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Abstract

In this paper we present an algorithm for generating near-time-
optimal trajectories for an open-kinematic-chain manipulator
moving in a cluttered workspace. This is the first algorithm to
guarantee bounds on the closeness of an approximation to a time-
optimal trajectory. The running time and space required are poly-
nomial in the desired accuracy of the approximation. The user
may also specily tolerances by which the trajectories must clear
obstacles in the workspace to allow modeling of control errors.

Notation
R Real numbers.
Z  Integers.

I} Euclidean norm (2-norm).

¢ The slow down factor.

m  Number of manipulator joints.

T  The time discretization.
Af#  The joint acceleration discretization.

N The nuwber of multi-steps.

©¢  The initial configuration.
Oy  The final configuration.
40 The minimum spacing in acceleration associated

with Thax and Fpax.

Tmax  The maximun allowable torque for the manipuia-
tor.

Faas The maximum allowable torque for a constrained
trajectory.

Fmax  The maximum allowable torque for an uncon-

strained trajectory.

7 Twax — Tmax-

Gumax  The maximum joint torgues due to gravity.
D(©.0) The safety margin.
D(©,0)  The tracking error.

L 'The vector of joint limits.
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1 Introduction

While the piano movers problem has served as a paradigm for
motion planning almost from its inception, it has become increas-
ingly clear that the framework is not general enough to model
many systems of interest. What is lacking is the ability to impose
other restrictions on allowable trajectories besides simply avoid-
ing collisions with obstacles in the environment. Although we can
also treat mechanical systems subject to kinematic constraints by
extending the formalism to include the notion of confignration
space, beyond this point, the essentially geometric formulation
breaks down. Once we introduce constraints which are not just
based upon geometry, we are forced to deal with the dynamic
model of the manipulator, as well as its kinematic model. In this
paper, our emphasis is on such a svstem: we plan paths for a
robot manipulator with the addition of bounds on its actuator
torques.

Once we include dynamics, we operate under the paradigm of
trajeclory planning, in which we take into account the time history
of the curve. We can turn the bounds on the actuator torques into
constraints upon allowable trajectories using the dynamic model
of the manipulator. What makes the problem diflicult is that the
allowed accelerations are dependent upon the current state of the
manipulator, whicli is constantly changing.

As we've noted, previous planners were able Lo accommo-
date kinematic constraints by searching for a path in confligura-
tion space. Because these spaces have natural geometric construe-
tions, these algorithms have tended to use geometric measures of
the guality of a path. such as path length. Unfortunately, with
a complex system such as a vobot wmanipulator. it is not often
true that the minimum arc-length path takes the least amount
of time. Because we have adopted a framework which includes
a notion of time, we can search for trajectories where the goal is
not only to avoid obstacles while traveling between points in the
environment but also to utilize the capabhilities of the robot to
the fullest. We search for motions which are nearly time-optimal
given the dynamic constraints imposed by the limitations on the
manipulator’s actuators.

It seems clear that, in order to be practical, motion planning
must take into account the dynamics ol the system. DBut it is
not necessary Lo abandon the ideas of path planning which have
heen developed so far and adopt only the techniques of control
theory, although there is necessarily some relationship between
the approaches. ltere we present an approximation algorithm for
planning time optimal paths based upon the idea of graplh scarch
using a discretization of time and joint accelerations which is fine
cnough to allow provably good approximation. It is in proving
the guality of the approximation that we have used ideas from
boil domains.

The algorithm presented in this paper is the first provably
good approximation algorithm solving the problem of finding a



time-optimal trajectory between two configurations for an open-
kinematic-chain manipulator. Suppose this time-optimal trajec-
tory takes time %, then the algorithm will generate a trajectory
taking time less than (1+¢)t} for any ¢ > 0 supplied by the user.
We take the view that ﬁn(lmg provably good approximate solu-
tions is as useful, in a practical sense, as finding cxact solutions
and in some cases, it is provably more tractable.

1.1

We consider the following specific problem in this work. We
wish to determine a collision-free trajectory for a m-jointed open-
kinematic-chain manipulator with prismatic and revolute joints
moving from an initial configuration to a final configuration
through a cluttered workspace. We also require safety margins
be supplied which specify the clearance that must be maintained
between the manipulator and obstacles in its workspace.! Finally,
the user specifies the maximum ratio between the time needed to
traverse the trajectory generated by the algorithm and a time-
optimal safe trajectory.

We assume that the motors driving the joints are able to
generate torques up to a specified bound, where the hounds are
independent of the manipulator configuration and joint veloci-
ties. We also assume the joint velocities of the manipulator are
bounded above.?

The general problem of finding a time-optimal safe trajectory
can be stated more precisely as follows. Given an open-kinematic-
chain manipulator with prismatic and revolute joints, consider the
class of trajectories in joint space O(1), which satisfy the following
constraints.

1. ©(0) = 8y, 6(0) =0

2. 315 > 0, such that O(t) = O, 6(t;) =0

3.Vt € [0,4;], the minimum distance between the manipulator
in configuration O(f) and the workspace obstacles is greater

than the user-specified function D(O, 0) which is bounded
away lrom 0.3

Statement of the Problem

1. Vi € {0.4g]. the torques required to execute ©(1) are upper-
bounded by 7 max for each joint i
5. Vit € {0,14]. |0;(!)| < 0.,-1..“,,1 for each joint i.
The problem is to find a trajectory ©*(#) defined for 1 € [0, 17]. so
that 17 is minimal over all trajectories in this class. We call ©%(1)
a time-optimal safe trajectory.
1n order to approximate a time-optimal safe trajectory ©*(f),
we introduce some user-specified parameters which determiue the
closeness of the approximation.

L. User specifies ¢ > 0 so that the time iy to traverse the trajec-
tory approximating 0*(t) satisfies ff <Lty cis called
the slowdown factor.

2. User specifies D (O, 0), with D, bounded away from zero and

D, < D, so that ¥t € [0,/s] the minimum distance l)et“een
the robot and the workspace obstacles is greater than D-D..”

Fxtensions to this work, in which we relax some of these
assumptions, are discussed in Seclion 5.

'A trajectory which respects some safety margins is known as a safe
trajectory(2].

2y practice this restriction may be due to factors such as friction in the
joints and limitations on the range of motion of the joints.

2A specific example of such a function is (O, B)=rco+ c1||(—)|| as in [2].

4 Becanse the lorm of the functions 1 and De are not crucial to the perfor-
mance of the algorithm, these functions can be specificd in workspace, Joint.
space, or a combination of the two. The important properties are that D) and
D, are bounded away from zero and D > De.
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1.2 Statement of the Results

We have developed the first algorithm that generates a trajectory
belween two configurations of an open-kinematic-chain manipu-
lator that is a guarantced approximation to a lime-optimal safe
trajoctory which uses the full robot dynamics and is subject to
torque constraints on the actuators. We prove that the trajectory
generated by this algorithm lags behind an optimal trajectory by
a specified time factor under reasonable conditions. Naturally,
there is a trade-ofl between the computation speed of the algo-
rithm and the closeness of the approximation.

The algorithm is based on the construction of a lattice in the
state space® of the manipulator and discretizes time and allowable
joint accelerations. 1t involves only a breadth-first search of a
dynamically generated search graph to determine the appropriate
trajectory. The running time depends on the closeness of the
approximation. It is polynomial in 1/c and the complexity of the
environment. 1t should be emphasized that our algorithm will find
an approximation requiring only slightly more time than a globally
time-optimal-safe trajectory®, however, it is not guarantecd to be
close 1o a globally time-optimal-safe trajectory in state space.

The resultant trajectory is returned as a sequence of joint
accelerations each commanded for a fixed period of time. Joint
accelerations are used to specify the trajectory, but we have in-
sured (hat the trajectory respects the torque hounds.

The majority of the paper is spent determining the discretiza-
tions and proving that the guarantee of near-time-optimality can
be made. Among other techniques, the proof relies on the time-
scaling property ol the manipulator dynamics [3], confignration-
independent bounds on the manipulator dynamics [4], and multi-
dimensional tracking procedures {1].

1.3 Previous Results

T'he problem of motion planuing for manipulators has attracted a
great deal of attention from researchers in the robotics community.
The reader is directed to [5. 6. 7] for a general review of robot
motion planning.

There has been some work which directly addresses the ques-
tion of finding time-optimal trajectories for manipulators. The
biggest drawback of the previous schemes is that they give no
estimate of the quality of the approximation. The algorithm we
present here generates a trajectory for an open-kinematic-chain
manipulator which is guarantecd 1o he an arbitrarily close ap-
proximation to a time-optimal safe trajectory.

The approach which we have taken was initially motivated
by work doue by Canny, Donald, Reif, and Xavier [2]. Their work
discussed finding a uear-tinte-optimal safe trajectory for a moving
particle in the plane which is subject to nniform L. acceleration
bounds on each axis. We have adapted some techuiques from the
proof architecture used in this paper. They 1) use the concept of
sale trajectories; 2) show thatl a trajectory respecting constraints
on acceleration can keep up with an unconstrained trajectory: and
3) reduce the problem to a graph scarch. lurther work on the
particle problem yielding an improved running time and simpler
proof has been presented[8]. The formulation in [2] also relates to
finding near-time-optimal safe trajectories for a cartesian rohot.
whose dynamics are neither state-dependent nor coupled,” as in
the more general case which we consider here.

5'}'Ilc statc space of the manipulator is the sct of joint angles and velocities
(0.0).

©Jhis is in contrast to optimization technignes which may yvield a resnit
whicl is Jocally miniimal.

"Because the dynamics of a cartesian robot are deconpled and uniform.
force bounds dircctly translate into uniform acccleration bonuds,



The earlicst examples of trajectory planning for manipulators
are due to Kaln and Roth [9]. Their technique was based upon
linearization of the system dynamices, resulting in a bang-bang
optimal solution. The problem remained open since Hollerbach [3]
showed that the non-linear terms in the robot dynamics could not
be neglected when planning time-optimal trajectories.

Later researchers who have addressed the specific problem
of time-optimal planning can be grouped into categories accord-
ing to their method of attack. One focus of research has heen
to determine the time-optimal control for a manipulator moving
along a given path. Bobrow, Dubowsky and Gibson [10] and Shin
and McKay [11] have independently developed methods which
determine the optimal controls. Bobrow [12] has utilized these
techniques along with optimization routines to find the minimum
time trajectory among a class of paths. However, none of these
rescarchers give bounds on the closeness of their approximations.
Furthermore, optimization algoritlins must be given an initial
path, and no discussion is presented as to the effect which this
choice can have on the approximation generated. Paden, Mees,
and Tisher [13] have also made use of optimization techniques.
Their paper works in essentially the same manner as [12] though
they include a method of automatically selecting an initial path.

Hollerbach [3] has shown that torque requirements are de-
creased if a given trajectory is time-scaled. Along with Sahar
[L4]. he used this fact as the basis of a grid-hased search for a
time-optimal trajectory. No bounds are given in this work on the
sub-optimality of the trajectory found. Furthermore, no proof
is given that the torque bounds are satisfied over the entire tra-
Jectory chosen. The time-scaling property of the dynamics is an
important fact, and is crucial to the proof of our algorithm. Son-
tag and Sussman [15] present facts about the exact solution to the
problem of time-optimal planning. While no algorithi is given,
this paper gives an indication of the complexity of the exact ap-
proach.

Other work that is crucial to the proofs we present is the
recent development of hounds on the dynamics of open-kinematic-
chain manipulators by Ieinzinger and Paden [4]. We use these
to derive quantitative bounds on the change in the manipulator
dynamnics in a neighborhood of a given state.

The method of finding primitive trajeetorics which are con-
catenated to form more complex objects was first proposed by
Paul [16] for following cartesian space paths with a robot ma-
nipulator. The concept of path tolcrance is introduced to cope
with the approximations inherent in using these primitives. Bin-
ford [17]. as far back as 1971, and Finkel [18] present the idea
that a planned trajectory should lie in a “tolerance region” whose
center is the ideal trajectory.

Fundamental work in trajectory planning with dynamic con-
straints is presented in the paper by O'Dinlaing [19]. He intro-
duces the idea of planning for a particle with constraints on its
acceleration. Unfortunately, the analysis there is restricted to the
case that the particle moves in one-dimension. As mentioned he-
fore. Canny et al. [2] address the problem of a particle in multiple
ditmensions.

2 An Algorithm to Generate Time-

Optimal Paths

Tu this section we outline our algorithm. The algorithm is based
on discretizing time and joint accelerations, dynamically generat-
ing a finite graph, and searching this graph.

Belore generating the graph, the user-specified values ¢ and
De. together with manipulator parameters, are used to determine
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Torque Space

Joint Acceleration Space

Figure L: Torque hounds mapped
inverse dynamics.

to acceleration space by the

the following parameters of the algorithm: the length of the dis-
crete time intervals T, the discretization spacing of the joint ac-
celerations A8, the number of multi-steps ¥ 2 and the reduced
torque bound 7,0y < Tignax- In [20] and [1] we present a com-
plete deseription of the algorithm and give the details necessary
to compute 7', N, Ad. and Trax-

The grapl is formed in the following manner. Suppose that at
time { = LM;*”F we consider the state (O ”‘\%’1), @( w))
where j < N and k and j are non-negative integers. We note that
(L—f\‘+<‘+|)'l‘

the set of states reachable at time 1 = . by following
trajectories for which the joint accelerations are fixed. defines a
hyperplane in state space. Because we further restrict the joint.
accelerations 1o be some multiple of A(.f, the reachable states are
points lying on this hyperplane. By repeating this process, we
form a lattice in state space. with with basis vectors (._\0(‘%)2 0)

and (%AH(%)I Afi(‘%) ). Furthermore, we have a notion of ad-
jacency between states in the lattice defined by the existence of
a constant discretized acceleration trajectory passing from one to
another.

Up to this point. we have not taken the torque restrictions
and obstacles into account. We can think of these as eliminating
some of Lhe adjacencies between states. First. because there are
bounds on the allowable torques, not all discretized accelerations
are allowed. Unfortunately, the allowable accelerations are definod
by the torque bounds mapped through the inverse dynamics of the
manipwlator, and the iuverse dynamics are state-dependent. To
handle this problem we define a lower torque bound #,,¢. and
we consider only the set of discrete joint accelerations allowed hy
this reduced torque bound Tinax given the dvnaniics for the state
(OKT). OET)).Y In ligure | we illustrate this for a two-link
manipulator, the allowable accelerations being the points inside
the inner parallelogram.

We also remove those adjacencics for which the robot passes
closer 1o an obstacle than allowed by the safety margins D — 1),.
Taking all of thesc restrictions into account. we can define (he
points in state space which can be reached from a given state in
the lattice.

Because the transitions between states all take the same
amount of time (%L a breadth-first search is sufficient 10 find
the minimal time path following these restricted trajectories.

For a single joint a small portion of the graph is shown in

*The discretization of time and the restrictions on maxtmum torque force
us to subdivide each interval AT (k41 )77 into N subintervals, which we call
multi-steps. The need for multi-steps is illustrated in Figure 1.

°We could recompute the dynamics at the end of cach interval of Lime
%, but we will show that this is not necessary. We only compute the set of
allowable accelerations at { = k1" and use this set for the N
T/N in the interval (KT, (k+1)T].

steps of length



Figure 2: Graph in State Space
Figure 2.

3 Formal Statement of the Result

In this section, we present a precise and formal statement of the
central result of this paper. We have listed helow all of the as-
sumptions made in the construction of our algorithm and the
proof of the result. Some of these assumptions are intriusic to
our formulation of the problem, others deal with technical difli-
culties in the proof, and two are fundamental and underlie the
entire structure of the approximation technique. A discussion of
the implications of these assumptions has been presented in [20].

3.1
We provide a list of the assumptions used in proving our results.
For clarity we gather all of the assumptions in one place.

We asswme that:

Assumptions

4

—

. The manipulator is an m-jointed open-Kinematic-chain with
prismatic and revolute joints.

[

. The torque bounds are given by Tipax-

.

. The safety margin and tracking error are such that
D(0.6) > D0, O) > 0, and both are bounded away from
zero.

. The kinematics and mass distribution of the manipulator are
known, thus we can calculate the dynamics bounds in [1].

ot

. There is a lower bound on the minimum singular value of the
inertia tensor.

5. The actuator torques can overcome gravity in all configura-
tions of the manipulator (i.e. Timax > Gimax)- This restricts
us from considering all open-kinematic-chain manipulators,
but it is a reasonable assumption for practical robots.

. The joint velocities are upper bounded by ©ax.

. 0(0)=0and O(i5) =10

=%

3.2 Formal Result

Letting (7 be the minimal time for a trajectory satisfying the
conditions of Section 1.1, we are prepared Lo state the main result
of the paper.

Proposition 1 Given any € > 0, D(O, 0), D0, 0). 0y, Oy,
Tonaxe  @nd @,",“ w:lh Assumptions -8 salisficd, there evists
choices of T. Ad, N' and Fax that depend polynomially on the

mpu( paramelers such that our Algorithm will produce a trajectory
Q1) for which

1. ©(0) = 0. O(i;) = ©;. 6(0) = 0, O(iy) = 0

19''lhis assumptiou can be relaxed if we are willing to allow errors, propor-

= L. in matching the final velocity.

. 1
tional to 1 — T = T4e
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2.Vt € [(),i/], the minimum distance between the manipulator
in llw'('onﬂyuml'lion O(1) and the obstacles is greater than
D(6.6)-D(0.6).

3. Y1 € [0,f], the torques required by the acluaiors are upper-
bounded by Tyax-

4. VL e[0,i4], |(;,'(I)| < Gismax for cach joint i.

. The time ff lo lraverse (:)([) salisfies fj < (I+s)l}.

S

4 Proof of the Correctness of the Algo-
rithm

In this section we present an outline of the proof of Proposition L.
The maJm steps necessary to demonstrate that we can choose T,
Ad, L - and fyay to depend polynomially on € while guaranteeing
the performance of the algorithm are discussed. Details of these
steps, which are long and complicated, are presented in [1].
Belore proceeding we define the two types of trajectories we
will be comparing:
unconstrained trajectory a trajectory (1) defined over [0.7;)
such that |7(0)] < Fimax. ©(0) = Op. o(iy) = 9y, 16:01)] <
B; max- and respecting the safety margin D(©,0). For these
trajectories O(1) is allowed to vary with only the constraint
that the torque bounds be respected.
constrained trajectory a trajectory ©(1) defined over [0.7]
such that |7i()] < Timax> 0(0) = B0, Oif) = O;. j:(1)] <
0, maxs wspectmg the safety margin D(O, 0)- D0, 9), and
lhaving © constrained. O is constrained as follows:
1. ©(t) is piccewise constant on [kT,
at increments of ——'

2. fort e [k'T,(L'-kl)T] O(1) € §:(AT) where

(A+1)T] changing only

ST

{veR™ | (MOUT))) + HOUTLOMKT)) | < Fiama}
(i.e. the set of joint accelerations that respect the torque
bound Fyax at the state (Q(KT). O(LT))

3. 0() e 2mAb

where Finax < Fimax < Timax Will be specified later.

We use the superscript asterisk to denote the minimal time
for a trajectory which satisfies certain conditions. Thus tf refers
to the minimal unconstrained trajectory which respects fiax- I’}
to the minimal unconstrained trajectory which respects Tyax. and
% to the minimal constrained trajectory which respects fy,ax-

First we show by time-scaling that we can choose 7 pax <
Timax stich that i} < (It ay. Next we show that we can choose
Frnaxs Ad, N, and T to guarantee that given any unconstrained
trajectory respecting the torque bounds fiax there exists a con-
strained trajeclory respecting Tyax such that if < [j {i.e. the
constrained trajectory is at least as fast as the unconstrained
trajectory). In particular, we can follow a time-optimal uncon-
strained trajectory so we have that

{1+t

thus we have a constrained trajectory which approximates a time-
optimal trajectory.

The outline of the proof is similar to that used in [2]. How-
cver, in significant ways our proof structure is different aud the
individual steps more difficult. We consider general salety mar-
gins; we use a discretized set of acceleratious. with the allowable
ones depending on the state; and we consider a gencral manip-
ulator and not just a particle. The state-dependence of the dy-
namics substantially increases the complexity of the argument

<ty <




showing that the constrained trajectory can frack'l the uncon-
strained trajectory, and the coupling forces us to deal with a
multi-dimensional problem.

We divide the proof inlo three parts with corresponding sec-
tions. Ilirst we examine time-scaling to determine iy and Fiyay;
next we reduce the dynamics to be locally constant; and finally
we decouple the dynamics and track along thesc decoupled axes.

4.1

Time-scaling arguments [3] as detailed in [1], imply that if we
choose

Time-Scaling

Tovax =

(1+¢ )2( max — ('ma\) + C'maw

where Gy is the maximum gravitational torques, then Ij <

(H—()f‘ Further, we define
7 = Tmax ~ Tmax
= (l ! ) (7, Ginax)
- (1 +()2 max — “Tmax]) -
We set

- 4
Tmax = Tmax + F’Y#

where 7iax is the torque constraint which the constrained trajec-
tory must satisfy at the beginning of cach interval of time % We
arc left to show that the constrained trajectory can keep up with
the unconstrained trajectory.

4.2 Reduction to Locally Constant Dynamics

The set of joint accelerations which respect the torqne constraints
are given by the dynamics equations for the manipulator:

0 =170) (- J(0,8)) with 7 €R™ 1 7] < Tipase

where .1((-),@) combines the coriolis, centripetal, and gravity
forces. The mapping of the allowable set of torques is illustrated
in Figure 1 for a two-link manipulator. For the unconstrained
trajectory the set of allowable accelerations is continually chang-
ing since the dynamics depend on the state. This makes it more
diflicalt to show that the constrained trajectory can keep up with
the unconstrained trajectory. llowever, we use results in [4] de-
scribing bounds on the dynamics and on the derivatives of the
dynamics. This enables us to bound how the sets of allowable
joint accelerations change as the state is changed.

Showing that the constrained trajectory can track the uncon-
strained (rajectory is simpler if we can consider the dynamics to
be locally constant. To do this there are two problems to address.
First we must show that a time interval may be chosen such that
the constrained trajectory (which lias piecewise constant acceler-
ations) doesn’t violate the torque bonnds 7,,.c at any time. Sec-
ond we need to show that over the interval [kT, (k+1)T] we can
choose an acceleration discretization such that the constrained
trajectory maintains an acceleration advantage over the uncon-
strained trajectory. The allowable accelerations at t = k7' for a
2-link manipulator are depicted in Figure 3. T'he outer (7,a¢) and
inner (fyax) parallelepipeds should be thought of as changing as
the state varies. The middle one (f,a) is fixed for the interval
[FT.(k+1)T]; it is used to determine the constrained trajectory’s
allowable joint accelerations over the interval.

Before proceeding we see that the mininni distance between
the outer and iuner parallelepipeds, 60, is bounded by

60 > apin (M=HO) ) min |y (L1)

"By track we mean stay close in both position and velocity for all time.
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Joint Acceleration Space

Figure 3: Allowable Joint Accelerations at t = kT (the outer box
is associated with 7,4y, the middle with fay, and the
inner with 7,.x — the difference has heen exaggerated
for illustration)

which is the minimun difference in acceleration between a torque
associated with 7. and a torque associated with Fpax.'2

To insure that a constrained trajectory does not violate the
torque bounds (7,,a¢) it is equivalent to insure that the outer hox
(Twax), over the interval [T, (k+ 1)T], doesn’t move enough to
intersect the middle box (f,ax). By Lemma A.1 we find that in
time T the box mmos al most f(T). Thus we require T to he
such that f(T) < &() Lemma A.l implies that we can choose
71—- €0(})and sallsf) this constraint.

Next we want to insure that the constrained trajectory main-
tains an advantage in acceleration over the unconstrained trajec-
tory. LEquivalently we need to show that the allowable accelera-
tions for the unconstrained trajectory over [T.(k+ 1)T] remain
bounded away from the maximum allowable accelerations for the
constrained trajectory at ¢ = AT In Figure 3 this corresponds
to the keeping the inner box bounded away from the middle box.
There are two factors which contribute to changes in the allow-
able accelerations for the uncoustrained trajoctory 1) as time pro-
gresses the state changes and 2) at each time t = kT there is
soine state error between the unconstrained and constrained tra-
jectories. Tor the first factor we choose T' as above, so that the
change in accelerations is less than 196(9 Tor the second we cal-
culate bounds on the initial state error at eacl step to guaran-
tee that the associated acceleration difference is no more than
lb(-) Lemma A2 states that for an initial state error (A0, A())
the change in acceleration is less than g 9(A0, AO), thus we re-
quire (A0, A0) (o be such that G(AO. A@) 160 In (1] we

show that at the end of each step the position error is less than

@AH (N) and the velocity error is less than EAH( ) Thus
if we require A, T, N to be such that ﬁAH (-) < AO and

ﬂAH( ) < AO we will satisfy the desired condition.

Finally we require the acceleration discretization be such that
vmald < £60. Fquation 4.1 implies that this constraint can
be satisficd if we choose -1 € ()(1). This guarantees the ex-
istence of (Imlnl ized accelerations helow those associated with
Fax = Tmax + 2 57 and more than —45() above those that the un-
constrained lldj(‘(i()l} may have. Thus we have reduced the prob-
lem to one where the constrained trajectory has more acceleration
than the unconstrained trajectory over the interval LY ERIVAR
In addition the amount of extra acceleration can be shown to be
at least a factor -\ lmg(‘l. where

Fiax + 2

mm‘ i
C Fimax + 2 57

A >

2 - - .
By associated with s we mean that for at least one i. |1, = 75.max.



Figure 4: Reachable Locus of Points in State Space
1 2e4+€2 Timax = (Fi max
> ————min | —— | . 4.2)
= 5 l+5)2 i ( Ti,max (

Therefore, for the interval [FT.(k+1)T] we can consider the dy-
nadmics 1o be locally constant with the constrained trajectory hav-
ing an acceleration edge over the unconstrained trajectory by a
factor of A.

4.3 Multi-Axis Tracking

To complete the proof we need to show that there exists a con-
strained trajectory which tracks the unconstrained trajectory.
Given the results of the previous section we cousider the simpler
problem of an unconstrained and constrained particle where the
constrained particle has a factor A more acceleration. We can do
this since we liave reduced the dynamics to being constant over
each time interval [T, (k+1)T].

We proceed by performing a transformation to a new set of
coordinates (the decoupled coordinates) in which the accelera-
tion bounds are decoupled. The decoupling transformation used
is M(O(KT) - )+ J(O(kT), O(kT)). Thus we have reduced the
problem to tracking a particle along a single axis given that the
constrained particle has a factor A more acccleration.

Actually, we show that not only can we track the particle,
but that the constrained particle matches the final position and
velocity of the unconstrained particle within errors caused by dis-
cretization of the accelerations. If the constrained particle’s ac-
celerations are not discretized it can match the final position and
velocity of the unconstrained particle given suitable constraints
on the initial errors between the two. Equivalently, the region in
state space that the constrained particle (with continuous acceler-
ations) can reach is larger than the region that the unconstrained
particle can reach. Discretization of the accelerations places a lat-
tice on the reachable state space and the nearest lattice point is
chosen.

The need for multistep trajectories is illustrated in Figure 4.
In this figure, we have assumed that the unconstrained and con-
strained trajectorics start at the sawme state. The inner lens-
shaped regions contain the set of states reachable by the uncon-
strained particle after a time T' with a fixed upper bound on its
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acceleration. The outer polygonal regions contain those states
which can be reached when the accclerations can be changed only
at certain fractions of T', but which have an higher upper bound
on acceleration. If the constrained particle is allowed a factor
A = } cxtra acceleration, then only one change in acceleration
(at time %—) is sufficicnt to allow the constrained particle to reach
any state reachable by the unconstrained particle. This is illus-
trated by the figure on the left. However, if A = Tl‘; it is necessary
to use a A-step trajectory as illustrated by the right figure. De-
tailed analysis in [1] shows that the number of multi-steps N is
such that N > ﬁ Combining this with Equation 4.2, implies
that we can choose N € O( 7'5-)‘ )

When we discretize the accelerations for the constrained par-
ticle we need to insure that the state errors at the end of each time
interval (AT, (k+1)T], when projected into the decoupled coordi-
nates, are small enough that the constrained particle’s reachable
sel still covers the reachable set of the unconstrained trajectory in
the next interval. This is accomplished by choosing Af appropri-
ately small, as specified in Lemma A.3, and implies that we can
choose le € 0(7‘;).

Finally, we guarantee that the worst case deviation between
the constrained and unconstrained trajectories is less than D,.
Thus when we are tracking the optimal unconstrained trajectory,
which avoids obstacles by D, the constrained trajectory will avoid
the obstacles hy at least D — D.. Lemma A.l implies that to
guarantee this we can choose € 0(755:).

4.4 Complexity of the Algorithm

In [1] we show that the running time of our algorithm is

(0] (["(')mnx".x,”[/"m”Tmax”.x.‘)\'ﬂ]m) \
AF T3 a0in(M)
and in terms of the variable ! the algorithm has a running time

o(()™). ‘

5 Extensions to the Algorithm

It is possible to relax some of the assumptions we have made to
yield an algorithm which is more general in scope. The extensions
which are discussed in tlis section are straight-forward. We have
indicated the general method of solution and consider the remain-
ing work involved in the implementation to be computational in
nature.

State Dependent Torque Bounds L[ the torque hounds were
expressed as a function of the manipulator state, under rea-
sonable conditions, another factor allowing the torque hounds
to be considered locally constant could be included. The
analysis would follow that of the reduction to locally constant
dynamics. The rest of our proof would remain unchanged.

State Dependent Determination of Multi-Steps The
pumber of times at which the joint accelerations changes is
determined by worst-case bounds. These in turn eflect the
spacing of the lattice which is generated in state space. In
order to spend as little time as possible in computing the
time-optimal safe trajectory we would like the lattice to be
as sparse as possible. We note from [1] that the number of
steps taken is dependent upon the extra acceleration that the
constrained trajectory has. In all but the the worst case, the
trajectory which follows the lattice will have a much larger




advantage in acceleration than was used Lo compute the num-
ber of steps. If we spend the time to compute how much ad-
vantage it actually has, then we can choose a smaller number
of steps. This directly translates into a search graph with
less links, and hence leads to a reduced computation time.
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A Technical Lemmas

In this appendix we state various technical lemmas used in the
prool of our algorithm. For more details and for proofs of the
following the reader is referred to [1]. We assume we are given
the dynamical parameters a,,;,(M(0)), AT, and G.13

Lemma A.1 For a coustant lorque the change in acccleration,
16 — Bll. over a time interval T is less than JUT). where

. 2. N .
‘A/EM %“(:)max” ] l 2 + ”(')maxl,l ”(')max” 1 T

Jy = i |+ 31Omasdl i[Ol 72 + 3Ol 7
+ 'sll(')lnax” ] [l(')max”J 1
vmé 1116 72 : Py
Tnin M(©)) (HOuasl " 4 19l T)

Lemma A.2 For a constant lorquc the change in acecleralion.

16 — Boll, duc to a state error (AO. AO) is less than 9(20.10).

where
. . 2
. Omaxll; A0 + 3|Onasl| | AO
. v 2M ( l maxili . t
g(AB,AQ) = o 3110) + 3| Ouiaxl}, A@

+GAO

Lemma A.3 lor the diserctization crror to be sufficiently small

we require
N min( L, X4
ad < e i)
\/m"max(l)\[((-)))

Lemma A.4 To guarantce the marimum deviation is sufficicntly
small we require that

NN T} ax- (A3)

21

T < — (] AL
—_— J 5 max Tzv“‘a‘allllll( “[(O))DE' (‘\‘I)
1

"#See [1] on how to define and calculate M and G.
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