
CS174 Lecture 7 John Canny

Stable Marriages and Coupon Collecting

Consider a world with two types of people. Let’s call them male and female. If we start withn
males andn females, a marriage is a 1-to-1 pairing of all the males and females.

Each person is assumed to have a preference order for members of the opposite sex. A male A
might have preference order dcba, meaning that he prefers d over c, c over b etc. We could write
that using a preference function Pref:

PrefA(d) > PrefA(c) > PrefA(b) > PrefA(a)

A marriage (i.e. a pairing of all the people) is stable if there is no dissatisfied pair. A dissatisfied
pair is a male-female combination who like each other more than their current spouses, i.e. ifx−X
is a married pair andy − Y is another married pair, thenX − y would be a dissatisfied pair if

PrefX(y) > PrefX(x) and Prefy(X) > Prefy(Y )

Example Here is a stable marriage for 8 people:

A: abcd

B: bcda

C: adbc

D: cadb

a: BCDA

b: CADB

c: ADBC

d: DBAC

Check for yourself that there is no pair of people who like each other more than their current
spouses.

The Proposal Algorithm

Surprisingly enough, a stable marriage always exists for any group of equal numbers of males and
females. And there is even a straightforward and fairly traditional way of finding it: the proposal
algorithm.

Males At each step, some male (it can be any unmarried male) proposes to his most-preferred
female who has not already turned him down.

1



Females Each female will accept a proposal unless she is married and prefers her current spouse
more. That means that a single female always accepts a proposal.

Lets work through the proposal algorithm on the example above. Suppose A proposes first.
His favorite female is a, and she must accept as a single female so we have:

A: abcd

B: bcda

C: adbc

D: cadb

a: BCDA

b: CADB

c: ADBC

d: DBAC

Now suppose C proposes. He will do it to a, even though she is married, and she will accept
because she likes him more than A. That leaves A single again:

A: abcd

B: bcda

C: adbc

D: cadb

a: BCDA

b: CADB

c: ADBC

d: DBAC

Now if D proposes, he will do it to C, who will accept him:

A: abcd

B: bcda

C: adbc

D: cadb

a: BCDA

b: CADB

c: ADBC

d: DBAC

Now suppose A tries again. This time he tries b who is single and who accepts him:

A: abcd

B: bcda

C: adbc

D: cadb

a: BCDA

b: CADB

c: ADBC

d: DBAC

2



Then D will chip in since he is the only single male. He proposes to b and then c, and they both
reject him because they prefer their current spice. Finally, he proposes to d leading to a long and
happy marriage. We arrive at a stable marriage where everyone is more-or-less happy:

A: abcd

B: bcda

C: adbc

D: cadb

a: BCDA

b: CADB

c: ADBC

d: DBAC

Not everyone gets what they want, but they are at least consoled by the fact that that no-one they
want more wants them back.

Analysis

First of all, every male proposes at most once to each female. So the maximum number of proposals
is just the number of male-female pairs, which isn2. If the preferences of the males are all the
same (homework problem) there will actually beΘ(n2) proposals.

Correctness Its actually fairly easy to show that the proposal algorithm works. The proof is by
contradiction.

Suppose there is a dissatisfied pairX − y. Then we must have:

1. PrefX(y) > PrefX(x) and

2. Prefy(X) > Prefy(Y )

Statement 1. means that maleX likes y more than his current spouse. He must have proposed
to her before, but he isn’t married to her now, so either:

• She rejectedX, which means she liked her then-husband (call himZ) more thanX. She is
married toY (who might be the same person asZ), so she must have liked him even more.
i.e.

Prefy(X) < Prefy(Z) ≤ Prefy(Y )

But that creates a contradiction with statement 2.

• She acceptedX at first, but left him later for someone else (call himW ) later. Eventually,
she was married toY (who was perhapsW all along), so that means:

Prefy(X) < Prefy(W ) ≤ Prefy(Y )

and again we get a contradiction with statement 2.

3



So we always get a contradiction, and our assumption that a dissatisfied pair exists must be false.
Thus the marriage is stable.

Average-case analysis

For some orderings of preferences, the proposal algorithm takesΘ(n2) steps. But that was
with a rather special ordering of preferences (the same for all males). What about a more ”typi-
cal” ordering? By typical ordering, we choose each person’s preference as a random, uniformly
distributed permutation of1, . . . , n.

Now its rather hard to analyze this. Instead, rather than picking all those random preference
permutations at the beginning, we use a random version of the algorithm to simulate them. This
random algorithm, at each step, allows a male to propose to a random female. The name of the
female gets added to the end of his preference list as though she had been there on his preference
list from the beginning. So its not really the random algorithm that we’re interested in. It’s just
that the random algorithm behaves just the same as running the normal algorithm with a set of
preferences that are uniformly-distributed random permutations. The preference lists get built up
during the algorithm. You should be able to see that you still end up with random, uniformly
distributed permutations as the preferences anyway. Also, the random choice isn’t different from
choosing the highest preferred female that hasn’t been proposed to yet. The random choice with
this scheme defines the highest preferred female who hasn’t been proposed to yet.

The only odd case is that since a male proposes to a random female, he might come up with
the same female in his preference list twice. If so, the second choice is just removed from his list
(as though she had not been picked the second time) and he tries again. The random algorithm is
now pretty easy to analyze. We make a few observations:

• A female, once married, stays married forever, although not necessarily to the same male.

• A female is married if and only if she has been proposed to some time.

• Every female is married, and the algorithm stops, if and only if every female has been pro-
posed to.

So to figure out how long the algorithm takes, its enough to figure out how many random
choices for proposals ton females it takes before all of them has been proposed to. This is equiv-
alent to the following occupancy problem: Ifm balls are placed inton bins, how long does it take
before every bin is non-empty with high probability?

The Coupon Collectors Problem

That occupancy problem is usually stated as the coupon collectors problem. If there aren coupons
at a supermarket and you get a random one each time you visit, how many (m) do you need to have
high probability of getting all the coupons?

4



Let Ei be the property that bini is empty in the final arrangement. ThenPr[Ei] = (1− 1/n)m.
The probability thatsome bin (i.e. any of the bins) is empty is:

Pr[E1 ∨ E2 ∨ · · · ∨ En] ≤ Pr[E1] + Pr[E2] + · · · + Pr[En]

Which is less than or equal to

n∑
i=1

(
1 − 1

n

)m

= n

(
1 − 1

n

)m

= n

((
1 − 1

n

)n)m/n

≈ n(e−1)m/n = n exp(−m/n)

If we set that probability to say 0.01, then we have an inequality

0.01 > n exp(−m/n)

taking logs to base e,
−5 > ln(n) − m/n

and rearranging:
m > n ln(n) + 5n

So if m is somewhat bigger thann ln(n), we have a very good chance of hitting all the bins.
And if you make aboutn ln n visits to the supermarket, you have a good chance to get alln
coupons.

Finally, the result that we were interested in: After aboutn ln n proposals under the random
algorithm, every female will have been proposed to, and a stable marriage will result. That means
if you started with random permutations as preferences, the proposal algorithm would run for about
n ln n steps.

Expected Rank of Spice

Lets return to the proposal algorithm when run on males and females with random preferences.
We have shown that the total number of proposals is less than aboutn ln n with high probability.
In the next lecture we will show that the expected value of the number of proposals is alson ln n.
So if Xi is the number of proposals made by malei, thenE[Xi] is the same for each male and is

E[Xi] = E[X]/n ≈ ln n

Now each male proposes to females exactly in the order1, 2, 3, . . . on his preference list. So if he
makesm proposals, his last proposal, and the rank of his final wife, ism. Therefore the expected
rank of a male’s final wife is≈ ln n.

The situation for females is more complex. Each female still receives an expected number
≈ ln n of proposals. But each proposal has a random rank on her list. LetYi be random variable
which is the rank of theith proposal that some female receives. Then theYi are independent random
variables drawn from{1, . . . , n} with the uniform distribution. If a female receivesm proposals,

5



she will end up married to the lowest ranked one (low numerical rank means high preference).
That is, ifY is the rank of the female’s final husband, then

Y = min(Y1, . . . , Ym)

To computeE[Y ], we use this form of the expected value formula, which applies to integer-valued
r.v.’s:

E[Y ] =
n∑

k=1

Pr[Y ≥ k]

and notice thatY ≥ k meansmin(Y1, . . . , Ym) ≥ k, which is equivalent toY1, . . . , Ym ≥ k. Now
Pr[Yi ≥ k] = (n − k + 1)/n, and since theYi are independent:

Pr[Y ≥ k] =

(
n − k + 1

n

)m

and so

E[Y ] =
n∑

k=1

(
n − k + 1

n

)m

To simplify this, we substitutej = n − k + 1, giving:

E[Y ] =
1

nm

n∑
j=1

jm

Now the last sum is a standard sum which you can look up in a text, or solve using generating
functions, combinatorial identities, or mathematical induction. It evaluates to:

n∑
j=1

jm =
nm+1

m + 1
+ O(nm)

and substituting, we find that:

E[Y ] ≈ 1

nm

nm+1

m + 1
=

n

m + 1

So if a female receives exactlyln n proposals, the expected rank of her final husband isn/(ln n+1).
Now the number of proposals that a female receives is a random variable with meanln n, but atn
grows, the distribution of this number converges to its mean in ratio. So the error from using the
mean is small.

So the proposal algorithm with random preference lists ismuch worse for females than for
males. Males end up with spouses near the begining of their lists (ln n), while females end up
with spice way down on their lists (≈ n/ ln n). Notice that the longer the proposal algorithm
runs, the better things get for females, and the worse things get for males. This is true forany
preference order (not just random), because each new proposal is one notch further along some
males preference list. Conversely, the rank of a female’s husband can only improve over time. In
the general case, if the proposal algorithm runs fornm steps, the expected rank of a male’s spouse
is m. For females, it is harder to figure out, unless females have random preferences, in which case
the expected rank of a female’s spouse isn/m.

6


