
A Secure Online Algorithm for Link Analysis on Weighted Graph∗

Yitao Duan Jingtao Wang Matthew Kam John Canny

Computer Science Division
University of California, Berkeley, CA 94720

{duan, jingtaow, mattkam, jfc}@EECS.Berkeley.EDU

Abstract

Link analysis algorithms have been used successfully on

hyperlinked data to identify authoritative documents and

retrieve other information. However, existing link analysis

algorithms such as HITS suffer two major limitations: (1)

they only work in environments with explicit hyperlinked

structure such as www, and (2) they fail to capture the rich

information that is encoded by patterns of user access or the

implicit structure defined by user communication. In this

paper we propose the use of weighted graph that is generated

and updated via analysis of user behavior to address both

issues. We present a generalized HITS algorithm that is

suitable for such an approach. The algorithm uses the idea

of “lazy update” to amortize cost across a number of updates

while still providing accurate ranking to users in real-time.

We prove the convergence of the new online algorithm and

evaluate its benefit using the Enron email dataset. Finally

we devise a scheme that makes the algorithm distributed

and privacy preserving using cryptographic techniques thus

making it really acceptable in settings such as collaborative

work and online community.

1 Introduction

Link analysis algorithms have been used successfully on
hyperlinked data to identify authoritative documents
and retrieve other information. For instance, the ex-
pertise location problem [21, 9, 10, 12] is to find a per-
son in an organization or community who is knowledge-
able (and authoritative) in an area. Several approaches
[21, 9, 10] construct an explicit social network between
individuals, based on email or similar logs, and then use
graphical analysis to locate the relevant experts. Sim-
ilarly, the document ranking problem is to determine
the relative levels of “authoritativeness” among a collec-
tion of documents. Link analysis algorithms have been
used in these environments to uncover such information
[11, 1].

∗This material is based upon work supported by the National
Science Foundation under Grant No. 0222745.

The primary drawback to the above approaches is
the need for explicit structure about the social rela-
tionships between individuals and the hyperlinks among
documents, which do not necessarily exist. For instance,
in a computer-mediated environment, a group of indi-
viduals could be using tools like software applications
to access documents collaboratively, and there is nei-
ther an explicit social network representing how each
individual is related to others, nor hyperlinks among
documents. However, in such context, there are still
compelling needs in identifying domain experts and au-
thoritative documents.

Another inadequacy of such algorithms, as Klein-
berg acknowledged [11], is that they only make use of
the structural information about the graph as defined
by the links, and fail to capture patterns of user access
which encode essential information about the user’s at-
titude toward the document. The intuition behind the
link analysis algorithms is that the link structure en-
codes important information about the nodes. For ex-
ample, according to [11], the links among documents, be
it hyperlinks on www or citations among academic pa-
pers, are constructed consciously by the authors of the
documents and represent the authors’ “endorsement”
toward the authority of documents pointed to by the
links and the HITS algorithm [11] can uncover such in-
formation to produce a ranking of documents accord-
ing their level of authority. We believe that a similar
principle also holds with patterns of user access: the
way a user accesses a document could reflect his/her
opinion about it. Meanwhile, a user’s level of exper-
tise can also be reflected by the documents that he/she
accesses. There is a mutually reinforcing relationship
between these two measures, which maps naturally to
what Kleinberg denotes “hub” and “authority” [11]: a
person is more likely to be an expert in an area if he/she
reads more authoritative documents and a document is
more likely to be authoritative if it is read by many ex-
perts. This phenomenon can also be observed in other
graphs such as social networks where the structure is

implicitly defined by communication.
In this paper we propose an approach to address

both limitations simultaneously and describe an algo-
rithm that is suitable for such purpose. Notice that
access pattern and link structure are not mutually ex-
clusive types of information. Rather, access pattern can
complement or even define the other. Our approach uses
weighted graphs to model the relationship among nodes
and the weights can encode user access or communica-
tion. In situations where no explicit link structure ex-
ists, these weights effectively define the graphical struc-
ture and link analysis algorithms can be applied. Where
there is an explicit link structure, weights obtained from
access or communication analysis can be used to aug-
ment existing graph and uncover more information.

Using weights in identifying authoritative docu-
ments is not new [20]. The novelty of this paper is
that we propose the use of weights to model user be-
havior and construct the link structure. This enables
us to apply link analysis algorithms in settings where
no such structure exists. However, computing on pat-
terns of access or communication has two implications:
(1) instead of a static system, the graph becomes dy-
namic. The model changes as more data is observed;
and (2) user privacy becomes an issue due to the sensi-
tive nature of the user’s information used to construct
and update the graph. (1) may also mandate that the
system services users’ query in real-time as there is no
end to the accumulation of observations.

To address these new issues, we devised Secure
OnlineHITS, a distributed version and enhancement
of Kleinberg HITS algorithm that (1) amortizes cost
across a number of updates by using “lazy updates”,
which makes it more suitable for dynamic environments;
and (2) uses cryptographic techniques to preserve user’s
privacy while performing the computation. To make it
concrete, we describe the algorithm in the context of
document and expertise ranking. However, it is general
enough to be applied to other situations where link
analysis is appropriate. We use the term document in
a broad sense. It refers to any information that can
be identified, accessed and analyzed as a unit. For
example, a web page or an image can all be classified as
a document.

In the rest of the paper, we first review the original
HITS algorithm in Section 2. We then discuss the
construction of a graph by modelling of user behavior
using a weight function in Section 3. In Section 4
we derive an online version of the HITS algorithm to
make it more efficient to run in a dynamic environment
on accumulated data. Evaluations are presented in
Section 5. Finally in Section 6 we discuss privacy and
security issues in running such kind of user activity

analysis and describe our privacy-enhanced algorithm
based on public-key encryption.

2 A Review of HITS

Kleinberg’s HITS algorithm [11] is a well-known link
analysis algorithm that identifies “authoritative” or
“influential” webpages in a hyperlinked environment.
Intuitively, by thinking of a hyperlink as a citation,
a webpage i is more of an authority (i.e. highly-
referenced page) as compared to webpage j if there are
more hyperlinks entering i from hub webpages, where
a hub is simply a webpage that is a valuable source of
links to other webpages. Likewise, a webpage i is a
better hub than webpage j if there are more hyperlinks
exiting i into authoritative webpages. Given a set of n
webpages, HITS first constructs the corresponding n-
by-n adjacency matrix A, such that the element in row
i and column j of A is 1 if there exists a hyperlink from
webpage i to webpage j, 0 otherwise. HITS then iterates
the following equations:

(2.1) x(t+1) = AT y(t) = (AT A)x(t)

(2.2) y(t+1) = Ax(t+1) = (AAT)y(t)

Where the i-th element of x denotes the authoritative-
ness of webpage i and the i-th element of y denotes the
value of webpage i as a hub. With the vectors x and y
initialized as vectors of ones and renormalized to unit
length at every iteration, as t approaches infinity, x(t+1)

and y(t+1) approach x∗ and y∗, the principal eigenvec-
tors of AT A and AAT , respectively.

Even though HITS is originally intended to locate
hubs and authorities in a hyperlinked environment, we
observe that hubs and authorities map very well to the
users and documents in access based link analysis and
the relationship of mutual reinforcement still holds as
mentioned in Section 1.

3 Constructing A Weighted Graph

By observing users behavior we can construct a graph
of users/documents in environments where no such
structure exists. We assume we can observe users’s
document access and communication pattern using tools
like client side logger. Such tools are available from a
number of sources. In particular, we have developed a
version of our own that runs on Windows platform. Of
course such tools have serious privacy implications and
we will address such issue in Section 6.

The system consciously logs the users’ activities as
tuples of the form < i, j >, which denotes the fact
that user i accesses document j or communicates with
user j, depending on the context. These log entries

represent tacit data about the collaborative context
because they do not directly encode the links between
users nor documents. Given this activity log, we can
construct a graph, such that vertices represent the users
and/or documents and an edge (i, j) exists and has non-
negative weight wi,j iff an item < i, j > exists in the
activity log.

How the weight wi,j is computed depends on the
application and the goal of the link analysis. The ideas
such as TFIDF [20], and the power law of practice
[14], etc, are all good heuristics. In some situations
the weight can be reduced to simple access or message
count. This decision is orthogonal to our work and won’t
be pursued in this paper. The only assumption we make
here is that wi,j is a non-negative, real number.

3.1 Convergence of Weighted HITS Suppose we
replace the 0-1 valued element Aij in the adjacency
matrix A with a non-negative weight function w(i, j).
First we introduce the following two lemmas from [13].

Lemma 3.1. If M is a symmetric matrix and v is a
vector not orthogonal to the principal eigenvector v∗

of M , then the unit vector in the direction of Mkv
converges to v∗ as k increases without bound.

Lemma 3.2. If a symmetric M has only non-negative
elements, the principal eigenvector of M has only non-
negative entries.

According to the definition of w(i, j), it’s easy to
see that matrix A has only non-negative values and
the symmetric matrix AT A and AAT have only non-
negative values, thus the principal eigenvectors of AT A
and AAT have only non-negative entries (lemma 3.2).

If we use a non-negative values vector x, since x
is not orthogonal to the eigenvector of AAT which has
only non-negative entries, the sequence {yk} converges
to a limit y∗ (lemma 3.1). Similarly we can prove that
the sequence {xk} converges to a limit x∗.

4 Online HITS

Access based graph construction and link analysis in-
troduces a number of issues of its own such as frequent
update, distributed data sources, data security and user
privacy concerns, etc. An algorithm alone cannot ad-
dress all these issues. But a properly designed algorithm
can make addressing them a lot easier. In this section we
describe a link analysis algorithm that works incremen-
tally as data is being added. We use the idea of “lazy
update” to avoid updating and running of the expensive
computation so that we can amortize the cost across a
number of updates while still maintaining enough pre-
cision.

4.1 Basic Approach As shown in Section 1 and
3, the intuition behind HITS fits very well to our
application. However, the algorithm is too expensive
to run on every update, which can be quite frequent.
Recall that the rankings we are seeking, x and y,
correspond to the the principal eigenvectors of AT A
and AAT , respectively. A key observation is that a
single update to the user access traffic corresponds to a
perturbation to the A matrix. Depending on the weight
function selected, it can perturbate a single element or
a row of A. In either case the perturbation is local.
This perturbation will cause variation to the principal
eigenvector of AT A (and AAT). If we can find the
relationship between the variation of x and y and the
perturbation to A, we can check each update to see
if it will cause too much variation to x and y. If the
change is within acceptable precision, we can postpone
applying the update thus avoiding running HITS for
it. When the accumulated updates cause too much
perturbation, we apply them together and run HITS
once. This is essentially an approximation to HITS that
amortizes its cost across multiple updates. We denote
such an algorithm Online HITS. Another advantage
of this approach is that service of user queries and
updating A and running of HITS can be made separate.
The system can update A and run HITS in background
and continue servicing user queries with old results that
we are confident to be within certain range from the the
latest ones. Users can enjoy nonblocking service.

Similar issues have been discussed in the context
of stability of the HITS algorithm [15, 16]. However,
there is a subtle but significant difference between
our approach and theirs: we are not concerned with
the incompleteness of our data or the stability of the
results. For us, the everlasting accumulation of data
is an inherent feature of our system and the results
we produce are the “best guess” based on the data we
have so far. It is perfectly alright for the results to
undergo dramatic change, which reflects the update of
the system’s knowledge about the world. Rather, we
are interested in the bound of the change so that we
can perform the tasks more efficiently. In addition, the
conclusions in [15, 16] only apply to unweighted graphs
represented by adjacency matrices. The theorem we
describe below is applicable to any weighted graph.

Online HITS is based on the following theorem:

Theorem 4.1. Let S = AT A be a symmetric matrix.
Let a∗ be the principal eigenvector and δ the eigengap1

of S. Let ES be a symmetric perturbation to S. We

1Eigengap is defined to be the difference between the largest
and the second largest eigenvalues.

73

use ‖ · ‖F to denote the Frobenius norm2. For any
ε > 0, if ‖ES‖F ≤ min { εδ

4+
√

2ε
, δ

2
√

2
}, then the principal

eigenvector ã∗ of the perturbed matrix S̃ satisfies

‖a∗ − ã∗‖2 ≤ ε

This theorem gives us a way to test the perturbation
and bound the error on the principal eigenvector. The
proof is similar to that presented in [16] and is given in
appendix.

There are two subtle issues that need to be ad-
dressed before we can use this theorem to construct
an online HITS algorithm, namely the computations of
eigengap δ and perturbation ‖ES‖F . They have to be
performed efficiently otherwise the cost of computing
them would offset the saving of not running HITS. They
will be addressed in the following subsections.

4.2 Computation of Eigengap A straightforward
way of computing eigengap δ is to calculate λ1 and
λ2, the largest and the second largest eigenvalues, and
take the difference. The original HITS algorithm is
essentially a power method to compute the principal
eigenvector of S. It can be revised easily, without
adding complexity, to produce λ1 and λ2 as byproducts.
Two modifications to the original HITS algorithm are
introduced:

1. Instead of finding only the principal eigenvector,
find the two eigenvectors corresponding to λ1 and
λ2. This can be done by using the “block power
method” ([23], pp. 289). Concretely, start with
two orthogonal vectors, multiply them all by S,
then apply Gram-Schmidt to orthogonalize them.
This is a single step. Iterate until they converge.

2. HITS normalizes the vector at each step to unit
length. This is not necessarily the only choice to
ensure convergence. Instead, we normalize each
vector by dividing them by their first non-zero
element. They still converge to the two eigenvectors
and the scaling factors converge to λ1 and λ2 ([23],
pp. 289).

The above modifications introduce extra computa-
tion of one eigenvector and Gram-Schmidt orthogonal-
ization. The former doubles the work of HITS and the
latter is O(n). The total complexity is the same as
HITS: O(mn).

2The Frobenius norm of a matrix X is defined by ‖X‖F =
(
∑

i

∑
j(Xij)

2)1/2

4.3 Upper Bound of ‖ES‖F Let E be perturbation
to matrix A (This is our update to the graph). Then
Ã = A + E and S̃ = (A + E)T (A + E) = AT A +
AT E + ET A + ET E. Let ES = AT E + ET A + ET E.
We know for Frobenius norm (actually for any norms)
‖X + Y ‖F ≤ ‖X‖F + ‖Y ‖F . So ‖ES‖F ≤ 2‖AT E‖F +
‖ET E‖F . This bound involves matrix multiplication
which we try to avoid. Note that the purpose of our
online HITS is to postpone running the algorithm so
that we can save some computation. This means that we
will accumulate a number of updates (since the last time
we update A and run HITS). Even though each single
update is local and involve only one element or one row
of A, all the accumulated updates will affect a number of
A’s elements. This means E can be sparse but unlikely
to have only single non-zero element or a row. Let E(t)
be the accumulated unapplied update matrix after we
observed tth update (we reset the counting each time
we apply updates). E(t) = E(t− 1) + ∆(t) where ∆(t)
has only one non-zero element or row. We have

(4.3) ‖ES(t)‖F ≤ 2‖AT E(t)‖F + ‖E(t)T E(t)‖F

where

‖AT E(t)‖F = ‖AT (E(t− 1) + ∆(t))‖F

≤ ‖AT E(t− 1)‖F + ‖AT ∆(t)‖F(4.4)

and ‖E(t)T E(t)‖F =

‖(E(t− 1) + ∆(t))T (E(t− 1) + ∆(t))‖F

= ‖E(t− 1)T E(t− 1) + E(t− 1)T ∆(t)
+∆(t)T E(t− 1) + ∆(t)T ∆(t)‖F

≤ ‖E(t− 1)T E(t− 1)‖F

+2‖E(t− 1)T ∆(t)‖F + ‖∆(t)T ∆(t)‖F(4.5)

The three equations above give us a way to compute the
upper bound on ‖ES‖F recursively. Namely we can keep
running updates on the upper bounds of ‖AT E(t−1)‖F

and ‖E(t − 1)T E(t − 1)‖F using Equation 4.4 and 4.5,
respectively, and add to them the other terms in the
equations to get new upper bounds of next step.

When a single update involves only one element of
A, ∆(t) has a single non-zero element. Let ∆ij(t) be
the non-zero element of ∆(t), then

‖AT ∆(t)‖F = ∆ij(t)‖Ai∗‖2(4.6)
and ‖E(t− 1)T ∆(t)‖F = ∆ij(t)‖E(t− 1)i∗‖2

where Ai∗ and E(t − 1)i∗ are the ith row of A and
E(t− 1), respectively.

There are two ways to compute ‖AT ∆(t)‖F or
‖E(t − 1)T ∆(t)‖F : (1) keep the matrix E(t − 1) and
use Equation 4.6; (2) use the maximum element of A or

E(t− 1) to estimate. (1) is accurate and involves O(n)
operations. (2) is fast (only scalar multiplication). The
actual choice depends on application.

When an update changes a row of A, computing
‖AT ∆(t)‖F and ‖E(t − 1)T ∆(t)‖F is more expensive
and requires O(n2) operations and ‖∆(t)T ∆(t)‖F =
‖∆i∗(t)‖22 which is O(n). This is at the same level of
complexity as HITS but can be substantially cheaper
to run because the latter takes a number of iterations
to converge while the former needs to run only once.
Kleinberg reported that the typical number of iterations
for HITS to converge is 20 [11]. If the cost is still too
high to accept, there are two ways to alleviate: (1)
Frobenius norm has the property ‖AB‖F ≤ ‖A‖F ‖B‖F .
‖AT ∆(t)‖F and ‖E(t − 1)T ∆(t)‖F can be reduced to
scaler multiplication (with loss of “tightness”); (2) the
computation can be made to be distributed across all
clients, as described in Section 6.

4.4 The Algorithm Putting all these together, we
summarize the Online HITS algorithm in this section.
In the following, we assume there is a procedure Gram-
Schmidt that, given a matrix M , orthogonalizes its
column vectors using Gram-Schmidt process ([23], pp.
129). We also assume there is a process that monitors
the data and invokes our algorithm with perturbation
when it sees an update.

Let zn = (1, 1, . . . , 1)T ∈ Rn. Let z⊥n ∈ Rn be the
vector that is orthogonal to zn and has the same length.
∆ ∈ Rn×m is the perturbation caused by a single
update. ε is the required precision. Let x[1] be the first
non-zero element of vector x. We keep global variables
‖Es‖F , ‖AT E‖F and ‖ET E‖F . To make it concise, we
use matrix computations in the pseudocode. However,
it is clear that they can either be implemented together
with HITS iterations, or only require operations on
small number of the elements of the matrices involved,
as described in Section 4.3.

The two main procedures are NewHITS and
OnlineHITS. NewHITS is the modified version of HITS
algorithm that performs block power iterations on
two vectors and compute eigengap. Note that AT A
and AAT share the none-zero eigenvalues so only one
eigengap is needed. OnlineHITS is called on each
update. It checks whether all the accumulated updates
would cause large perturbation to the ranking. If so it
will apply the updates and invoke NewHITS. Otherwise
it returns the ranking from previous round. These two
procedures are listed below.

NewHITS(A, ε)
A ∈ Rn×m

x ← zm, x⊥ ← z⊥m

y ← zn, y⊥ ← z⊥n
Do

x ← Ay, x⊥ ← Ay⊥
y ← AT x, y⊥ ← AT x⊥
[x, x⊥] ← Gram-Schmidt([x, x⊥])
[y, y⊥] ← Gram-Schmidt([y, y⊥])
δ ← x[1]− x⊥[1]
x ← x/x[1], x⊥ ← x⊥/x⊥[1]
y ← y/y[1], y⊥ ← y⊥/y⊥[1]

Until error < ε
Return (x, y, δ)

OnlineHITS(∆, ε)
‖AT E‖F ← ‖AT E‖F + ‖AT ∆‖F

‖ET E‖F ← ‖ET E‖F +2‖ET ∆‖F +‖∆T ∆‖F

‖Es‖F ← 2‖AT E‖F + ‖ET E‖F

E ← E + ∆
If ‖Es‖F > Tol

A ← A + E
[x, y, δ] = NewHITS(A, ε)
E ← 0
‖AT E‖F ← 0
‖ET E‖F ← 0
‖Es‖F ← 0
Tol = εδ

4+
√

2ε

Endif
Return (x, y)

5 Evaluation

Compared to HITS, OnlineHITS is at the same com-
plexity level. However, its advantage lies in the hope
that the updates may not cause too much perturba-
tion to the ranking so that recomputation is avoided.
In addition, the operations introduced for perturbation
checking do not require iteration so they are substan-
tially cheaper than HITS. The benefit gained by Online
HITS depends on the stability of the system in face of
perturbation, which is application-specific. We believe
that in situations where data is accumulating, Online
HITS is most likely advantageous. The intuition behind
this belief is that the more data is accumulated, the less
significant a new update would be to the overall rank-
ing. Therefore there would be more opportunities to
avoid update and running of HITS.

To evaluate how well Online HITS performs, we im-
plemented the algorithm and ran it on the Enron Email
Dataset [5]. We used some of the useful mappings cre-
ated by Andres Corrada-Emmanuel [6]. In particular,
for each email, we used the mappings to find its author
and recipients. As pointed out in [6], The Enron corpus
contains some inconsistencies. In our test, we ignored
emails that were mapped to multiple authors. Multiple

75

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
1

1.5

2

2.5

3

3.5

4

Estimated upper bound of ||E
s
||

F
:||E

s
||

F
(ε=0.1)

Number of log items

γ

Figure 1: Approximation ratio.

recipients of a single email, however, are preserved.
This test can be thought of as “identifying the

central figures” in the social network defined by the
email communications. In constructing the graph, we
simply used message count as the weight for each link
between two users. Since one email may have multiple
recipients, multiple links may be updated when an email
is observed. There are a total of 150 users in the
data set and our algorithm ranks them in “importance”
according to their email communication.

An email is treated as a log item. Online HITS
constantly monitors the log and performs operations as
described in Section 4. A total of 8107 log items are
observed. The precision is chosen to be ε = 0.1 3.

Note that we are not testing how well the ranking
produced by Online HITS (or HITS) fits the “real” rank-
ing which is a rather qualitative and subjective measure.
Instead, we are examining Online HITS’s algorithmic
properties and how it performs more efficient than orig-
inal HITS in a dynamic system.

The results of our test are shown in the following
figures.

Figure 1 plots the ratio of the estimated upper
bound of ‖Es‖F and its actual value. I.e. for each
update γ = (‖2AT E‖F + ‖ET E‖F)/‖Es‖F . It shows
how tight the upper bound given in Section 4.3 is. The
number varies as updates accumulate and are applied,

3The choice of the precision depends on the application and
the data. As we will observe later, the rankings of individual users
in the Enron Email Dataset are quite “far” from each other and
a larger ε can be used without affecting their relative standings.
The result will be more saving in computation.

but never exceeds 3.8.
Figure 2(a) shows, for each update, the actual per-

turbation ‖Es‖F , the upper bound we estimated based
on the method of Section 4.3, and the tolerance as speci-
fied by Theorem 4.1. Although the details are not easily
discernable due to the large number of data points, it
clearly shows the general trend of these measures, i.e.
the tolerance grows as the data accumulates and allows
for more and more perturbation while maintaining the
given precision. Figure 2(b) enlarges one area of (a)
to show the details. This area lies between data item
5965 to 6078. The horizontal line segments of red dots
represent the intervals where the perturbation is within
tolerable range and no update is applied. This particu-
lar line in Figure 2(b) demonstrates around 113 updates
for which the NewHITS needs not to be invoked, i.e., a
saving of 113 rounds of HITS computation. Similar sav-
ings can also be observed in other areas of Figure 2(a).

Figure 3 shows the rankings of “top” 10 users in
the data set 4. Both the actual ranking of each user
(obtained by running HITS at each update) and the
approximation produced by OnlineHITS are plotted.
Note that in Figure 3(a) the rankings of the top 5
users are so close that their results appear in the
figure almost as a single curve (the curve on the top).
Preliminary investigation uncovered that they are all
involved in a large number of error messages (one of
them is the sender and the rest recipients) and, as the
HITS algorithm discovered, they share similar roles in
terms of their email communication pattern in the data
set. Our algorithm discovers this structure as well. The
estimated rankings are so close to the actual ones that
it is difficult to distinguish them in Figure 3(a). Figure
3(b) enlarges part of (a) for clarity. It shows that the
estimated rankings closely track the actual ones even
when no recomputation is performed.

Our test demonstrates the substantial advantage of
OnlineHITS when applied to an actual data corpus. We
believe it is applicable to other dynamic environments
as well. In particular, for systems that do not have
a clearly marked leisure period (e.g. a system serving
users from all time zones around the world), simply
“running HITS at night” will not work. Our algorithm
can provide an accurate estimate on the perturbation a
update can cause and offers precise ranking in real-time.

6 Privacy Preserving Online HITS

The algorithm described in previous sections addresses
the dynamic and real-time response issues of using
access patterns in link analysis. However, in many
situations, a naive implementation of the algorithm

4For privacy reasons the names of the users are withdrawn.

5960 5980 6000 6020 6040 6060 6080
1.96

1.965

1.97

1.975

1.98

1.985

1.99

1.995

2

2.005

2.01

x 10
5 Accumulated perturbation ||E

s
||

F
 and tolerance (ε=0.1)

Number of log items

||E
s|| F

 a
nd

 to
le

ra
nc

e

||E
s
||

F
Upper bound of ||E

s
||

F
Tolerance

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

0.5

1

1.5

2

2.5

3

3.5
x 10

5 Accumulated perturbation ||E
s
||

F
 and tolerance (ε=0.1)

Number of log items

||E
s|| F

 a
nd

 to
le

ra
nc

e

||E
s
||

F
Upper bound of ||E

s
||

F
Tolerance

(a) (b)

Figure 2: Accumulated perturbation ‖Es‖F and tolerance.

6960 6970 6980 6990 7000 7010 7020 7030 7040 7050 7060

0.148

0.15

0.152

0.154

0.156

0.158

0.16

Ranking (ε=0.1)

Number of log items

R
an

ki
ng

Actual Ranking
Estimated

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45
Ranking (ε=0.1)

Number of log items

R
an

ki
ng

Actual Ranking
Estimated

(b)(a)

Figure 3: Ranking.

77

has severe privacy implications. In most applications,
the weight on each edge of the graph represents the
“rating” or “preference” of a user to the documents
or other user and is gathered via client side logging.
Such information is quite personal and exposing it
would jeopardize the privacy of users thus hindering
the acceptance of our system. If implemented directly,
the online HITS algorithm would require the server
running the algorithm be able to see all the data and
involve substantial amount of network communication.
In most situations trusting the server or network is not
acceptable.

Fortunately this problem can be solved with cryp-
tographic techniques. The general idea is that we can
use encryption to protect user data and perform com-
putations on encrypted data. Only aggregate data is
made public and individual data are transmitted across
the network in encrypted form. Such scheme has been
proven to be sound and feasible, with satisfying perfor-
mance. In [2], Canny proposed a privacy preserving col-
laborative filtering scheme that performs iterative SVD
using the conjugate gradient method of Polak-Ribiere
[19]. The basic building blocks, however, are homo-
morphism and threshold decryption which allow one to
compute sums without disclosing summands. And this
is exactly all that is needed to perform Online HITS. [2]
gives complete description of the scheme and the proof
of its soundness. Here we will sketch how it can be
applied to make Online HITS distributed and privacy
preserving.

In the following we will only consider the computa-
tion of document ranking, x. Expertise ranking is done
in a similar fashion. We assume that most clients are
honest and won’t cheat or collude to pry about other’s
data. As in [2], we assume there is a write-once read-
many (WORM) storage system where public data can
be published. We also assume there is a tallier machine
that performs addition on the data it receives. The tal-
lier doesn’t have to be a dedicated server. One of the
clients can be designated as the tallier or its task can
be made peer-to-peer.

6.1 Basics Several commonly used encryption
schemes (RSA, Diffie-Hellman, ECC) have a useful
property called homomorphism: if mi is a message
and E(·) is an encryption function, let g be a mul-
tiplicative group element, we can define a function
H(m) = E(gm). This function satisfies

H(
n∑

i=1

mi) =
n∏

i=1

H(mi)

where multiplication is ring multiplication for RSA,
or element-wise for DH or ECC. This allows one to

obtain the encryption of a sum without revealing the
summands.

Recovering the sum involves secret sharing and
threshold decryption. The decryption key is not owned
by any single party but secret-shared among all the
clients. Pedersen’s key generation protocol [17] or its
variants/enhancements [8, 7, 3] can be used to securely
generate the globally-known public key and distribute
the secret shares of the private key among participants.
At the end of their protocol, each client will have a share
si of the decryption key, s, which could have been easily
reconstructed from any set Λ of t+1 shares via Lagrange
interpolation where t is a pre-defined threshold that is
greater than the maximum number of dishonest clients
in the system. This arrangement not only discourages
clients from cheating but also introduces redundancy
that makes the system robust – any t + 1 shares of s
can recover it. However, reconstructing s will effectively
reveal the secret key to a single party thus rendering the
scheme useless. Instead, we use threshold decryption on
the ciphertext when decryption is desired. That is, each
client decrypts the ciphertext with its share of the key
and the result is a share of the decryption of the value.
By putting these shares together, users can recover the
encrypted value.

The value decrypted is not actually the sum of
messages

∑n
i=1 mi that we are seeking, rather it is

g
∑n

i=1 mi . Although recovering the sum requires taking
discrete log, the value of sum will be small enough
(106 to 109) so that a baby-step/giant-step approach
is practical and the process can also be sped up by
distributing it among many clients to be performed in
parallel.

6.2 A Run of HITS The results of the tth iteration
of HITS, xt and yt which are aggregate data, are made
public. User i is responsible for his own rating of
the documents (obtained via analyzing his document
access pattern), namely the ith row of matrix A. Let
AT

i = [ai1, ai2, . . . , aim] be that row. For the step
xt+1 = AT yt, all that is involved from i is his own
expertise ranking, yt

i , and AT
i . User i computes yt

iA
T
i

and encrypts the vector and sends it to the tallier. The
tallier, after receiving data from all users, produces the
encryption of the sums of the ranking of each document
by multiplying corresponding elements of the vectors.
The resulting vectors are committed to the WORM.
Users will read from WORM and perform threshold
decryption to recover the values. This is xt+1.

To compute yt+1 (which is Axt+1), user i computes
AT

i xt+1 which is yt+1
i , the ith element of vector y at

iteration t, and publish it. If every user does this, the
vector yt+1 can be obtained.

The iteration can stop when enough precision is
achieved.

6.3 Perturbation Checking The scheme described
in Section 6.2 shows a run of HITS, not Online HITS. To
fit online HITS into such a scheme, we need to find a way
to compute the perturbation, ‖ES(t)‖F , with encrypted
data or allow each user to compute with local data.

Recall that Equations 4.3, 4.4, 4.5 and 4.6 give
us a way to update the upper bound of ‖ES(t)‖F .
The terms that need to be computed for each update
are ‖AT ∆(t)‖F , ‖E(t− 1)T ∆(t)‖F and ‖∆(t)T ∆(t)‖F .
Since for user i, ∆(t) has non-zero elements only in
its ith row (and these numbers are obtained locally
via his document access pattern analysis), AT ∆(t) only
involves the ith row of A, which the user maintains.
Similarly, E(t − 1)T ∆(t) only involves the ith row of
E(t − 1). In short, each user’s update only involves
his local data and it is straightforward to perform
perturbation checking without disclosing private data:
‖ES(t)‖F , ‖AT E(t)‖F and ‖E(t)T E(t)‖F are made
public via the WORM storage and each user will update
them using Equations 4.4, 4.5 and 4.6 with their local
updates. When it is determined that it is time to update
A, each user will update his own row and reset the
perturbation records. All of them then collaboratively
run the HITS algorithm as described in Section 6.2.

Note that we have actually killed two birds with
one stone if we perform perturbation checking this
way. Not only could we preserve user’s privacy, we
also distributed the computation among all users and
parallelized the process.

There are some other issues in making such
a scheme realistic such as dealing with dishonest
users/tallier. Addressing them is out of the scope of
this paper. [2] discusses such issues in detail and gives
feasible solutions. In particular, it uses Zero Knowl-
edge Proof (ZKP) to validate the data user and tallier
produces so that they cannot excessively influence the
results by cheating on their values.

7 Related Work

In [21], a set of heuristic graph algorithms are used to
uncover shared-interest relationships among people, and
to discover the individuals with particular interests and
expertise, based on the logs of email communication
between these individuals. The limitation with this ap-
proach is that experts are assumed to be communicating
with fellow experts, which is not necessarily true in the
real-world where experts may not be acquainted with
one another, or may be rivals. Our approach does not
assume any particular communication patterns between
experts, and instead locate the experts based on their

activities, e.g. if an expert accesses this set of authorita-
tive documents, another person who accesses the same
set is likely to be an expert as well.

The Referral Web [9, 10] is an interactive system for
restructuring, visualizing and searching social networks
on the World Wide Web. It constructs a graph of all
users based on their email communication logs, which
it uses to send a chain of referral requests until these
requests reach an expert user. Like our Online HITS
algorithm, Referral Web constructs the social network
incrementally as it indexes the documents created and
received by users. In contrast to our approach, however,
the Referral Web raises possible privacy concerns be-
cause the chain of referrals inevitably reveal who some-
one down the chain knows to the user who initiates the
search, unless individuals down the chain chooses not
to forward the referral, in which case it becomes harder
for the query to succeed.

Pirolli et al. [18] use a link-based approach like
HITS to categorize webpages. It is similar to our
weight-based algorithm in that users’ access paths and
metadata about webpages are used to construct the
appropriate matrices. It differs significantly from ours
in that while we use successive iterations to converge
on our results, Pirolli et al. construct an activation
network based on the strength of association between
webpages and use the spread of activation in this
network, starting from identified source webpages, to
identify the webpages that exceed a threshold quantity
of flow.

Carriere and Kazman’s WebQuery system [4] rank
webpages by considering the number of neighbors in the
hyperlink structure that each webpage has. WebQuery
performs link-based query post-processing to improve
the quality of the results that it returns. In contrast,
our incremental approach assumes that the hyperlink
structure is highly dynamic, and postpones processing
until the latest user-document accesses accumulate sig-
nificant perturbation.

8 Conclusion

We extended the HITS hyperlink analysis algorithm to
make it applicable to analyzing weighted graphs. Our
generalizations are in two directions. First, we replaced
the 0-1 valued hyper-link property to a non-negative val-
ued weight function to model the users’ behavior more
accurately and proved its convergence. Second, we cre-
ated an online eigenvector calculation method that can
compute the results of mutual reinforcement voting ef-
ficiently in face of frequent updates by estimating the
upper bound of perturbation and postponing applying
the updates whenever possible. Both theoretical analy-
sis and empirical experiments show that our generalized

79

online algorithm is more efficient than the original HITS
under the context of dynamic data.

Finally we developed a secure variation of our online
algorithm that solves the potential privacy issues that
may occur when deploying large-scale access pattern-
based document and authority ranking systems. Our
scheme makes use of cryptographic techniques such
as threshold decryption and homomorphic public-key
encryption and distributes computation among users.
Only aggregate or encrypted data are exposed. The
scheme is also robust against a number of dishonest
users up to a certain threshold.

Our extensions to Kleinberg’s original HITS algo-
rithm result in a generalized algorithm, Secure Online-
HITS, that is practical for link analysis in scenarios such
as collaborative work and online communities, in which
there is no explicit link structure among nodes, and that
users’ access patterns of documents are highly dynamic,
complex and should remain private.

9 Acknowledgements

The authors would like to thank the anonymous review-
ers for their valuable comments.

References

[1] Sergey Brin and Lawrence Page, The anatomy
of a large-scale hypertextual web search engine, in
7th World-Wide Web Conference, Brisbane, Australia,
1998.

[2] John Canny, Collaborative filtering with privacy, in
IEEE Symposium on Security and Privacy, Oakland,
CA, May 2002, pp. 45–57.

[3] John Canny and Stephen Sorkin, Practical large-
scale distributed key generation, in Eurocrypt 2004,
2004.

[4] Jeromy Carriere and Rick Kazman, Webquery:
Searching and visualizing the web through connectivity,
in Proceedings of the International WWW Conference,
1997.

[5] William W. Cohen, Enron email dataset.
http://www-2.cs.cmu.edu/~enron/.

[6] Andres Corrada-Emmanuel, Enron email dataset
research. http://ciir.cs.umass.edu/~corrada/enron/.

[7] Pierre-Alain Fouque and Jacques Stern, One
round threshold discrete-log key generation without
private channels, Public Key Cryptography, (2001),
pp. 300–316.

[8] Rosario Gennaro, StanisÃlaw Jarecki, Hugo
Krawczyk, and Tal Rabin, Secure distributed key
generation for discrete-log based cryptosystems, Lec-
ture Notes in Computer Science, 1592 (1999), pp. 295–
310.

[9] H. Kautz, B. Selman, and A. Milewski, Agent am-
plified communication, in AAAI-96, Cambridge, Mass.,
1996, MIT Press, pp. 3–9. Portland, Oreg.

[10] Henry Kautz, Bart Selman, and Mehul Shah,
Combining social networks and collaborative filtering,
Comm. ACM, 40 (1997), pp. 63–65.

[11] Jon M. Kleinberg, Authoritative sources in a hyper-
linked environment, Journal of the ACM, 46 (1999),
pp. 604–632.

[12] D. W. MacDonald and M. S. Ackerman, Just talk
to me: A field study of expertise location, in ACM
CSCW-98, 1998, pp. 315–324.

[13] A. Newell and P.S. Rosenbloom, Matrix Compu-
tations, Johns Hopkins University Press, 1989.

[14] A. Newell and P. S. Rosenbloom, Mechanisms
of skill acquisition and the law of practice, in J.R.
Anderson (Ed.), Cognitive Skills and their Acquisition
(pp. 1-55). Hillsdale, NJ: Earlbaum, 1981.

[15] Andrew Y. Ng, Alice X. Zheng, and Michael
Jordan, Stable algorithms for link analysis, in Pro-
ceedings of the 24th annual international ACM SIGIR
conference on Research and development in informa-
tion retrieval, ACM Press, 2001, pp. 258–266.

[16] Andrew Y. Ng, Alice X. Zheng, and Michael I.
Jordan, Link analysis, eigenvectors and stability, in
Proceedings of the 17th International Joint Conference
on Artificial Intelligence, August 2001, pp. 903–910.

[17] T. Pedersen, A threshold cryptosystem without a
trusted party, in Proceedings of EUROCRYPT ’91,
vol. 547 of Springer-Verlag LNCS, Springer, 1991,
pp. 522–526.

[18] Peter Pirolli, James Pitkow, and Ramana Rao,
Silk from a sow’s ear: Extracting usable structures
from the web, in Proc. ACM Conf. Human Factors in
Computing Systems, CHI, ACM Press, 1996.

[19] E. Polak, Computational Methods in Optimization,
Academic Press, 1971.

[20] Gerard Salton, Automatic Text Processing: The
Transformation, Analysis, and Retrieval of Informa-
tion by Computer, Addison-Wesley, 1989.

[21] M. F. Schwartz and D. C. M. Wood, Discovering
shared interests using graph analysis, Comm. ACM, 36
(1993), pp. 78–89.

[22] G. W. Stewart and Ji-Guang Sun, Matrix Pertur-
bation Theory, Academic Press, 1990.

[23] Gilbert Strang, Linear Algebra and Its Applications,
2nd Edition, Academic Press, 1980.

A Proof of Theorem 1

Proof. We use .̃ to represent perturbated quantity.
Suppose S ∈ Rn×n is a symmetric matrix with principal
eigenpair (λ∗, a∗), and eigengap δ > 0. Let Es be a
symmetric perturbation to S such that S̃ = S + Es.
By Theorem V.2.8 from matrix perturbation theory[22],
there is some eigenpair of S̃ (λ̃, ã) such that

(1.7) ‖a∗ − ã‖F ≤ 4‖Es‖F

δ −√2‖Es‖F

and

(1.8) |λ∗ − λ̃| ≤
√

2‖Es‖F

assuming the denominator in 1.7 is positive. Let
L ∈ Rn−1×n−1 be diagonal matrix containing all S’s
eigenvalues except λ∗. A bound similar to 1.8 holds:

(1.9) ‖L− L̃‖F ≤
√

2‖Es‖F

Let λ̃2 be the largest eigenvalue in L̃. By Corollary
IV.3.6 of [22], Equation 1.9 implies

(1.10) λ̃2 ≤ λ2 +
√

2‖Es‖F

Since ‖ES‖F ≤ δ
2
√

2
, Equations 1.8 and 1.10 ensures

that λ̃ > λ̃2, i.e. (λ̃, ã) is indeed the principal eigenpair
of S̃. Also this will ensure the denominator in 1.7 is
indeed positive.

Given any ε > 0, if ‖ES‖F ≤ εδ
4+
√

2ε
, then

4‖Es‖F

δ−√2‖Es‖F
≤ ε thus we have ‖a∗ − ã‖F ≤ ε.

81

