Part I: Handcrafting 
Features

Machines still need us



Example 1: email classification

• Input: a email message
• Output: is the email...

– spam,
– work-related,
– personal, ...

PERSONAL



• Input:     (email-valued)
• Feature vector:  

• Learn one weight vector for each class:

• Decision rule:

Basics: bag of words
x

f(x) =





f1(x)
f2(x)

...
fn(x)




, e.g. f1(x) =

{
1 if the email contains “Viagra”
0 otherwise

Indicator or 
Kronecker 

delta function

ŷ = argmaxy〈wy, f(x)〉

wy ∈ Rn, y ∈ {SPAM,WORK,PERS}



Feature vector hashtable

  extractFeature(Email e) {

    result <- hashtable

    for (String word : e.getWordsInBody())
      result.put("UNIGRAM:" + word, 1.0)
  
    String previous = "#"
    for (String word : e.getWordsInBody()) {
      result.put("BIGRAM:"+ previous + " " + word, 1.0)
      previous = word
    }

    return result
  }

f(x)

Implementation: exploit sparsity

Feature template 1:
UNIGRAM:Viagra

Feature template 2:
BIGRAM:Cheap Viagra



• Each user inbox is a separate learning 
problem 
– E.g.: Pfizer drug designer’s inbox 

• Most inbox has very few training 
instances, but all the learning problems 
are clearly related

Features for multitask learning



• Solution: include both user-specific and 
global versions of each feature. E.g.:
– UNIGRAM:Viagra
– USER_id4928-UNIGRAM:Viagra

• Equivalent to a Bayesian hierarchy under 
some conditions (Finkel et al. 2009)

Features for multitask learning 
[e.g.:Daumé 06]
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• In multiclass classification, output space 
often has known structure as well

• Example: a hierarchy:

Structure on the output space

Emails

Spam Ham

Advance 
fee frauds

Spamvertised 
sites

Backscatter Work

Mailing lists

Personal



• Slight generalization of the learning/
prediction setup: allow features to depend 
both on the input x and on the class y

w ∈ Rm,

ŷ = argmaxy〈w, f(x, y)〉

Structure on the output space

Before: • One weight/class:

• Decision rule:

wy ∈ Rn,

ŷ = argmaxy〈wy, f(x)〉

After: • Single weight:

• New rule:



• At least as expressive: conjoin each 
feature with all output classes to get the 
same model

• E.g.: UNIGRAM:Viagra becomes
– UNIGRAM:Viagra AND CLASS=FRAUD
– UNIGRAM:Viagra AND CLASS=ADVERTISE
– UNIGRAM:Viagra AND CLASS=WORK
– UNIGRAM:Viagra AND CLASS=LIST
– UNIGRAM:Viagra AND CLASS=PERSONAL

Structure on the output space



Exploit the information in the hierarchy by 
activating both coarse and fine versions of 
the features on a given input:

Structure on the output space

                               ...
UNIGRAM:Alex AND CLASS=PERSONAL
UNIGRAM:Alex AND CLASS=HAM
                               ...

Emails

Spam Ham

Advance 

fee frauds

Spamvertised 

sites

Backscatter Work

Mailing lists

Personal

x y



Structure on the output space

• Not limited to hierarchies
– multiple hierarchies
– in general, arbitrary featurization of the output

• Another use: 
– want to model that if no words in the email 

were seen in training, it’s probably spam
– add a bias feature that is activated only in 

SPAM subclass (ignores the input): 
CLASS=SPAM



Dealing with continuous data

• Full solution needs HMMs (a sequence of 
correlated classification problems): Alex 
Simma will talk about that on Oct. 15

• Simpler problem: identify a single sound 
unit (phoneme)

“Danger”

“r”



Dealing with continuous data
• Step 1: Find a coordinate system where 

similar input have similar coordinates
– Use Fourier transforms and knowledge 

about the human ear

Time domain:

Sound 2Sound 1

Frequency domain:



Sriram Sankararaman Clustering

Dealing with continuous data
• Step 2 (optional): Transform the 

continuous data into discrete data
– Bad idea: COORDINATE=(9.54,8.34)
– Better: Vector quantization (VQ) 

– Run k-mean on the training data as a 
preprocessing step

– Feature is the index of the nearest 
centroid
CLUSTER=1

CLUSTER=2



Dealing with continuous data
Important special case: integration of the 
output of a black box 
– Back to the email classifier: assume we 

have an executable that returns, given a 
email e, its belief B(e) that the email is 
spam

– We want to model monotonicity
– Solution: thermometer feature

B(e) > 0.8 AND 
CLASS=SPAM

B(e) > 0.6 AND 
CLASS=SPAM

B(e) > 0.4 AND 
CLASS=SPAM... ...



fi(x, y) =
{

log B(e) if y = SPAM
0 otherwise

Dealing with continuous data

Another way of integrating a qualibrated 
black box as a feature:

Recall: votes 
are combined 

additively



Part II: (Automatic) 
Feature Selection 



What is feature selection?
• Reducing the feature space by throwing 

out some of the features
• Motivating idea: try to find a simple, 

“parsimonious” model
– Occam’s razor: simplest explanation that 

accounts for the data is best



What is feature selection?

UNIGRAM:Viagra 0

UNIGRAM:the 1
BIGRAM:the presence 0
BIGRAM:hello Alex 1
UNIGRAM:Alex 1
UNIGRAM:of 1
BIGRAM:absence of 0
BIGRAM:classify email 0
BIGRAM:free Viagra 0
BIGRAM:predict the 1

…
BIGRAM:emails as 1

UNIGRAM:Viagra 0
BIGRAM:hello Alex 1
BIGRAM:free Viagra 0

Vegetarian No
Plays video 
games

Yes

Family history No
Athletic No
Smoker Yes
Gender Male
Lung capacity 5.8L
Hair color Red
Car Audi
…

Weight 185 
lbs

Family 
history

No

Smoker Yes

Task: classify emails as spam, work, ...

Data: presence/absence of words

Task: predict chances of lung disease

Data: medical history survey

X X

Reduced X
Reduced X



Outline
• Review/introduction

– What is feature selection?  Why do it?
• Filtering
• Model selection

– Model evaluation
– Model search

• Regularization
• Summary recommendations



Why do it?
• Case 1: We’re interested in features—we want 

to know which are relevant.  If we fit a model, it 
should be interpretable.  

• Case 2: We’re interested in prediction; features 
are not interesting in themselves, we just want to 
build a good classifier (or other kind of 
predictor).  



Why do it? Case 1.

• What causes lung cancer?  
– Features are aspects of a patient’s medical history
– Binary response variable: did the patient develop lung cancer?
– Which features best predict whether lung cancer will develop?  

Might want to legislate against these features.

• What causes a program to crash? [Alice Zheng ’03, ’04, ‘05]

– Features are aspects of a single program execution
• Which branches were taken?  
• What values did functions return?

– Binary response variable: did the program crash?
– Features that predict crashes well are probably bugs

We want to know which features are relevant; we don’t 
necessarily want to do prediction.



Why do it?  Case 2.

• Common practice: coming up with as many features as 
possible (e.g. > 106 not unusual)
– Training might be too expensive with all features
– The presence of irrelevant features hurts generalization.

• Classification of leukemia tumors from microarray gene 
expression data [Xing, Jordan, Karp ’01]
– 72 patients (data points)
– 7130 features (expression levels of different genes)

• Embedded systems with limited resources
– Classifier must be compact
– Voice recognition on a cell phone
– Branch prediction in a CPU

• Web-scale systems with zillions of features
– user-specific n-grams from gmail/yahoo spam filters

We want to build a good predictor.



Get at Case 1 through Case 2

• Even if we just want to identify features, it 
can be useful to pretend we want to do 
prediction.

• Relevant features are (typically) exactly 
those that most aid prediction.

• But not always.  Highly correlated features 
may be redundant but both interesting as 
“causes”.
– e.g. smoking in the morning, smoking at night



Feature selection vs. 
Dimensionality reduction

• Removing features:    
– Equivalent to projecting data onto lower-dimensional linear subspace 

perpendicular to the feature removed

• Percy’s lecture: dimensionality reduction 
– allow other kinds of projection.

• The machinery involved is very different
– Feature selection can can be faster at test time
– Also, we will assume we have labeled data.  Some dimensionality 

reduction algorithm (e.g. PCA) do not exploit this information



Outline
• Review/introduction

– What is feature selection?  Why do it?
• Filtering
• Model selection

– Model evaluation
– Model search

• Regularization
• Summary



Filtering
Simple techniques for weeding out 
irrelevant features without fitting model



Filtering
• Basic idea: assign heuristic score to each 

feature    to filter out the “obviously” useless 
ones.  
– Does the individual feature seems to help prediction?
– Do we have enough data to use it reliably?  
– Many popular scores [see Yang and Pederson ’97]

• Classification with categorical data: Chi-squared, information 
gain, document frequency

• Regression: correlation, mutual information
• They all depend on one feature at the time (and the data)

• Then somehow pick how many of the highest 
scoring features to keep



Comparison of filtering methods for text 
categorization [Yang and Pederson ’97]



Filtering
• Advantages: 

– Very fast
– Simple to apply

• Disadvantages:
– Doesn’t take into account interactions between features: 

Apparently useless features can be useful when 
grouped with others

• Suggestion: use light filtering as an efficient initial 
step if running time of your fancy learning 
algorithm is an issue



Outline
• Review/introduction

– What is feature selection?  Why do it?
• Filtering
• Model selection

– Model evaluation
– Model search

• Regularization
• Summary



Model Selection
• Choosing between possible models of 

varying complexity
– In our case, a “model” means a set of features

• Running example: linear regression model



Linear Regression Model

• Recall that we can fit (learn) the model by minimizing 
the squared error:

Input       :
                     

Response : 

Parameters:
 

Prediction  : 



Least Squares Fitting
(Fabian’s slide from 3 weeks ago)

0 20
0

Error or “residual”

Prediction

Observation

Sum squared error:



Naïve training error is misleading

• Consider a reduced model with only those features      
for 
– Squared error is now

• Is this new model better?  Maybe we should compare 
the training errors to find out?  

• Note 
                                                          
– Just zero out terms in     to match        .  

• Generally speaking, training error will only go up in a 
simpler model. So why should we use one? 

Input       :

                     

Response : 

Parameters:

 

Prediction  : 



Overfitting example 1

• This model is too rich for the data
• Fits training data well, but doesn’t generalize.  

0 2 4 6 8 10 12 14 16 18 20-15

-10

-5

0

5

10

15

20

25

30

Degree 15 polynomial

(From Fabian’s lecture)



Overfitting example 2
• Generate 2000                    ,                          i.i.d.
• Generate 2000               ,                         i.i.d. completely 

independent of the    ’s
– We shouldn’t be able to predict    at all from 

• Find 
• Use this to predict       for each        by  

It really looks like we’ve 
found a relationship 
between     and     !  But 
no such relationship 
exists, so      will do no 
better than random on 
new data.  



Model evaluation
• Moral 1: In the presence of many irrelevant 

features, we might just fit noise. 
• Moral 2: Training error can lead us astray.  
• To evaluate a feature set   , we need a better 

scoring function 
• We’re not ultimately interested in training error; 

we’re interested in test error (error on new data).  
• We can estimate test error by pretending we 

haven’t seen some of our data.  
– Keep some data aside as a validation set.  If we don’t 

use it in training, then it’s a better test of our model.



K-fold cross validation
• A technique for estimating test error
• Uses all of the data to validate
• Divide data into K groups                                .
• Use each group as a validation set, then average all validation 

errors

X1

Learn
X2

X3X4

X5

X6

X7

tes
t



K-fold cross validation
• A technique for estimating test error
• Uses all of the data to validate
• Divide data into K groups                                .
• Use each group as a validation set, then average all validation 

errors

X1

Learn
X2

X3X4

X5

X6

X7

test



K-fold cross validation
• A technique for estimating test error
• Uses all of the data to validate
• Divide data into K groups                                .
• Use each group as a validation set, then average all validation 

errors

X1

…
Learn

X2

X3X4

X5

X6

X7

test



K-fold cross validation
• A technique for estimating test error
• Uses all of the data to validate
• Divide data into K groups                                .
• Use each group as a validation set, then average all validation 

errors

X1

Learn
X2

X3X4

X5

X6

X7



Model Search

• We have an objective function 
– Time to search for a good model. 

• This is known as a “wrapper” method
– Learning algorithm is a black box
– Just use it to compute objective function, then 

do search
• Exhaustive search expensive

– for n features, 2n possible subsets s
• Greedy search is common and effective



Model search

• Backward elimination tends to find better models
– Better at finding models with interacting features
– But it is frequently too expensive to fit the large 

models at the beginning of search
• Both can be too greedy.  

Backward elimination

Initialize s={1,2,…,n}
Do:
 remove feature from s
 which improves K(s) most
While K(s) can be improved

Forward selection

Initialize s={}
Do:
 Add feature to s
 which improves K(s) most
While K(s) can be improved



Model search
• More sophisticated search strategies exist

– Best-first search
– Stochastic search
– See “Wrappers for Feature Subset Selection”, Kohavi and John 

1997
• For many models, search moves can be evaluated 

quickly without refitting
– E.g. linear regression model: add feature that has most 

covariance with current residuals
• YALE can do feature selection with cross-validation and 

either forward selection or backwards elimination.  
• Other objective functions exist which add a model-

complexity penalty to the training error
– AIC: add penalty    to log-likelihood (number of features).  
– BIC: add penalty               (n is the number of data points)



Outline
• Review/introduction

– What is feature selection?  Why do it?
• Filtering
• Model selection

– Model evaluation
– Model search

• Regularization
• Summary



Regularization
• In certain cases, we can move model 

selection into the induction algorithm

• This is sometimes called an embedded 
feature selection algorithm



Regularization
• Regularization: add model complexity penalty to 

training error.
•

for some constant C
• Find 
• Regularization forces weights to be small, but 

does it force weights to be exactly zero?  
–               is equivalent to removing feature f from the 

model
• Depends on the value of p …



• p = 2: Euclidean

• p = 1: Taxicab or Manhattan

• General case: 

p metrics and norms

||!w||2 =
√

w2
1 + · · · + w2

n

||!w||1 = |w1| + · · · + |wn|

||!w||p = p
√

|w1|p + · · · + |wn|p

0 < p ≤ ∞



Univariate case: intuition
Penalty

Feature
weight
value



Univariate case: intuition
Penalty

Feature
weight
value

L1 penalizes more than L2
when the weight is small



Univariate example: L2

+ =

• Case 1: there is a lot of data supporting 
our hypothesis

Regularization term Data likelihood
By itself, minimized 

by w=1.1

Objective function
Minimized by 

w=0.95



Univariate example: L2

+ =

• Case 2: there is NOT a lot of data 
supporting our hypothesis

Regularization term Data likelihood
By itself, minimized 

by w=1.1

Objective function
Minimized by 

w=0.36



Univariate example: L1

+ =

• Case 1, when there is a lot of data 
supporting our hypothesis:
– Almost the same resulting w as L2

• Case 2, when there is NOT a lot of data 
supporting our hypothesis

• Get w = exactly zero

Regularization term Data likelihood
By itself, minimized 

by w=1.1

Objective function
Minimized by   

w=0.0



Level sets of L1 vs L2 (in 2D) 

Weight of
feature #1

Weight of
feature #2



Multivariate case: w gets cornered
• To minimize                                 , we can solve    

 by (e.g.) gradient descent.

• Minimization is a tug-of-war between the two terms



• To minimize                                 , we can solve    
 by (e.g.) gradient descent.

• Minimization is a tug-of-war between the two terms

Multivariate case: w gets cornered



• To minimize                                 , we can solve    
 by (e.g.) gradient descent.

• Minimization is a tug-of-war between the two terms

Multivariate case: w gets cornered



• To minimize                                 , we can solve    
 by (e.g.) gradient descent.

• Minimization is a tug-of-war between the two terms
• w is forced into the corners—components are zeroed

– Solution is often sparse

Multivariate case: w gets cornered



L2 does not zero components



L2 does not zero components

• L2 regularization does not promote sparsity
• Even without sparsity, regularization promotes 

generalization—limits expressiveness of model



Lasso Regression [Tibshirani ‘94]

• Simply linear regression with an L1 penalty 
for sparsity.

• Compare with ridge regression (introduced 
by Fabian 3 weeks ago):

ŵ = argminw

n∑

i=1

(yi −w!xi)2 + C||w||1

ŵ = argminw

n∑

i=1

(yi −w!xi)2 + C||w||22



Lasso Regression [Tibshirani ‘94]

• Simply linear regression with an L1 penalty 
for sparsity.

• Two questions:
– 1. How do we perform this minimization?  

• Difficulty: not differentiable everywhere
– 2. How do we choose C?

• Determines how much sparsity will be obtained
• C is called an hyperparameter

ŵ = argminw

n∑

i=1

(yi −w!xi)2 + C||w||1



Question 1: Optimization/learning
• Set of discontinuity has Lebesgue 

measure zero, but optimizer WILL hit them
• Several approaches, including:

– Projected gradient, stochastic projected 
subgradient, coordinate descent, interior 
point, orthan-wise L-BFGS [Friedman 07, 
Andrew et. al. 07, Koh et al. 07, Kim et al. 07, 
Duchi 08]

– More on that on the John’s lecture on 
optimization

– Open source implementation:edu.berkeley.nlp.math.OW_LBFGSMinimizer in

http://code.google.com/p/berkeleyparser/



Question 2: Choosing C
• Up until a few years ago 

this was not trivial
– Fitting model: optimization 

problem, harder than 
least-squares

– Cross validation to choose 
C: must fit model for every 
candidate C value

• Not with LARS! (Least 
Angle Regression, 
Hastie et al, 2004)
– Find trajectory of w for all 

possible C values 
simultaneously, as 
efficiently as least-squares

– Can choose exactly how 
many features are wanted

Figure taken from Hastie et al (2004)



• Not to be confused: two othogonal uses 
of L1 for regression: 
– lasso for sparsity: what we just described

–L1 loss: for robustness (Fabian’s lecture).

Remarks



Intuition
Penalty

x

L1 penalizes more than L2
when x is small (use this for 
sparsity)

L1 penalizes less than L2
when x is big (use this for 
robustness)



• L1 penalty can be viewed as a laplace 
prior on the weights, just as L2 penalty 
can viewed as a normal prior
– Side note: also possible to learn C 

efficiently when the penalty is L2 (Foo, Do, 
Ng, ICML 09, NIPS 07)

• Not limited to regression: can be 
applied to classification, for example 

Remarks



• For large scale problems, performance of 
L1 and L2 is very similar (at least in NLP)
– A slight advantage of L2 over L1 in accuracy
– But solution is 2 orders of magnitudes 

sparser!
– Parsing reranking task:

L1 Vs L2  [Gao et al ‘07] 

(Higher F1
is better)



• NLP example: back to the email 
classification task

• Zipf law: frequency of a word is inversely 
proportional to its frequency rank.
– Fat tail: many n-grams are seen only once in 

the training
– Yet they can be very useful predictors 
– E.g. 8-gram “today I give a lecture on feature 

selection” occurs only once in my mailbox, but 
it’s a good predictor that the email is WORK

When can feature selection 
hurt?



Outline
• Review/introduction

– What is feature selection?  Why do it?
• Filtering
• Model selection

– Model evaluation
– Model search

• Regularization
• Summary



Summary: feature engineering
• Feature engineering is often crucial to get 

good results
• Strategy: overshoot and regularize

– Come up with lots of features: better to include 
irrelevant features than to miss important 
features

– Use regularization or feature selection to 
prevent overfitting

– Evaluate your feature engineering on DEV set.  
Then, when the feature set is frozen, evaluate 
on TEST to get a final evaluation (Daniel will 
say more on evaluation next week)



Summary: feature selection
When should you do it?
– If the only concern is accuracy, and the whole 

dataset can be processed, feature selection not 
needed (as long as there is regularization)

– If computational complexity is critical 
(embedded device, web-scale data, fancy 
learning algorithm), consider using feature 
selection

• But there are alternatives: e.g. the Hash trick, a 
fast, non-linear dimensionality reduction technique 
[Weinberger et al. 2009] 

– When you care about the feature themselves
• Keep in mind the correlation/causation issues
• See [Guyon et al., Causal feature selection, 07]



Summary: how to do feature selection
•Filtering
•L1 regularization 
(embedded 
methods)
•Wrappers

•Forward 
selection
•Backward 
selection
•Other search
•Exhaustive

C
om

putational cost



• Good preprocessing 
step

• Fails to capture 
relationship between 
features

•Filtering
•L1 regularization 
(embedded 
methods)
•Wrappers

•Forward 
selection
•Backward 
selection
•Other search
•Exhaustive

C
om

putational cost

Summary: how to do feature selection



• Fairly efficient
– LARS-type algorithms now 

exist for many linear 
models.

•Filtering
•L1 regularization 
(embedded 
methods)
•Wrappers

•Forward 
selection
•Backward 
selection
•Other search
•Exhaustive

C
om

putational cost

Summary: how to do feature selection



• Most directly optimize 
prediction performance

• Can be very expensive, 
even with greedy search 
methods

• Cross-validation is a 
good objective function to 
start with

•Filtering
•L1 regularization 
(embedded 
methods)
•Wrappers

•Forward 
selection
•Backward 
selection
•Other search
•Exhaustive

C
om

putational cost

Summary: how to do feature selection



• Too greedy—ignore 
relationships between 
features

• Easy baseline
• Can be generalized in 

many interesting ways
– Stagewise forward 

selection
– Forward-backward search
– Boosting

•Filtering
•L1 regularization 
(embedded 
methods)
•Wrappers

•Forward 
selection
•Backward 
selection
•Other search
•Exhaustive

C
om

putational cost

Summary: how to do feature selection



• Generally more effective 
than greedy

•Filtering
•L1 regularization 
(embedded 
methods)
•Wrappers

•Forward 
selection
•Backward 
selection
•Other search
•Exhaustive

C
om

putational cost

Summary: how to do feature selection



• The “ideal”
• Very seldom done in 

practice
• With cross-validation 

objective, there’s a 
chance of over-fitting
– Some subset might 

randomly perform quite 
well in cross-validation

•Filtering
•L1 regularization 
(embedded 
methods)
•Wrappers

•Forward 
selection
•Backward 
selection
•Other search
•Exhaustive

C
om

putational cost

Summary: how to do feature selection



Extra slides



Feature engineering case study: 
Modeling language change [Bouchard et al. 07,09]

‘fish’ ‘fear’

Hawaiian iʔa makaʔu

Samoan iʔa mataʔu

Tongan ika

Maori ika mataku



Feature engineering case study: 
Modeling language change [Bouchard et al. 07,09]

‘fish’ ‘fear’

Hawaiian iʔa makaʔu

Samoan iʔa mataʔu

Tongan ika

Maori ika mataku

Proto-Oceanic

‘fish’ 
POc *ika

*k > ʔ

Tasks: • Proto-word 
reconstruction

• Infer sound changes



Feature engineering case study: 
Modeling language change [Bouchard et al. 07,09]

• Featurize sound changes
– E.g.: substitution are generally more frequent than 

insertions, deletions, changes are branch specific, but 
there are cross-linguistic universal, etc.

• Particularity: unsupervised learning setup
– We covered feature engineering for supervised setups 

for pedagogical reasons; most of what we have seen 
applies to the unsupervised setup
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• What is a protein?  
– A protein is a chain of amino acids.  

• Proteins fold into a 3D conformation by minimizing energy
– “Native” conformation (the one found in nature) is the lowest 

energy state
– We would like to find it using only computer search.  
– Very hard, need to try several initialization in parallel

• Regression problem: 
– Input: many different conformation of the same sequence
– Output: energy

• Features derived from: 
φ and ψ torsion angles.

• Restrict next wave of 
  search to agree with
  features that predicted
  high energy

Feature selection case study: 
Protein Energy Prediction [Blum et al ‘07]



Featurization
• Torsion angle features can be binned

• Bins in the Ramachandran plot correspond to 
common structural elements
– Secondary structure: alpha helices and beta sheets

φ1 ψ1 φ2 ψ2 φ3 ψ4 φ5 ψ5 φ6 ψ6

0 75.3 -61.6 -24.8 -68.6 -51.9 -63.3 -37.6 -62.8 -42.3

G A A

φ

ψ

(180, 180)

(-180, -180)

G

E

E

A

B

B



Results of LARS for predicting 
protein energy

• One column for each torsion angle feature
• Colors indicate frequencies in data set

– Red is high, blue is low, 0 is very low, white is never
– Framed boxes are the correct native features
– “-” indicates negative LARS weight (stabilizing), “+” 

indicates positive LARS weight (destabilizing)



Other things to check out
• Bayesian methods

– David MacKay: Automatic Relevance Determination 
• originally for neural networks

– Mike Tipping: Relevance Vector Machines
• http://research.microsoft.com/mlp/rvm/

• Miscellaneous feature selection algorithms
– Winnow

• Linear classification, provably converges in the presence of 
exponentially many irrelevant features

– Optimal Brain Damage
• Simplifying neural network structure

• Case studies
– See papers linked on course webpage.  

http://research.microsoft.com/mlp/rvm/
http://research.microsoft.com/mlp/rvm/
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