
CS174 Lecture 9 John Canny

Random Graphs

We first need to define what we mean by a random graph. We will do so with an algorithm. To get
a random graphG(n, m) with m edges andn vertices, we do the following:

Algorithm RandG1(n, m)
for i = 1 to m do

pick i,j in {1,...,n} at random until {i,j} is not in E
add edge {i,j} to E

This process also allows us to think of building a random graph one edge at a time. We can
ask a variety of questions about random graphs. IsG connected? DoesG have ak-clique? A
hamiltonian path? etc. In the probabilistic case, the sample space is the set of possible graphs,
and an experiment is generating a graph from this space. Each of the questions above is an event
(subset of the sample space), and the answer to those questions the probability of that event.

Is G connected?

We now have a full bag of tools to approach this problem. To get the probability that the random
graphG(n, m) is connected, we first find the expected value ofm that makes the graph connected,
and then apply tail bounds to compute the probability of this happening for particularm. We
assume an incremental model of adding one edge at a time.

First notice thatm ≥ n− 1 for a connected graph (a tree is a minimally-connected graph). But
we use one of the results we already know to get a much stronger bound for random graphs. Hint:
Try thinking of choosing random edges as a form of coupon collecting.

As we add edges, we watch the number of connected components of the graph. Initially, the
graph hasn vertices and no edges, so there aren connected components. The first edge always
connects two points, and gives usn− 1 connected components. The second edge also reduces the
number of connected components ton− 2. The third may or may not reduce the number. We use
epochs to model the different phases of the process. LetXk be the number of random edges added
while there arek connected components, until there arek − 1 connected components. We have
shown thatXn = 1, andXn−1 = 1. If we define

X =
n∑

k=2

Xk

thenX counts the total number of edges that we add until the graph is connected. Our goal then,
is to computeE (X).

Now definepk to be the probability that an edge added while there arek components reduces
the number of components. We cant computepk exactly, but we can give a lower bound. Assume
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v is one endpoint of the edge we are adding. Then there are at leastk − 1 other vertices to which
we can connectv and reduce the number of components (these other vertices lie on the other
components). In total there aren− 1 other vertices to which we can connectv. So the probability
that this edge reduces the number of components is≥ (k − 1)/(n − 1). But this bound holds for
any choice ofv, so it also boundspk:

pk ≥
k − 1

n− 1

Now observe thatXk is a geometric random variable with success probabilitypk. Its expected
value is1/pk ≤ (n− 1)/(k − 1). So we have

E (X) =
n∑

k=2

E (Xk) ≤
n∑

k=2

n− 1

k − 1
= (n− 1)Hn−1

whereHn−1 is the(n− 1)st harmonic number. In other words, an upper bound onE (X) is about
n ln n.

The next step is to apply tail bounds on the probability ofm being much larger than its mean.
To get a useful bound, we need to apply Chebyshev. SinceX is a sum of independent R.V.’s
(strictly speaking they are not independent, but their probability bounds are independent), we can
add up their variances. EachXk is a geometric random variable with success probabilitypk. So its
variance (lecture 8) is(1− pk)/p

2
k. Then

Var [X] =
n∑

k=2

Var [Xk] =
n∑

k=2

1− pk

p2
k

≤
n∑

k=2

(n− k)(n− 1)

(k − 1)2

and we can split up this sum:

n∑
k=2

(n− k)(n− 1)

(k − 1)2
= (n− 1)2

n∑
k=2

1

(k − 1)2
− (n− 1)

n∑
k=2

1

(k − 1)

We have seen both kinds of sums on the RHS before (lecture 8), and they can be approximated
respectively as:

n2π2/6− n ln n

and thereforeσX is at most≈ nπ/
√

6.

To apply Chebyshev, we set the probability of exceeding the mean at 0.01, thent = 10 in the
Chebyshev formula:

Pr [|X −X| ≥ tσX ] ≤ 1

t2

which requires thatX −X ≥ tσX or

X ≥ n ln n + 10nπ/
√

6

So just as we saw for coupon collecting, we have very high probability of connecting up the graph
(better than 0.99) when the number of edgesm is a linear multiple ofn bigger thanX which is
n ln n.
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DoesG have ak-clique?

Definition: A clique in an undirected graphG = (V, E) is a subset of verticesU ⊂ V such that
every pair of vertices inU is connected by an edge ofG (i.e., for alli 6= j ∈ U , we have{i, j} ∈ E.
If U hask vertices, we call it ak-clique.

Finding cliques in graphs, and in particular large cliques, is an important problem that shows up
in many applications. GivenG andk, the problem of deciding whetherG contains ak-clique is NP-
complete. Here we investigate the problem for random graphs. We’ll use a different model called
theGn,p model for random graphs. Rather than fixing the number of edges, we fix the probability
of each edge being included in the graph. To generate aGn,p graph, we do the following:

Algorithm RandG2(n, p)
for every pair {i < j} in {1,...,n}, do

toss a coin with Pr[Heads] = p
if heads, add edge {i,j} to E

Notice that the expected number of edges in such a random graph is
(

n
2

)
p, which is the number

of possible edges timesp. So by varyingp, we get more or less dense graphs. The following
question is typical in the fields of random graphs and average-case analysis of algorithms:

• How large doesp have to be before a random graphG is very likely to contain a 4-clique?

We approach this problem in the usual way, define indicator random variables for each subset
of 4 vertices that indicate the presence of a clique. That is, defineXS for each subsetS ⊂ V of 4
vertices as:

XS =

{
1 if S are the vertices of a 4-clique
0 otherwise

and thenX =
∑

XS is the total number of 4-cliques in the graph. We will first estimateE (X) as
a function ofp. Then we will compute the variance ofX and use the Chebyshev bound to show
that p is a “threshold parameter”. That is, there is a valuep0 such that forp > p0 there almost
certainly is a 4-clique, while forp < p0 there is almost certainly not a 4-clique inG.

First of all, since a 4-clique has 6 edges, it is easy to see thatPr[XS = 1] = p6. SinceXS is
an indicator r.v., we also have thatE (XS) = Pr[XS = 1] = p6. The total number of subsets of 4
vertices is

(
n
4

)
, so

E (X) =
∑

E (XS) =

(
n

4

)
p6

Its tempting to infer that ifE (X) > 1 thenG is very likely to contain a clique (this happens
for p > 1.7n−2/3). But that is not necessarily true. Its possible that the distribution ofG has a
“long tail” of low total probability that inflates the expected value, but has low total probability for
X > 0. To prove that we have high probability of a clique, we need to compute the variance and
apply Chebyshev. Now we know that

Var (X) = E (X2)−E (X)2 =
∑

S

E (X2
S)−

∑
S

E (XS)2 +
∑
S 6=T

E (XSXT )−
∑
S 6=T

E (XS)E (XT )
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Definition: The covarianceCov (XS, XT ) of two random variables is defined asE (XSXT ) −
E (XS)E (XT ).

For independent random variablesXS andXT , the covariance is zero. With this definition, the
variance ofX can be written:

Var (X) =
∑

S

Var (XS) +
∑
S 6=T

Cov (XS, XT )

Now the variance ofXS is simple, because it is represents a Bernoulli trial with success probability
p6. From the earlier formula for variance of a Bernoulli trial (lecture 6), we have:

Var (XS) = p6(1− p6)

The covariances are tricky, and they vary depending on the degree of similarity betweenS andT .
So we consider three cases:

S and T have 0 or 1 vertices in common.In this case, there are no edges in common in the (pos-
sible) 4-cliques onS andT . ThenXS andXT are independent, so the covarianceCov (XS, XT ) is
zero.

S and T have 2 vertices in common.In this case, there is one edge in common in the (possible)
4-cliques onS andT . If XSXT = 1 then a total of 11 edges (6 each forS andT , less the common
edge) must be present. SoE (XSXT ) = Pr[XSXT = 1] = p11. Then

Cov (XS, XT ) = E (XSXT )− E (XS)E (XT ) = p11 − p12

S and T have 3 vertices in common.In this case, there are 3 edges in common in the (possible)
4-cliques onS andT . If XSXT = 1 then a total of 9 edges (6 each forS andT , less the 3 common
edges) must be present. SoE (XSXT ) = Pr[XSXT = 1] = p9. Then

Cov (XS, XT ) = E (XSXT )− E (XS)E (XT ) = p9 − p12

Since the first case had zero covariance, we only need to consider the last two cases. To evaluate
the sums

∑
Cov (XS, XT ) we need to count the number of pairsS, T . In the case of two vertices

in common, we can chooseS first, then the two vertices in common, then the other two vertices in
T . The number of ways of doing that is(

n

4

)(
4

2

)(
n− 4

2

)
≈ n6

8

In the case of three vertices in common, we can chooseS first, then the three in common, then the
one other vertex ofT . The number of pairs is(

n

4

)(
4

3

)(
n− 4

1

)
≈ n5

6

The number of sets ofS alone is
(

n
4

)
≈ n4/24. Now we can substitute into the formula for variance

of X:

Var (X) =
∑

S

Var (XS) +
∑
S 6=T

Cov (XS, XT ) ≈ n4

24
p6(1− p6) +

n6

8
(p11 − p12) +

n5

6
(p9 − p12)
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Earlier, we noted thatp = 1.7n−2/3 givesE (X) of about 1. We introduce a constantc, and plug
p = cn−2/3 into the variance formula:

Var (X) =
c6

24
+ O(n−1)

and the standard deviation is:

σX ≈ c3

2
√

3

Substitutingp = cn−2/3 into the expected value formula gives:

E (X) =

(
n

4

)
p6 ≈ c6

24

Now we can see that the distribution ofX “converges” asc increases. That is, the expected value
grows asc6, while the standard deviation (the width of the distribution) grows asc3.

To apply Chebyshev, pick sayt = 10. We chooseX = 101, and solving forc gives c =
24241/6 ≈ 3.665. ThenσX ≈ 10.0, and Chebyshev gives

Pr[X < 1] = Pr[X −X < −tσX ] ≤ Pr[|X −X| > tσX ] ≤ 1

t2
=

1

100

So there is almost certainly (prob> 0.99) a 4-clique ifp = 3.665n−2/3.

On the other hand, if we pickt = 10 andX = 0.009, solving for c givesc = 0.776. The
standard deviation isσX ≈ 0.095. Then

Pr[X > 0.959] = Pr[X − 0.009 > 0.95] ≤ Pr[|X −X| > tσX ] ≤ 1

t2
=

1

100

So there is almost certainly not (prob< 0.01) a 4-clique ifp = 0.776n−2/3.

This is what we mean byp0 = 1.667n−2/3 is a “threshold value”. There is almost certainly a
clique forp larger thanp0, and almost certainly no clique for values ofp less thanp0.
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