Planning Smooth Paths for Mobile Robots

Paul Jacobs and John Canny*
Department of Electrical Engineering and Computer Science and
The Electronics Research Laboratory
University of California
Berkeley, CA 94720

Abstract

A mobile robot which is built on a wheeled platform is unable to
follow an arbitrary path. In this paper, we present an algorithm
for planning paths for a mobile robot subject to the nonholonomic
constraints imposed. Our technique is to define a set of canonical
trajectories which satisfy the constraints. A configuration space
can be constructed for these trajectories in which there is a simple
characterization of the boundaries of the obstacles generated by
the workspace obstacles.

We describe a graph search algorithm which divides the con-
figuration space into sample trajectories. The characterization of
the boundaries enables us to calculate an approximate path in
time O("Talogn + Alog(%)), where n is the number of obstacle
vertices in the environment, A is the number of free trajecto-
ries, and & describes the robustness of the generated path and the
closeness of the approximation. We also describe a plane sweep
for computing the configuration space obstacle for a trajectory
segment. We use this to generate robust paths using a quadtree
based algorithm in time O(n'logn + g—:)

1 Introduction

Research in path planning for robots has traditionally been fo-
cused on finding ways to ensure that a fixed arm will not collide
with objects in its workspace as it performs its tasks. However,
to be truly flexible, manipulators will someday be mounted upon
mobile platforms, giving them not just the ability to manipulate
objects in a fixed region, but to interact with their environment
in more complex ways, much as humans do.

The reigning paradigm of path planning has been the piano
movers problem, which concerns moving an object through a set
of obstacles without any constraints on the type of movements
which can be made. But mobile robots are likely to be based upon
carts with wheels for steering and locomotion. This will introduce
restrictions on the way they will be able to change directions. A
wheeled robot must be able to account for the motion it undergoes
as turns aronnd corners. It is unrealistic to plan paths for mobile
robots which force it to change direction instantaneously. Even
for those robots which have a capability to turn on a spot, the
dynamics of this task will force them to decelerate sharply and
stop at each turn.

In this paper, we consider the problem of planning paths for
a robot which has a minimum turning radius. This is a first step
towards accurately modeling a robot with the kinematics of a
car. The approach we have taken is to define a set of trajectories

*This research was supported by the Defense Advanced Research Projects
Agency (DoD), monitored by Space and Naval Warfare Systems Command
ander Contract N00039-88-C-0292.

CH2750-8/89/0000/0002$01.00 © 1989 IEEE

which satisfy the constraints and to show that considering only
these trajectories is sufficient to find a path if one exists.

1.1 Statement of the Problem

The problem we consider in this paper is to find a path of minimal
length, if one exists, which satisfies the following conditions.

Conditions Given IP, FP, U, V€ R? with |U|| = ||V]| = 1.
Let R > 0. Let @ C R? be a (closed) set of polygons. Let
C=C(n,IP,U FP,V,R,Q) be the collection of all curves X defined
on the interval [0,L], where L=L(X) varies with X, such that
X(sye R2\int(2), 0 < s < L; [|X/]| = 15 ||X"(81) — X'(s2)]] €
R~"lsi - sal| ¥y, 52 € [0, L(X)J; X(0) = IP, X'(0) = U, X(L) =
FP, X'(L)=V.

We have used int(§2) to denote the interior of the set Q. This
general formulation of the problem is due to Dubins [3]. Theorem
1 (section 5) asserts that the problem is well-posed. Henceforth,
we tefer to the angles associated with U and V as 6; and 6y,
respectively.

1.2 Previous Work in the Field

Planning motion subject to non-holonomic constraints is a rel-
atively new area of research. The particular problem addressed
in this paper has been examined in {1,2]. In Laumond [1]. the
environments consist of closed curves which are not necessarily
polygons. The solution presented there is not guaranteed to find
a path, however. In Fortune and Wilfong, [2]. the question is to
decide if a path exists under given conditions. The algorithum is
exact, but does not generate the path in question. This algorithm
runs in time and space which is exponential (20oly(m.m))y where
n is the number of corners in the environment. m is the number
of hits used to specify the positions of the corners, and poly(m.n)
is a polynomial in n and m.

In Dubins [3], the minimal path problem is considered, but
without obstacles. We discuss the extension to this result as it
applies to the problem of planning collision free trajectories.

2 Preliminary Discussion
2.1 Robustness of Paths

We can find a path approximating a minimal length path in the
case that is sufficiently robust that it allows for small changes in
orientations at points along the path without caunsing collisions.
This is a reasonable constraint since practical mobile robot sys-
tems are not able to follow a planned trajectory perfectly. There
is an explicit tradeoff between the approximate path found and
the minimal length robust path in terms of the desired robustness.

2.2 The Canonical Trajectories

We will show in section 5 that it is enough to consider paths which
consist of a circular arc segment of maximum curvature followed




by a straight line segment followed by another such arc segment
where the initial arc segment begins at an obstacle vertex or an
obstacle edge or IP, and the final arc segment ends at an obstacle
vertex or edge or FP, or a trajectory consisting of three such arc
segments. Thus we can reduce the problem to scparately finding
trajectories which can pass from point or edge to point or edge,
then pasting them together to form the complete trajectory from
(IP,6;) to (FP,0y).

For a given location and orientation, there are two oriented
circles of maximum curvature along which the robot can cffect
a change in orientation. One corresponds to a left hand turn,
the other a right hand turn. For a path which consists of an arc
followed by a straight line motion followed by an arc, there are
then four possible combinations of turns at the two endpoints. We
denote these paths as LL,LR,RL,RR, where the L and R denote
left and right hand turns, and the ordering denotes the end of the
path at which the turn is made. In the case that the trajectory is
of the three arc type, there are only two possibilities, LRL or RLR.
To resolve ambiguities, we require that the middle arc of the three
arc type path have length > # R, where R is the minimmun radius of
curvature. Thus there are six types of paths. These we will call the
turn types, and denote them 7 = {LL,LR,RL,RR,LRL,RLR}.
There are also four possibilities for the type of contact that the
trajectory has with obstacles at the start and finish of the path
segment. It can start and finish either at an edge or a vertex of an
obstacle. The trajectory to be followed is completely determined
by the initial and final orientations, turn type, initial and final
locations, and maximum curvature of the path.

We can parameterize all the paths of the allowed types which
pass between two locations in the environment using two paraine-
ters for each of the turn types. If a trajectory contacts an obstacle
edge, then the curve must be tangent to that edge, which fixes
the robot’s orientation, but allows the initial (or final) position to
be anywliere along that edge. If a robot is situated at a point,
then its location is fixed, but its orientation is not. Therefore, for
every motion of a given turn type between pairs of edges or ver-
tices, there is one parameter each which specifies the initial and
final circular arcs traversed.

2.3 Geometry of the Problem

The solution which we have devised depends strongly on the rela-
tive simplicity of the geometry of the circle and the straight line.
In order to determine the proper tangents and directions of travel
along the trajectories the only geometrical operations needed are
to solve for the intersections between circles, lines and line seg-
ments. These can all be done in closed form.

The circles which contribute the arc portions of the trajectory
are called t-circles. The straight-line portion of the path is called
the t-line. In some cases, we will use this term to refer to the
infinite line which supports the t-line.

It is conceptually easier to solve for the centers of the t-circles
instead of computing the tangents directly. This technique brings
with it another set of lines and circles, which are related to the
t-circles and t-lines. For a given fixed point, p, in the plane, the
locus of points defined by the centers of all the t-circles passing
through p is also a circle, which we will call the circle of curvature
center, or CCC. Associated with the t-line are two lines parallel
to it at a distance equal to the fixed radius of curvature. The
lines are called the lines of curvature center or LCC's. There
are two LCC’s to account for the direction of the turn on each
end of the t-line, whether right hand or left hand. In figure 1,
the CCC’s are shown as dashed circles. The endpoints of the
trajectorics are at the centers of the CCC’s. The t-line is shown

| | G| ELECTRONICS ENGINEERS, INC.

Figure 1: Encoding trajectories by intersections

as a thick line and the associated LCC’s are indicated by the
parallel dashed lines. We see how the intersections of the CCC's
of the trajectory endpoints with the LCC’s completely describe
the possible trajectories which move along the same t-line. Two
of the four trajectories which pass along the t-line are shown.
We will often look for the centers of circles which either lie
tangent to an obstacle edge or pass through its endpoints. For
a fixed radius R of the circles, we define the tube of radius R
about an edge to be the locus of all centers of circles of radins R
satisfying these constraints. See figure 2 for a picture of the tube.

3 Constraints in Configuration Space

3.1 Mapping the Obstacles to C-Space

Because we can parametrize the canonical trajectories in a unigque
fashion, we can construct a configuration space for cach pairing
of vertex and edges and turn type. For example, for a vertex to
vertex path, the configuration space consists of the product of the
sets of initial and final orientations with the set of tuin types,
S1 x S x T. The other cases are analogous, where the point
along an edge is parameterized by a normalized distance along
that edge. The obstacles in the work space can then be mapped
to the configuration space. If the trajectory represented by a point
in C-space enters the interior of an obstacle, then the point is in
the C-space obstacle. The complete configuration space for the
enviromment counsists of the product of the configuration spaces
for all pairings of obstacle vertices, edges, [P and FP.

In this section, we discuss the techniques for computing the
configuration space obstacles. We define curves which cut out
regions in the confignration space with the following propertics.

1. Any trajectory can be continuously deformed into any other
trajectory in the same region.

[

. If any trajectory in a region intersects with an obstacle edge.
all trajectories do.

We define the number of intersections for a region to be the num-
ber of intersections along any trajectory in the region. This num-
ber is well-defined for each region where the trajectories exist. We
discuss below the regions in which the trajectory does not exist. A
region is part of the configuration space obstacle if the associated
number of intersections is non-zero.

There are exactly four types of constraints which can form
the houndary of a configuration space obstacle for a curve of type
LL,RR,LR, or RL:

Type A These constraints are associated with the positions of
the t-circle for which it either passes through the endpoint of
aline segment or lies tangent to it. Notice that the angles are
given by the intersection of the CCC with the tube of radius
R around the obstacle edge, as shown in figure 2.

Type B These constraints account for the fact that the defor-
mation of the curves is not continuous as the initial and final
angles are varied. The discontinuity occurs as the tangent
point to the t-circle crosses the point where the robot is lo-
cated (which indicates that the robot could proceed straight



Figure 2: Type A constraints

s

Figure 3: Type B constraints

ahead in that direction to or from the endpoint generating
the constraint).

Type C This constraint defines the trajectories for which the t-
line passes through a particular vertex of an obstacle polygon
between the points where it is tangent to the t-circles through
IP and FP.

Type D For all of the turn types except LL and RR, there are
conditions under which no path of the type will exist. For

LR and RL paths, this happens if the t-circles overlap. The

boundary condition occurs when the t-circles are just touch-

ing.

A superset of these curves is described in Fortune[2]. For a curve
of type LRL or RLR, there is no straight-line path, and hence no
Type C constraint. There is an additional constraint which we
will call Type C’. It corresponds to the curve in configuration
space generated by the pairings of the angles for which the middle
arc of the three arc path goes through an edge or vertex. See
figure 5. No trajectory of these two types exists when the t-
circles are separated by more than 4R. The associated constraint
is analogous to type D. To distinguish the two, we call it Type
D'

The constraint curves and their method of generation are
similar for an edge or vertex contact. Here we discuss a vertex
to vertex trajectory. See figure 3.1 for an example. The type A
constraints have to do only with the t-circle at one end of the
trajectory, and thus they hold for a fixed angle on one axis and
all angles on the other. The type A constraints indicate when it
is possible for the trajectory to intersect an obstacle edge along
a circular arc segment and when it is possible for the number of
intersections along an edge to change. As a type B boundary
is crossed,the path traveled along the corresponding t-circle goes
from being the entire perimeter of the circle to being a very small
portion of it (or vice-versa depending upon the direction that the
tangent moved across the point). Thus, if the t-circle intersects
an obstacle, on one side of the constraint the trajectory will pass
through the portion of the t-circle which intersects the obstacle
edge; on the other side it may not. The type C constraints corre-
spond to the robot being able to pass by the edge of an obstacle.
Changing either the initial angle or the final angle in one direction
or the other causes the t-line to pass through the polygon or pass
completely clear of it. The type D boundary cuts C-space into
two regions, one in which the trajectories exist, and one in which
they do not.

1t is useful for the plane sweep algorithm described later in
this paper to define a number of intersections even for the por-
tions of the configuration space corresponding to unrealisable tra-
jectories. The technique we use is to define a modified trajectory

Figure 5: Type C’ constraints

consisting of two parts: the path traversing the initial t-circle
from the starting point until it enters the final t-circle, and the
path traversing the final t-circle from the point it exits the initial
t-circle until it reaches the final point of the trajectory. Strictly
speaking, it is not a trajectory since it does not connect the two
endpoints of the path, however it goes to the true trajectory at
the two extreme cases where the two t-circles have rotated such
that they just touch. In order to cut out regions for which the
number of intersections is invariant, we define some additional
constraints.

4 Search Algorithms
4.1 A Grid Based Approach

In order to find an approximate path through the obstacles with-
out regard to robustness of the planned path, a grid-hased method
is fast and easily implemented. It is possible to check each poten-
tial trajectory for collisions, since only a finite number of possible
paths are considered. We present a faster approach which relies
on the characterization of configuration space presented earlier.

The algorithm is based upon a graph search such as Dijkstra’s
algorithm [5, pp. 203 ~ 208]. Each graph node represents a fixed
orientation and position, or pose. The orientations are uniformly
spaced by é for those poses which represent the robot lying at
an obstacle vertex. The positions are uniformly spaced by e(8)
for those poses along obstacle edges. Graph nodes are adjacent
if there exists a collision free trajectory which starts at the first
position and orientation and connects to the second. The cost
associated with each link is the length of the corresponding path.

We find all of the ncighbors of a given node by examining
the configuration spaces for each pairing of the associated initial
position with one of the set of possible final positions. The set of
possible final orientations in the configuration space represents a
line, called the sweepline. We utilize a sweep algorithm to generate
the final poses of the robot which can be reached along a collision-
free trajectory. We present the case in which both the initial and
final locations of the robot are obstacle vertices.

4.1.1 Link Generation Algorithm

1. Set current final orientation to some fixed initial value.

2. Determine the number of intersections of the trajectory con-
necting the initial pose with the current final pose. Calculate
the number of intersections of the initial and final t-circles
with the obstacles as well.

3. Find the intersection of all of the constraint curves with the
straight line representing all possible final orientations of the




Figure 6: The two figures above show the configuration space generated by the obstacles as shown in the upper half of the picture. The
initial and final endpoints of the path segment are shown as small circles. Two sample trajectories are shown. The figure on the left
shows the constraint arcs mapped into coufiguration space. The figure on the right shows the configuration space obstacle.

robot for the given initial orientation. Sort them in increasing
order starting from the current final orientation.

4. If the number of intersections of the trajectory with the ob-
stacles is zero, report the current final pose as a neighbor.

5, Increment the current final orientation by 6. If we have ex-
amined all of the final orientations, stop.

6. If we have crossed any constraints, update the count of inter-
sections for each one.

7. Go to 4.

4.1.2 Complexity of the Algorithm

For complexity analysis, we need to know the number of con-
straint curves which the sweepline can intersect. By examining
each fixed t-circle to determine the number of possible ways the
constraint types can be satisfied, we can show that there are at
most O(n) crossings, where n is the number of obstacle edges in
the environment. Using this we can calculate the time required
for each step of the algorithm.

1. O(1).

2. Check for intersection of a trajectory with each obstacle edge.
O(n).

3. There are O(n) intersections of the constraint curves with
the vertical sweep line. To sort them takes time O(nlogn).

4. 0(1).
5. O(1). We perform this step O(}) times.

6. O(1) per constraint. We cross at most O(n) constraints dur-
ing the entire algorithm.

In order to generate the neighbors for a given node requires
performing this algorithm O(n) times, once for each possible final
position. Hence the complexity of finding the neighbors of a node
is O(n’logn + %'—) The brute force method of checking every
trajectory individually would take O( ':9—2).

Complexity of the entire Dijkstra’s algorithm is then
O('g—: + ';—slog n). This is using an implementation which nor-
mally runs in time O(n?) (n = number of nodes) without having
to generate the neighbors.

The link generating algorithm can be modified to check only
free regions for links, yielding a running time O(n?logn + a)
where a is the number of actual neighbors of the given node. The
overall running time is then O(%logn + Alog(})), where A is
the total number of actual links in the graph.

| | G| ELECTRONICS ENGINEERS, INC.

4.2 A Quadtree Based Algorithm

Using the description of the constraint curves in the configuration
space, we can perform a plane sweep to generate the obstacle in
configuration space. By partitioning the free regions into quadtree
cells we can perform a graph search in which the nodes represent
ranges of orientations at the various endpoints. Eacl free quadtree
cell represents the cartesian product of a range of orientations at
each endpoint of the trajectory segment, where all of the final
orientations can be reached from any of the initial orientations.
This guarantees that we find a path which is robust to orientation
perturbations, which was not done in the previous algorithm.

4.2.1 Constructing the C-space Obstacle

In order to determine the C-space obstacle it is necessary to
find which parts of the constraint curves actually form its hound-
aries. By performing a plane sweep the constraints which do not
contribute to the boundary of the C-space obstacle can be elim-
inated. It is a standard technique in computational geometry to
determine the regions formed by an arrangement of lines. See
Mehlhornf4, pp. 147 — 160] for details of a plane sweep algorithm
which works on straight lines. It can be easily extended to the
case of arbitrary curves provided that we can generate the points
in C-space which mark the "horizontal” extent of a region. For-
tunately, these eritical points of the constraint curves in C-space
have geometric significance which can be exploited. During the
plane sweep we keep a tally of the number of intersections with
the obstacles for each region intersected by the sweepline. Because
each critical point is associated with a small number of edges in
the environment, we can compute the changes in the number of
intersections between adjacent regions in constant time.

4.2.2 Complexity of the Algorithm

By enumerating the critical points, we can show that there
are O(n?) of them. Because we must sort them, the plane sweep
algorithin takes O(n?logn), where n is the number of corners in
the environment, for each piece of configuration space. Genera-
tion of the O(n?) pieces of confignration space then takes time
O(ntlogn).

The path represented by the center of each free quadtree
block is analogous to a grid point of the grid-based algorithm.
We can again perform a search using Dijkstra’s algorithm. Since
there are at most (’7('6'—;) qnadtree blocks, this is the complexity
of the search once the blocks have been generated by the plane

sweep. Therefore, the search requires time O(n'logn + '6'—5).



Figure 7: The path used to bound the length of an RL or LR path
is the dark line. The two dashed circles are the t-circles.

4.3 Closeness of the Approximation

By assumption, we will always have a free grid point with initial
and final orientation within é of the shortest robust path. In
order to determine the amount by which the approximate path
is stretched with respect to the shortest path, we need only to
consider the difference in path length for a path which differs
from another by é in one orientation.

We assumne that there is a continuons homotopy hetween the
two paths parameterized by 6;, wlog. Therefore we need not
consider multiples of 27 in the orientations. We assume that
& € [0,7]. The minimum radius of curvature is given by R. The
initial position and final position of the path segment are given
by IP and FP, respectively. The center of the initial t-circle is
denoted fci and the final tcf. For example:

tei(f) = IP + R( cosf ) )

sinb;

First we bound the difference

ltci(6; + 8) — tei(8)] = Ry/2(1 — cosé) (2)

using the law of cosines. Furthermore, 1 — cosf is monotone in-
creasing over [0, 7], so equation 2 gives the maximum over the
range [0;,0; + 8).

Using this estimate, we can bound the change in the distance
traveled. As an example of these calculations, we present the
result for LR and RL turns between two vertices. The other cases
are similar.

4.3.1 LR and RL Turns between Vertices
The form of the length of the path in this case is complicated.
In order to simplify the calculations, we include a portion of the
path which is along the t-circles, in determining the length of the
t-line. The path is shown in figure 7. The arclength, p, of the path
is related to the distance ||tci(8;) — tef(8y)]), which we denote d,
by
L Esl'rxv“l(ﬁ) + /11— ar
d d d d?
Since d > 2R, we have that this function is monotonically de-
creasing for TdR' > 1. This can be seen by taking the derivative of

(3)

this function (where we change variables by using # = 2—‘;2).

d—(i(%sin'](%) + ﬂl-% = _mzsin‘u%) (4)

Since z > 1, 7 > sin"(%) > 0, since we are taking the principal
value of the arcsin. Hence the derivative is strictly negative, im-
plying that the function takes its maximnm at d = 2R where it
equals 7. Now as the t-circle rotates the path goes from differ-
ent points along the t-circle. However, we can bound the change
of the locations of the endpoints of this path with respect to any
fixed point on the non-rotating t-circle and the IP for the rotating
t-circle. The angle at which the line perpendicular to the line join-
ing the two t-centers can change by is at most 6. This is because
the tci(6;) and tci(#; + 6) must be at least 2R from tcf(8;). Along

the rotating t-circle the angle to IP also changes by an additional
é. Together, these yield:

T
Ap < 3RS + 5,/2{1_cosa) (5)

4.3.2 Deriving a Multiplicative Bound

It is necessary to express the change in path length as a
stretching factor in order to get a bound which is independent.
of the length of the minimum path. The bound on the change
in path length derived for LR and RL is largest and therefore we
divide that by the length of the shortest path segment which can
be part of a globally minimum length path. A path of type LRL
or RLR is at least 7R in length, if it is a minimal path [3. p.
513]. For paths which travel hetween two separate vertices, the
minimum length path is a straight line connecting the two. For a
path which goes to the same vertex, the minimum length path is
at least 27 R long. For a path between two non-intersecting edges.
the path length must be larger than the minimwn distance sepa-
rating them. This leaves only the length of a path which passes
between two edges which are adjacent. In the case that the corner
is not convex, robustness of the path indicates that the path can
be pulled free of the wall. This will minimize its length. Thus this
case will not occur as part of a minimizing robust trajectory. In
the case that the corner is convex, the path must travel at least
7R in distance. The minimum length of a path segment, p,.i,.
can be given.

. min .
Pmin = min (7rR. cine; =0 dist(ci.e; )) (6)

where in equation 6 the second term hounds the distance hetween
any two object edges, ¢;.¢; which don’t share a vertex. Then we
can finally bound the stretch which occurs by the generated path
having orientation off by at most é from the global minimum path
{with length p).

Pgenerated < (1 + 2

3Ré + 5\/2(1?0.«5)')1} -

Pmin

We are guaranteed that this path segment, or one closer to
the global minimum will be chosen by the action of Dijkstra’s
algorithm. Thus the algorithm will gencrate a path whose length
differs from an optimal path by this same factor.

5 Proof of Completeness

Theorem 1 ({3]) Given the conditions of section 1.1. if C con-
tains an X with L(X) < oc, then there exists an X € C of minimal
length.

A remark on theorem 1. The restriction of the curves to lie
outside of an open set is not part of the proposition proven in
[3]. However, it is shown that there exists a sequence of curves
in C which converges to a minimum length path. The sequence
of curves all lie outside the open set, int(f), therefore the lwit
must also lie outside int(£2).

Theorem 2 ([3]) Buery minimum length planar curve satisfying
the conditions of section 1.1 with Q = 0 is necessarily a C' curve
which is either

1. an arc of a circle of radius R. followed by a line scgment.
followed by an arc of a circle of radius R
2. a sequence of three arcs of circles of radius R

3. a subpath of a path of either of these two types




&
RS

Figure 8: Paths generated by the algorithm.

Corollary Let 2 above he a set of polygons in the plane with
boundary d§2. Every minimum length planar curve satis-
fying the conditions of theorem 1 is composed of path seg-
ments of the given types which pass through 912 finitely many
times. By "pass through finitely many tinmes™ we mean the
curve is partitioned into finitely many intervals [s;, 8;41] for
which X(s) C 89, Vs € [si,8i31) and X(s)NdQ =0, Vs €
(Sig1,8i42)

Sketch of Proof Either the path from (u,U) to (v,V) does not
tonch 8, in which case it is obviously of the types given
above, or it touches finitely many times. It can touch only
finitely many times because a path of minimum length is
necessarily finite and for the path to leave an edge, return- and
satisfy the curvature constraints requires a finite distance to
be traveled. In between the contacts with 952, the curve must
be of a type given above. It is shown in [3] that the three
arc type paths have length greater than 7 R. X is necessarily
a straight line for the intervals [s;, s;41] with s; # siyq and
X(s)C 09, Vs € [si, ip1].

Remark This corollary establishes that the algorithm allows
paths of sufficient generality to include a minimal length path
if one exists. We need look only for paths which touch the
edges of the obstacles and have the form specified in the the-
orem. The algorithm is guaranteed to find an approximation
to a minimal length path which is robust. This path may be
longer than the minimal path.

6 Further Areas of Research

Various problems and extensions to this work are under prepara-
tion or work is in progress. The immediate focus of our attention
is on the following list, which is by no means complete.

Different Robot Models This involves extending the algo-
rithm described in this paper to plan paths for a robot which
is larger than a point. We have solved one such case. A
paper describing the extension of this algorithm to the case
of a robot which is described as a disk is currently under
preparation.

Planning Optimal Paths The grid and quadtree based algo-
rithms only approximate the free space region. This may
cause an optimal path to be overlooked. However, elimi-
nating the sample trajectories will necessitate a completely
different approach to searching free space.

Planning Robust Paths The use of quadtree partitioning of
the free space allows the orientation of the robot at the via

| | G| ELECTRONICS ENGINEERS, INC.

poiuts to be in a neighborhood of the specified oricntation for
the path generated by the algorithm without causing a colli-
sion with an obstacle. This suggests that if robustness with
respect to perturbation of the location of the via points can
also be achieved, then the path will be very robust to errors
in controlling the robot to follow a specified trajectory.

Planning C” Paths, r>1 Practical systems will not he able to
track a path which requires instantaneous changes in acceler-
ation. Although the algorithm presented in this paper relies
very heavily on the geometry of the class of trajectories con-
sidered, it may be possible to gencralize to other types of
trajectories without sacrificing complexity.

Many open problems remain to be solved which fall under
the category of planning motion subject to non-holonomic con-
straints.

Acknowledgments

The authors would like to thank Professor Shankar Sastry, Greg
Heinzinger, Jeff Mason, Niklas Nordstrom, Saman Behtash, and
Richard Murray for their helpful discussions and aid in producing
this paper.

References

[1] J. Laumond, “Finding collision-free smooth trajectories for
a non-holonomic mobile robot,” in IJCAI 87 Proceedings of
the Tenth International Joint Conference on Artificial Intelli-
gence, (Milan), pp. 1120-1123, IJCAIL Inc.. August 1987,

S. Fortune and G. Wilfong, “Planning constrained motion.”
in STOCS, (Chicago IL), pp. 445-459, Association for Com-
puting Machinery, May 1988.

[3] L. E. Dubins, “On curves of minimal length with a constraint
on average curvature and with prescribed initial and terminal
positions and tangents,” American Journal of Mathematics,
vol. 79, pp. 497-516, 1957.

K. Mehlhorn, Data Structures and Algorithms 3:

[2

[4

Multi-

dimensional Searching and Computational Geometry. Berlin:
Springer-Verlag, 1984.

A. Aho, J. Hopcroft, and J. Ullman, Data Structures and Al-
gorithms. Reading MA: Addison-Wesley, 1983.

[5



