Object Localization Using Crossbeam Sensing

Aaron S. Wallack *
Computer Science Division
University of California
Berkeley, CA 94720

Abstract

Object localization is a fundamental problem in me-
chanical assembly. In this paper we present a local-
ization technique using reliable, highly accurate, ro-
bust, inezpensive light beam sensors designed for me-
chanical assembly and manufacturing. The technique
tnvolves passing polyhedral objects through a set of
crossed beams and storing the positions when any beam
is broken or reconnects. The geometrical constraints
simplify the correspondence problem so that it is solv-
able in linear time, or can be solved using a precom-
puted hash table. The global minimum least squared
error pose is exactly computed using methods from al-
gebra and numerical analysis. The limitations of this
technique resull from the beam sensor’s limitations.

1 Introduction

Current robotic hardware systems such as a sawyer
motor robot [1] combine high speed and high accu-
racy. In order to fully utilize this hardware the top
level robotics control software needs very accurate
data about the workspace (= ﬁﬂ). A recognition
and localization technique should match the capabil-
ities of the underlying system to exploit its capabili-
ties. Generic machine vision is not quick enough or
precise enough to suit high speed manufacturing. In
general, the problem of recognizing and localizing 3D
objects in general position is too complex and too dif-
ficult to be solved in a reasonable amount of time. By
extracting necessary and sufficient data using tailored
sensors, recognition and localization can be done as
fast and as accurately as high speed manufacturing
requires (= 0.1 seconds).

The model based recognition problem is to deter-
mine which object O from a set of candidate objects
01,03, ... best explains the sensed data. The model

*Supported by Fannie and John Hertz Fellowship

tSupportecl in part by David and Lucile Packard Fellowship
and National Science Foundation Presidential Young Investiga-
tor Award (# IRI—8958577).

{Supported in part by a grant from Mitsubishi Electronic
Research Lab

1050-4729/93 $3.00 © 1993 IEEE

John F. Canny !

692

Dinesh Manocha #
Department of Computer Science
University of North Carolina
Chapel Hill, NC 27599-3175

based localization problem is to determine the pose p
for a given object O which best explains the sensed
data.

In this paper we present a recognition and localiza-
tion technique which combines speed, precision, and
robustness by specializing in a specific type of objects:
polyhedral objects. This method utilizes cheap, reli-
able, precise binary light beam sensors which we be-
lieve make this technique suitable in industry. The
important features of this technique are its high speed
and high precision. Given the critical points, the ob-
Ject’s identification and pose are estimated in 5 mi-
croseconds using a hash table. The resultant method
finds the optimal pose even in the presence of initial
orientational error and local minima. The optimal
pose, accurate to 1 mil, is computed in 0.1 seconds
on a SPARC 1.

1.1 Previous Work

J. Canny and K. Goldberg use the term RISC to
describe Reduced Intricacy Sensing and Control as
a focusing point for research in simple sensing tech-
niques [3]. Instead of using general sensors, RISC
prefers using many different “specialized” sensors in
the workspace because custom sensors and algorithms
are faster and more “robust” than general algorithms.

In this paper, we connect finger gap sensing with
the larger field of object recognition. Goldberg and
Mason [6] introduced the diameter function (see [15])
to model parallel jaw diameters as part of a proba-
bilistic parts orienter, and they also [7] used finger
gap measurements to stochastically generate plans to
orient parts. Rao and Goldberg [16], [5] automatically
oriented parts by generating plans consisting of a se-
ries of oriented grasps.

This is the first general and efficient solution to the
non-linear least squares estimation problem such as
occurs in computer vision. In partially solving the
problem of object recognition and localization, this
technique is related to the larger field of model based
machine vision [8]. Machine vision has not exactly
solved for the global minimum least squared error be-



tween points and features in a general methodology.
[10], [17) overcame the problems associated with ob-
ject occlusion and exactly solved for the global min-
imum least squared error match between sequences
of feature points in an image and sequences of fea-
ture points in a modeled object, but cannot guarantee
that the image sequence is in phase with the feature
sequence. [4] presented an algorithm for localizing 3D
objects using pointwise positional information and ex-
actly solved for the minimum least squared error for
each individual feature, rather than all of the features
at once. [9] recognized 3D objects from images as-
suming orthographic projections and computed the
exact transformation from three sample points, but
did not compute the optimal transformation for all of
the data. [11] improved [10] 2D object recognition by
precomputing geometric hash tables containing all of
the interest points, and computed the best match in
linear time (by checking each of the interest points). .
1.2 Overview

This localization method is intended for use in au-
tomated manufacturing by quickly and precisely iden-
tifying and localizing polyhedral objects. Objects are
identified and localized by passing them through a set
of crossbeams, which are light beams oriented in dif-
ferent directions shown in figure 1 (the detecting dis-
tance L;, 95 millimeters, is limited by the sensors).
When an object passes through the apparatus, the
cross beams perceive a two dimensional cross-section
of a three dimensional object; a cross-section is de-
fined as the intersection of the object and a horizontal
plane. The robot’s position is recorded at the critical
points which occur when the beam is first broken, or
the beam reconnects, as shown in figure 2.  The

| L;(95 mm) |

FRONT VIEW

——& Light Beam Source
—&—Light Beam Sensor

= Path of Object

TOP VIEW

Figure 1: The configuration of the Light Beams

sensors return 2 X # of beams critical points. The
technique determines which features of the object cor-
respond to the critical points, (termed the correspon-
dence problem), using either a precomputed hash ta-

693

od— &=
=& <= .
A 4
Figure 2: A critical point occurs when the object first

breaks the beam of light, or when the beam first re-
connects

ble, or the object’s diameter function. Each beam’s
diameter specifies a set of possible orientations for the
object, and these sets are intersected to determine a
set of the object’s possible orientations. The diameter
of the object normal to the direction of the beam de-
pends upon the distance traveled by the robot while
the object occludes the beam and upon the angle be-
tween the beam and the robot’s motion.

In section 2, we present the theoretical background,
and geometrical framework for the correspondence al-
gorithm. In section 3, we present the correspondence
algorithm, and section 4 details using hash tables to
find the correspondence in constant time. In section
5, we explain the resultant formulation for computing
the optimal pose. Section 6 contains the experiment
and results. We conclude by highlighting the results
and advantages of this technique.

2 Theoretical Framework

This section describes the notation and the theo-
retical background for the correspondence algorithm.
This localization technique is useful for the following
class of objects:

1. The object to be identified cannot be flat or
translucent (ie., it must be able to break the light
beams)

2. The object must initially be lying on a flat surface
of its convex hull

3. Items with cross-section (at the pertinent height)
with the same convex hull cannot be distinguished

4. The object’s cross-section must be a polygon

The correspondence algorithm uses the diameter
function which is defined, and diagrammed in this sec-
tion. The correspondence algorithm efficiently inter-
sects the geometrical constraints with sensed data us-
ing the diameter function which maps orientations to
diameters.



2.1 Notation and Definitions
e An object’s cross-section at a particular height is
the intersection of that object and a horizontal
plane at that height; the cross-section is a poly-
gon.

arbitrary
object

diameter

I
X
Figure 3: The diameter of a polygon

o The diameter of an object is the width of the pro-
jection of the object along an axis. In figure 3 the
diameter is measured along the y-axis. Since the
orientation of the unlocalized object is unknown,
the original choice of axis is arbitrary.

Given the set of critical points, call the robot’s di-
rection of travel A, and let B be a perpendicular
to the light beam (both unit vectors). The diam-
eter is the travel between corresponding critical
points multiplied by the cosine between A and B,
or rather distance(A - B).

— Dopject(?, ¢) is defined as the diameter func-
tion of an object rotated by 6 and ¢ (where 8
is rotation about the z-axis and ¢ is rotation
about an axis in the x-y plane).

— Dy(8) is defined as the diameter function for
object assuming it is resting on face f. (¢ is
fixed)

- D}“"‘(ﬂ) is defined as the diameter function
relative to a particular beam for object as-
suming it is resting on face f. (¢ is fixed)

o A(sensed, uncertainty) is the range of values
[sensed — uncertainty, sensed + uncertainty).

. Do‘b}m(A(sensed, uncertainty)) is
defined as the set of orientations consistent with
A(sensed, uncertainty).

¢ The inset distance of an edge in an n sided par-
allelepiped is the distance from the edge to the
lowest intersection point of any edges, measured
normal to that edge (see figure 4).

694

arbitrary containing
. ject parallelepiped
distance
measured lowest
normal intersection
to edge point

Figure 4: The inset distance of an edge

2.2 Simplifying Assumptions for D

We make two assumptions: the crossbeam sensor
perceives only the convex hull of a cross-section at a
particular height, and that there is a finite set of cross-
sections for any object assuming that the object was
initially stably resting on a horizontal surface. The
face upon which the object was initially resting cor-
responds to the cross-section with the best matching
pose. For polygons, such as the cross-sections of the
objects, D consists entirely of sinusoids.

2.3 Computing the Diameter Function
(Dy)

The diameter function is the maximum distance be-
tween any pair of vertices projected along an axis of
angle 8. Dy can be defined as the pairs of extremal
vertices (of the cross-section) for each direction. The
diameter of a pair of vertices (of the cross-section) as
a function of @ is composed of sinusoidal arcs. An
example is shown in figure 5.

(-3.2) (3.2)
(3-2) 3-2
Rectangle Diameter Function

Figure 5: Diameter Function of a 2:3 Rectangle

2.3.1 Vertex-Vertex Pairs

Let L be the vector between a pair of eztremal vertices
in the cross-section. | L |, and ZL are referred to as:
peakdistance and peakangle (see Figure 6, equations
1, 2). The diameter function attains its peak value
when 0 = peakangic. peakyisiance equals the maximal
projected distance between the pair of vertices.

local diameter() =| L | cos(8 — £LL) 1)

Dy(0) = peakaisiance cos( — peakangre) (2)



[

di m

Figure 6: Vertex-vertex contact of a polygon

2.3.2 Collecting Sinusoidal Components into
the Diameter Function

The diameter function, which is the maximum of all
of those sinusoids, consists of 2n portions of sinusoidal
arcs (see figure 5), where n is the number of vertices of
the object. The intersection points of these sinusoidal
components are found by solving equation 3. The
diameter function is constructed by collecting all of
the extremal pairs of vertices (some of which may be
redundant), and intersecting them and retaining the
maximal components. '

peakgise, cos(peakang, — 0) = (3)
peak gise, cos(peakang, — 0)

3 Correspondence Algorithm

In this section, we detail an algorithm for determin-
ing the points in the model which correspond to the
sensed critical points. The correspondence algorithm
determines which vertices might (under uncertainty)
correspond to a set of critical points. The correspon-
dence is independent of cartesian coordinates, so the
critical points only contain 2n —2 relevant values. The
first step determines an object’s set of candidate ori-
entations using the diameter function by intersecting
the consistent angle ranges from all of the beams (this
utilizes n relevant values). The other n — 2 relevant
values are used to verify each candidate angle range
by comparing the expected inset distances with the
sensed inset distances. The algorithm is given below:

1. Compute Dj(A(sensor, uncertainty)) by scan-
ning througl{x the sinusoid components of Dy (see
figure 7, equation 4)

2. Intersect the sets by scanning down @ (offsetting
6 by each beam’s direction)

3. Verify the candidate angle range by comparing
the expected inset distance for each beam with
the sensed inset distances

695

possible
diameters

Y

p%sible‘orifenti‘gr:s

Figure 7: 'D}'I(A(sensor, uncertainty)) is the set of
possible orientations consistent with the sensed diam-
eter

3.1 Computing D!

We compute D~! by scanning through all of the si-
nusoidal arc components in D (equation 4). The range
of possible diameters (A, which incorporates sensor
uncertainty) are tested with each sinusoidal compo-
nent. Since the diameters are discretized, the compo-
nents corresponding to particular values are cached.

DFI(A) = Vvertcz,pal’ra (4)
peakangle arccos(m-“?"ﬁ)
4 Localizing Objects In Constant Time

In this section, we describe a second approach to
solving the correspondence problem. We can also solve
the correspondence problem in constant time by uti-
lizing precomputed hash tables. The hash entries are
indexed by the diameters measured normal to each
beam, and the inset distances, and contain the orien-
tation and contact points which generates those coor-
dinates. The orientations are found by looking up the
entries with those four coordinates in the hash table;
the coordinates are positionally independent and de-
pend solely upon the object’s orientation 8. As a func-
tion of #, the coordinates trace out a one-dimensional
line in a four dimensional space (see figure 8).

values(®)

Figure 8: The values diameter;, diameters,
diameters, inset_distance depend solely upon 6

4.1 Constructing the Hash Table
We used an adaptively sized hash table and a lin-
ear hashing function with random prime scaling coef-



ficients. The hash table entries are filled in by simu-
lating the crossbeam sensors for various orientations,
6, and computing the associated coordinates (given
the discretization A). The values of # should not be
stepped through using fixed size steps dfl because it
may not fill in all of the valid coordinates, df should
be a function of {value;(6)} (vi(9) in equation 7)
and the derivatives of {value;(#)} (pt; refers to the
point on the object which contacts beam;). The sign
of the derivative predicts which discretization bound-
ary will be crossed as # increases, and dist; (equation
7) is the distance between the current value;(#) and
the predicted discretization boundary. The functions
value;(f) are: the diameter functions and the inset
distance function (refer figure 4).

d’Dbe‘"‘(ﬂ) .
—"l’?g_'_ = —peakgistance Sm(a - Peakangle) (5)

—(—H in;;t 8 = —(—ld p;s U -— bea-;'nl . beadmud";(‘, J - (6)
beams ~bea.;n¢31"’:,—;(£l
dist. = | vi(6) mod if 28) 5 ¢ @
"7 | A—vi(f) mod A otherwise
st
d@_to_collision = min d:,f : (8)
o

The step size of df = =te=collision ;5 5 copservative es-
timate because %ﬂ varies slowly. df should always
be increased by at least a infinitesmal amount at each
iteration in order to overcome the problem of decreas-
ing derivatives close to a discretization step. The hash

object disc. # d0 steps | # entries
3" hexagon [ 0.01 cm 264 81
3" hexagon | 0.001 cm 2138 793
1” hexagon | 0.01 cm 324 98
1” hexagon | 0.001 cm 2563 961
%" square 0.01 cm 757 306
g” square | 0.001 cm 6710 2686

Figure 9: The efficiency of adaptively constructing the
hash table

table is constructed by incrementing @ in this manner
and adding entries into the hash table until § = 2.
For symmetric objects, # only needs achieve w—mzn—fd—ry
This construction builds the table in linear time with
respect to the size of the table. If the discretization
resolution is larger than the anticipated sensor error,
then noisy sensor data will often be discretized into
the same hash table entry as exact sensor data.

696

4.2 Sensor and Object Error

The hash table approach must handle imperfect
data point values: the sensors are susceptible to noise,
and the objects may differ slightly from the model.
There are two methods for handling such error: as-
sume a large sensor while constructing the hash table,
or search over a number of neighboring values in the
minimal hash table.

Incorporating a large sensor error into the hash ta-
ble has the effect of growing the number of hash table
entries , which could make it too large to fit in main
memory. If the hash table needs to be paged in and
out, then accessing an entry is as slow as a disk access
(on the order of tens of milliseconds).

Instead of growing the table, the program needs to
search all of the data points within a conservative error
range. With four coordinates axes, an error range of
+1 requires 3* = 81 hash table lookups. Each hash
table lookup takes 5 microseconds.

5 Resultant Formulation

This section describes the method for computing
the optimal pose given the set of critical points and the
corresponding points on the model. The goal of this
section is to compute the minimum sum squared error
between all the points and their associated features
after the points have been transformed by the matrix
T(X,Y,8). The correspondence algorithm determined
which points in the model were associated with each
critical point (each critical point denotes a line parallel
to its beam).

cos(f) —sin(d) X
T(X,Y,0)= | sin(6) cos(8) Y 9)
0 0 1
imtan(s) | 1 2 -2t X(1+t?)
Mat(X,Y,t) = 2t 1-¢2 Y(1+83)
0 0 1+1¢2
(10)

Given a point X,Y and an associated linear feature
aX +bY =c, theerror is: aX + bY - ¢, or (a,b,—c).
(X,Y,1) (Let abe a, b, ~c and £ be X, Y, 1). The
squared error, as a function of the transformation 7
is given in equation 11. The total least squared error
for all of the points and associated features is given in
equation 12.

li(a, b, ~¢) - (T(X,Y,6) - (x,Y,1))|* =

”(arbr _c) : (Mat(Xx Y, t) . (X, Y, 1))”2
(1+12)2

Error(X,Y,0) =Y _|la-(T(X,Y,0) - &)= (12)

(11)




Tlla- (Ma(X,Y,t) - #)|
(1+12)?

For each point and associated linear feature (beam),
the coefficients (a,axy,ax4yq,...) for each exponent,
are computed and summed. The sum squared er-
ror between a set of points and corresponding lines
is an algebraic function of translation and rotation
(X,Y,6), and the coefficients axjy;ty which depend
upon the model points and beams. Given the set of
points and associated lines, the global error function
(equation 12) is transformed into an algebraic equa-

tion using the substitution ¢t = E‘—"—}Q (equation 13).

FF(X,Y,t)= Y _|ld-(Mat(X,Y,t)-D|* = (13)
a+axy X +axgy1 XY +axpX? +ay Y +
aypY? +atyt +axgty Xt +ay t1Y? + atat?
+axgtoXt? + 2axqy1 XYt? + 2axg X2
+ayitaYt? + 2ayoY*t? + at3td + axqt3 Xt3
+ayqt3Ytd + atgtt + axqtga Xtt + axyy1 XYt4
+axqX?t4 + aytaYtt +ayp Y74

The global minimum of F'F is determined by solv-

ing for all of the candidate global minima which are

common roots to equations 15. This system of equa-

tions is rewritten algebraically; the partials of Error

with respect to X,Y are 0 when the partials of F'F
with respect to X,Y are 0, but 9—&;& is more com-

plicated (equation 14)
dError(X,Y,0) 3%’%}9 _
ot ot -

(1 +2)8FEXYY) _ 4P F(X,Y, 1))
(1+12)3

(14)

V.Error(X,Y,0) = 0 (15)
We determine the solutions to this system of equa-
tions by using a resultant [12] formulation (equation
16) which eliminates X and Y from the system of
equations (eqn. 15). M(t), a matrix polynomial,
(see Appendix) is non-invertible (det M (t) = 0) for all
values of ¢ which are common roots of the system of
equations. M is separated into constant matrices of

different exponents in ¢ (equation 17).

M(t) =

8Error(t) OFError(t)
8x ' oy

= Mat* + Mst® + Myt? + Myt + My

OErr

or(t)
7o) (16)

(17)

Resultant(

697

0 I 0 0
0 0 I 0
E= 0 0 0 I (18)

MI'My MMy M7'M,; M;'Ms

Solving det(M(t)) = O is reduced to an eigenvalue
problem by constructing the larger matrix E from de-
gree matrices of t (equation 18). The eigenvalues of
E are exactly the values of t which solve det M (t) = 0,
and are determined using numerical linear algebra rou-
tines (eigendecomposition, gaussian elimination, sin-
gular value decomposition) in LAPACK [2]. X (¢) and
Y (t) are solved in constant time since M’”g—(xf'—n'—)—
and M’W are linear in X and Y.

5.1 Sources of Uncertainty

The total uncertainty is conservatively estimated by
the variable &, and is incorporated into the correspon-
dence algorithm. We use § to validate the best least
squared error fit pose. Uncertainty arises because:

e parts are imperfect with respect to the model
o imperfect beam sensors

— hysteresis
— non-rigidity

— non-zero beam width
o sensor delay: on the order of 1 millisecond

— sensors are polled discontinuously at fre-
quent intervals

— the latency associated with polling the
robot’s position

— beam sensors have a 500 psecond delay

6 Experiment and Results

In this section, we explain our tests to deter-
mine the technique’s ability to identify unknown ob-
jects and the precision in estimating poses. The ex-
periments measured the accuracy of the localization
technique by passing objects in known relative poses
through the crossbeam sensor. The positional accu-
racy was tested by determining the position of an an
object (in this case, the %" square) passed through
the crossbeam sensor along different paths. The ori-
entational accuracy was tested in a similar manner.
The technique’s recognition performance was tested
using a set of four possible objects (as shown in figure
10). The objects moved through the crossbeam (or
vice versa) at a rate of 0.1 inches per second in order
to achieve precise measurements; after upgrading the
RobotWorld (RobotWorld is a registered trademark



of Motoman Corporation) controller hardware (from
multiprocessing Motorola 68020s [13] to a SPARC 1
[14]), we should be able to accurately scan objects at
the rate of 2 inches per second.

3/4" hexagon

1* hexagon

5/8" square 5/8"x 1 1/4*
ractangle

Figure 10: The set of possible objects

6.1 Positional Accuracy Results

The positional accuracy of this localization tech-
nique was measured by passing the %" square through
the crossbeam sensor along paths with different x po-
sitions (the object travels through the crossbeam sen-
sor parallel to the y axis). The initial location of the
square was unknown, but its relative position should
remain constant since it is rigidly held by the gripper.
The differences between the robot’s commanded po-
sition and the square’s computed position vary maxi-

mally only by iﬁ' , as shown in figure 11.
x-pos. (mm) | computed x-pos. | diff. | Error
71.497 71.728 0.231 | 0.01
73.997 74.210 0.213 | 0.01
76.498 76.718 0.220 [ 0.01
78.998 79.214 0.216 | 0.01
81.498 81.716 0.218 | 0.01
81.998 82.206 0.208 | 0.02
82.498 83.715 0.217 ] 0.02
82.998 83.213 0.215| 0.01
83.499 83.710 0.211 | 0.01
83.999 84.209 0.210 | 0.01
84.499 84.723 0.224 | 0.02
84.999 85.209 0.210 { 0.01
85.499 85.721 0.212 [ 0.02
85.999 86.217 0.218 | 0.02
86.499 86.712 0.213 | 0.01
88.999 89.191 0.191 | 0.02
91.500 91.710 0.210 | 0.02
94.000 94.207 0.207 | 0.02
96.496 96.690 0.194 | 0.02

Figure 11: The actual positions, computed positions,

differences in positions (mm) and computed least
o i”

squared error , from passing a & square through the

crossbeam sensor

698

6.2 Orientational Accuracy Results

Similarly to the previous experiment, the orien-
tational accuracy of the localization technique was
tested by passing the %" square through the cross-
beam sensor at different orientations. Again, the ini-
tial orientation of the square object inside the gripper
was not accurately measured. The differences between
the robot’s commanded orientation and the square’s
computed orientation varies only by at most half of a
degree as shown in figure 12.

6(°) computed ( °) | diff. ( °) | Error
90.076 5.525 5.449 0.01
0.076 5.452 5.376 0.02
-89.962 5.362 5.324 0.01
120.046 35.903 5.857 0.09
30.045 35.850 5.805 0.12
-59.930 35.777 5.847 0.09
-149.930 35.895 5.965 0.11
150.076 66.041 5.965 0.09
60.064 65.893 5.829 0.06
-29.956 65.972 5.928 0.09
-119.936 65.913 5.849 0.06

Figure 12: The actual orientations, computed orien-
tations, differences, in degrees, and computed least
squared error , from passing a g—' square through the
crossbeam sensor

6.3 Recognition Experiment

The hash table technique’s recognition performance
was measured by identifying objects from the set of
candidate objects shown in figure 10. We repeat-
edly identified each object by passing a mobile cross-
beam sensor passed over it. The technique returned
the model with the minimum squared error due to the
observed data. In all 100 trials, the technique correctly
recognized the object.

7 Future Work

In the future, we will expand the technique to deal
with non-polyhedral objects. The hash table lookup
correspondence approach and the algebraic resultant
approach to the least squared error problem are both
generic solutions to polygons and extendible to non-
polygonal models. The technique will be broadened to
include the class of generalized polygons, where each
edge is linear or a circular arc.

8 Conclusion

In this paper we showed the feasibility and potential
for RISC robotics which tries to solve general prob-
lems by introducing tailored sensing devices and effi-



cient algorithms. This method localizes a specific sub-
class of objects, partially solving the harder problem
of general localization. This technique uses robust,
cost-effective sensors which are already found in man-
ufacturing applications, and the theoretical framework
can be used with existing light beam sensors.
Acknowledgements

The authors wish to acknowledge: Dr. Isabelle Ma-
zon for incorporating the light beam sensors into the
RISKY-SPARA environment, Ed Nicolson and Eric
Paulos for upgrading the RobotWorld environment,
Justus Grimalda for building the prototype crossheam
sensor, Steve Burgett and Joe Gavazza for designing
the crossbeam sensor apparatus, Dr. Richard Mur-
ray for his assistance, and Brian Mirtich for helpful
criticisms and suggestions on this report.

Appendix
The resultant M is given in equation 19:

M = {{2axq + gaxot® + 2axqt*, axqyy + 2zaxyy > (19)
+axgyqtt,axqty — gaxqt + 2axqtot — 3axgtyt?
+3ax1t3t’ - 2ax1t2t3 + 4axlt4t3 -_ ax1t3t*},

{axqyy + 2axqy11® + axqy ¢4, 2ay4 + 4aypt?

+2ayatt, ay ty — qayyt + 2ayjtot — 3ayqtqt’

+3ayytat® — 2ay tat® + qay tat® — aygt3tt],

{axq + axqtqt + axqtot® + axqt3t3 + axqtytt,

ayy +ayjtyt+ayytot® +ay tat® +ay tatt,

atq — 4at + 2atqt — 3atyt? + gatzt? — 2atqt3

+4atytd — atgti}}

References

(1] “Description of a Robot Workspace Based on a

Linear Stepper Motor”. AT&T Technical Jour-
nal, 67(2):6-11, 1967.

[2] E. Anderson, Z. Bai, C. Bischof, J. Demmel,
J. Dongarra, J. Du Croz, A. Greenbaum, S. Ham-
marling, and D. Sorensen. LAPACK User’s
Guide, Release 1.0. SIAM, Philadelphia, 1992.

[3] 3. Canny and K. Goldberg. RISC robotics.
(preprint, University of California, Berkeley).

[4] O. D. Faugeras and M. Hebert. The represen-
tation, recognition, and locating of 3-d objects.
International Journal of Robotics and Control,
5(3):27-52, 1986.

[5] K. Y. Goldberg. Orienting polygonal parts with-
out sensors. Algorithmica, 1992.

[6] Kenneth Y. Goldberg and Matthew T. Mason.
Bayesian grasping. In JEEE Journal on Robotics
and Automation, pages 1264-1269, 1990.

699

[7] Kenneth Y. Goldberg and Matthew T. Mason.
Generating stochastic parts for a programmable
parts feeder. In IEEE Journal on Robotics and
Automation, pages 352-359, 1991.

[8] Bernard Klaus Paul Horn.  Robot Vision.

McGraw-Hill, seventh edition, 1989.

[9] Daniel P. Huttenlocher and Shimon Ullman. Rec-
ognizing solid objects by alignment with an im-
age. International Journal of Computer Vision,
5(2):195-212, 1990.

(10] Alan Kalvin, Edith Schonberg, Jacob T.
Schwartz, and Micha Sharir. Two-dimensional
model-based boundary matching using foot-

prints. International Journal of Robolics and
Control, 5(4):38-55, 1986.

Yehezkel Lamdan and Haim J. Wolfson. Geomet-
ric hashing: A general and efficient model-based
recognition scheme. Technical Report No. 368,
New York University, Robotics Research Labo-
ratory, Department of Computer Science, May
1988.

(11]

[12] D. Manocha. Algebraic and Numeric Techniques
for Modeling and Robotics. PhD thesis, Depart-
ment of Electrical Engineering and Computer Sci-

ence, University of California, Berkeley, 1992.

[13] Richard Murray. Lymph Reference Manual.

Berkeley Robotics Laboratory, 1991. Version 2.3.

[14]) Ed Nicolson. Talisker Reference Manual. Berke-
ley Robotics Laboratory, 1992. Version 2.0.

[15] F. P. Preparata and M. I. Shamos. Compu-
tational Geometry: An Introduction. Springer-
Verlag, 1985.

[16] Anil S. Rao and Kenneth Y. Goldberg. Orienting
generalized polygonal parts. In IEEE Interna-
tional Conference on Robolics and Automation,

pages 2263-2268, 1992.

Jacob T. Schwartz and Micha Sharir. Identifi-
cation of partially obscured objects in three di-
mensions by matching noisy characteristic curves.
International Journal of Robotics and Control,
6(2):29-44, 1987.

(17]

[18] A. Wallack and J. Canny. Object localization us-
ing light beam sensing. Technical Report 92-14,
Engineering Systems Research Center, 1992.



