Readings
-
An introduction to kernel-based learning algorithms.
K.-R. Müller, S. Mika, G. Rätsch, K. Tsuda, and B. Schölkopf.
IEEE Neural Networks, 12(2):181-201, 2001.
-
Nonlinear component analysis as a kernel eigenvalue problem.
B. Schölkopf, A. Smola, and K.-R. Müller.
Neural Computation, 10:1299-1319, 1998.
-
Kernel independent component analysis.
F. R. Bach and M. I. Jordan. Journal of Machine Learning Research,
3, 1-48, 2002. [Read sections 2.1 and 3.2 for now].
-
Convolution kernels on discrete structures.
D. Haussler. Technical Report UCSC-CRL-99-10,
University of California, Santa Cruz.
-
Positive definite rational kernels.
C. Cortes, P. Haffner, and M. Mohri.
Proceedings of the Conference on Computational Learning Theory,
2003.
-
Marginalized kernels for biological sequences.
K. Tsuda, T. Kin and K. Asai. Bioinformatics,
18(Suppl 1), 268-275, 2002.
-
Learning the kernel matrix with semidefinite programming.
G. R. G. Lanckriet, N. Cristianini, L. El Ghaoui, P. L. Bartlett,
and M. I. Jordan. Journal of Machine Learning Research,
5:27-72, 2004.
-
Prediction with Gaussian processes: from linear regression to linear
prediction and beyond.
C. Williams. In ``Learning and Inference in Graphical Models,''
MIT Press, 1999.
-
On spectral clustering: Analysis and an algorithm.
A. Ng, M. I. Jordan, and Y. Weiss.
In Advances in Neural Information Processing (NIPS) 14,
MIT Press, 2002.
-
Multi-class spectral graph partitioning.
S. X. Yu and J. Shi.
In International Conference on Computer Vision,
2003.
-
Learning spectral clustering.
F. Bach and M. I. Jordan.
In Advances in Neural Information Processing (NIPS) 16,
MIT Press, 2004.
-
Cluster kernels for semi-supervised learning.
O. Chapelle, J. Weston and B. Schoelkopf.
In Advances in Neural Information Processing (NIPS) 14,
MIT Press, 2002.
-
An introduction to MCMC for machine learning.
C. Andrieu, N. de Freitas, A. Doucet and M. I. Jordan.
Machine Learning, 50, 5-43, 2003.
-
A Bayesian analysis of some nonparametric problems.
T. S. Ferguson.
Annals of Statistics, 1, 209-230, 1973.
-
Ferguson distributions via Polya urn schemes.
D. Blackwell and J. MacQueen.
Annals of Statistics, 1, 353-355, 1973.
-
Mixtures of Dirichlet processes with applications to
Bayesian nonparametric problems.
C. Antoniak.
Annals of Statistics, 2, 1152-1174, 1974.
-
Bayesian density estimation and inference using mixtures.
M. Escobar and M. West.
Journal of the American Statistical Association, 90, 577-588, 1995.
-
A constructive definition of Dirichlet priors.
J. Sethuraman. Statistica Sinica, 4, 639-650, 1994.
-
Markov chain sampling methods for
Dirichlet processes mixture models.
R. Neal. Technical Report 9815, Department of Statistics,
University of Toronto, 1998.
-
Bayesian haplotype inference via the Dirichlet process.
E. P. Xing, R. Sharan and M. I. Jordan.
Technical Report CSD-03-1275, Division of Computer Science,
University of California, Berkeley, 2003.
-
Hierarchical topic models and the nested Chinese restaurant process.
D. M. Blei, T. Griffiths, M. I. Jordan, and J. Tenenbaum.
In press: Advances in Neural Information Processing Systems (NIPS) 16, 2003.
-
Hierarchical Dirichlet processes.
Y. W. Teh, M. I. Jordan, M. J. Beal and D. M. Blei.
Technical Report 653, Department of Statistics,
University of California, Berkeley, 2004.
-
Convexity, classification, and risk bounds.
P. L. Bartlett, M. I. Jordan, and J. D. McAuliffe.
Technical Report 638, Department of Statistics,
University of California, Berkeley, 2003.
-
Concentration-of-measure inequalities.
G. Lugosi. Department of Economics,
Pompeu Fabra University, 2004.
-
A few notes on Statistical Learning Theory
S. Mendelson. In Advanced Lectures in Machine Learning,
LNCS 2600, New York: Springer, 2003.