CS174 Lecture 9 John Canny

Random Graphs

We first need to define what we mean by a random graph. We will do so with an algorithm. To get
a random grapldZ(n, m) with m edges and vertices, we do the following:

Algorithm RandG21(n, m)
for i = 1 to m do
pick ij in {1,...,n} at random until {i,j} is not in E
add edge {i,j} to E

This process also allows us to think of building a random graph one edge at a time. We can
ask a variety of questions about random graphs( lsonnected? Doe& have ak-clique? A
hamiltonian path? etc. In the probabilistic case, the sample space is the set of possible graphs,
and an experiment is generating a graph from this space. Each of the questions above is an event
(subset of the sample space), and the answer to those questions the probability of that event.

Is G connected?

We now have a full bag of tools to approach this problem. To get the probability that the random
graphG(n, m) is connected, we first find the expected valuexahat makes the graph connected,
and then apply tail bounds to compute the probability of this happening for particulaWe
assume an incremental model of adding one edge at a time.

First notice thatn > n — 1 for a connected graph (a tree is a minimally-connected graph). But
we use one of the results we already know to get a much stronger bound for random graphs. Hint:
Try thinking of choosing random edges as a form of coupon collecting.

As we add edges, we watch the number of connected components of the graph. Initially, the
graph has: vertices and no edges, so there areonnected components. The first edge always
connects two points, and givesus- 1 connected components. The second edge also reduces the
number of connected componentsite- 2. The third may or may not reduce the number. We use
epochs to model the different phases of the processX}.dte the number of random edges added
while there aré: connected components, until there are- 1 connected components. We have
shown thatX,, = 1, andX,_; = 1. If we define

X = iXk
k=2

then X counts the total number of edges that we add until the graph is connected. Our goal then,
is to computet (X).

Now definep, to be the probability that an edge added while therekazemponents reduces
the number of components. We cant compytexactly, but we can give a lower bound. Assume
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v is one endpoint of the edge we are adding. Then there are akleastother vertices to which
we can connect and reduce the number of components (these other vertices lie on the other
components). In total there ane— 1 other vertices to which we can connectSo the probability
that this edge reduces the number of components (s — 1)/(n — 1). But this bound holds for
any choice ofy, so it also bounds,: \
—1

n—1

Dk =

Now observe thak, is a geometric random variable with success probabifityits expected
value isl/p, < (n —1)/(k — 1). So we have

ZE (Xp) <

whereH,,_; is the(n — 1)* harmonic number. In other words, an upper bounddrX) is about
nlnn.

n — 1)Hn_1

The next step is to apply tail bounds on the probabilityrobeing much larger than its mean.
To get a useful bound, we need to apply Chebyshev. Sikds a sum of independent R.V.'s
(strictly speaking they are not independent, but their probability bounds are independent), we can
add up their variances. Eacfy. is a geometric random variable with success probabhijitySo its
variance (lecture 8) i§l — p,)/p:. Then

1-— ““(n—k)(n-1
Var [X Z\/ar [ Xk] = Z pkﬁz( (kz(l)g )

Py k k=2

and we can split up this sum:

" (n—k)(n—1) o 1 S|
; G-z U “(k—nf("_l)m(k—m

We have seen both kinds of sums on the RHS before (lecture 8), and they can be approximated
respectively as:
’r2/6 —nlnn

and therefore y is at most= n//6.

To apply Chebyshev, we set the probability of exceeding the mean at 0.0%, théf in the
Chebyshev formula:

Pr(X - X| > fox] < &
which requires thak — X > tox or
X >nlnn+ 10n7r/\/6

So just as we saw for coupon collecting, we have very high probability of connecting up the graph
(better than 0.99) when the number of edgess a linear multiple ofn bigger thanX which is
nlnn.



DoesG have ak-clique?

Definition: A clique in an undirected grap@ = (V, E) is a subset of verticel§ C V such that
every pair of vertices itV is connected by an edge 6f(i.e., foralli # j € U, we have{i, j} € E.
If U hask vertices, we call it &-clique.

Finding cliques in graphs, and in particular large cliques, is an important problem that shows up
in many applications. Givei andk, the problem of deciding whethércontains &-clique is NP-
complete. Here we investigate the problem for random graphs. We'll use a different model called
the G,, , model for random graphs. Rather than fixing the number of edges, we fix the probability
of each edge being included in the graph. To generétg agraph, we do the following:

Algorithm RandG2(n, p)
for every pair {i < j} in {1,...,n}, do
toss a coin with Pr[Heads] = p
if heads, add edge {i,j} to E

Notice that the expected number of edges in such a random gr@)pjswhich is the number
of possible edges timgs So by varyingp, we get more or less dense graphs. The following
guestion is typical in the fields of random graphs and average-case analysis of algorithms:

e How large doe® have to be before a random grashs very likely to contain a 4-clique?

We approach this problem in the usual way, define indicator random variables for each subset
of 4 vertices that indicate the presence of a clique. That is, d&fintor each subset C V' of 4

vertices as:
0% { 1 if S are the vertices of a 4-clique
S =

0 otherwise

and thenX = )~ X is the total number of 4-cliques in the graph. We will first estinfafeX') as

a function ofp. Then we will compute the variance &f and use the Chebyshev bound to show
thatp is a “threshold parameter”. That is, there is a vglyesuch that forp > p, there almost
certainly is a 4-clique, while fop < p, there is almost certainly not a 4-cliqueGh

First of all, since a 4-clique has 6 edges, it is easy to seePthais = 1] = p°. SinceXjy is
an indicator r.v., we also have that Xs) = Pr[Xs = 1] = p°. The total number of subsets of 4

vertices is(}), so
B0 =B = ()0

Its tempting to infer that if£ (X)) > 1 thenG is very likely to contain a clique (this happens

for p > 1.7n~2/3). But that is not necessarily true. Its possible that the distributio bfs a

“long tail” of low total probability that inflates the expected value, but has low total probability for
X > 0. To prove that we have high probability of a clique, we need to compute the variance and
apply Chebyshev. Now we know that

Var (X) =E(X*)—E(X)* =Y E(X3) - Y E(Xs)’+ > E(XsXr)- Y E(Xs)E(X7)
S S S#T S#T
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Definition: The covariance&ov (Xg, Xr) of two random variables is defined &3 X¢X7) —
B (Xs)E (X7).

For independent random variabl&s and X7, the covariance is zero. With this definition, the
variance ofX can be written:

Var (X) = Z\/ar (Xs) + Z Cov (Xg, X7)
S SAT

Now the variance oK g is simple, because it is represents a Bernoulli trial with success probability
p%. From the earlier formula for variance of a Bernoulli trial (lecture 6), we have:

Var (Xs) = p°(1 —p°)

The covariances are tricky, and they vary depending on the degree of similarity befvaae.
So we consider three cases:

S and T have 0 or 1 vertices in commonln this case, there are no edges in common in the (pos-
sible) 4-cliques ory andT'. ThenXg and X are independent, so the covariaiger (X, Xr) is
zero.

S and T have 2 vertices in commonln this case, there is one edge in common in the (possible)
4-cliqgues onS andT. If XX+ = 1then atotal of 11 edges (6 each foandT’, less the common
edge) must be present. 84 XsXr) = Pr[XsXr = 1] = p''. Then

Cov (XS7XT) =K (XSXT) —E (XS)E (XT) — pll _p12

S and T have 3 vertices in commonln this case, there are 3 edges in common in the (possible)
4-cliques onS andT'. If XX = 1then atotal of 9 edges (6 each foandT’, less the 3 common
edges) must be present. B0 XsX7) = Pr[XsX7 = 1] = p°. Then

Cov (Xg, X7) = E(XsXr) — E(Xg)E (Xr) = Pg - p12

Since the first case had zero covariance, we only need to consider the last two cases. To evaluate
the sumsy  Cov (X, X7) we need to count the number of palfsI’. In the case of two vertices
in common, we can choosefirst, then the two vertices in common, then the other two vertices in
T. The number of ways of doing that is

n\ (4\ (n—4\ _ n®

4)\2 2 )78
In the case of three vertices in common, we can choéolest, then the three in common, then the
one other vertex of. The number of pairs is

n\ (4\ [n—4\ _ n®

4)\3)\' 1 ) 6
The number of sets of alone is(’;) ~ n*/24. Now we can substitute into the formula for variance
of X:

TL4 n n
Var (X) = ) Var (Xg) + ) _ Cov (Xs, Xr) ~ o =)+ 0" =)+ =" - ")
S SAT



Earlier, we noted that = 1.7n72/3 givesE (X) of about 1. We introduce a constantand plug
p = en~2/3 into the variance formula:

6

Var (X) = % +0(n™)

and the standard deviation is:

C3

ox N ——
X 2\/§
Substitutingy = ¢n~?/? into the expected value formula gives:

6

n C

E(X)= 6~ —
= (1) ~5

Now we can see that the distribution &f “converges” as: increases. That is, the expected value
grows as®, while the standard deviation (the width of the distribution) grows*as

To apply Chebyshev, pick say= 10. We chooseX = 101, and solving forc givesc =
24241/ ~ 3.665. Thenoy ~ 10.0, and Chebyshev gives

— — 1 1
PriX <1] =Pr[X — X < —tox] < Pr[|X — X| > tox] < 2 = 100
So there is almost certainly (prob0.99) a 4-clique ifp = 3.665n2/3.

On the other hand, if we pick = 10 and X = 0.009, solving forc givesc = 0.776. The
standard deviation isx ~ 0.095. Then

_ 11
Pr[X > 0.950] = Pr[X —0.009 > 0.95] < Pr|X ~X| > tox] < 5 = 1

So there is almost certainly not (preb0.01) a 4-clique ifp = 0.776n2/3.

This is what we mean by, = 1.667n2/3 is a “threshold value”. There is almost certainly a
clique forp larger tharp,, and almost certainly no clique for valuesoliess tham,.



