
CS174 Lecture 5 John Canny

Occupancy Problems

Occupancy problems deal with pairings of objects. The basic occupancy problem is about placing
m balls inton bins. This seemingly ordinary problem has a vast number of applications.

Let Xi be the random variable which counts the number of balls in bini (so Xi is not an
indicator random variable). Clearly

n∑
i=1

Xi = m

soE[
∑

Xi] = n and by linearity of expectation,E[Xi] = m/n. If m = n we expect to see one
ball in each bin, but how many bins actually have a ball in them? How many have more than one?
These questions are more interesting and harder to answer.

First of all, Xi has the Binomial distribution. To see this, letXij be the indicator random
variable for ballj going into bini, so thatXi =

∑
Xij and

Xij =

{
1 if ball j goes into bini
0 otherwise

Then eachXij represents a Bernoulli trial with probabilityp = 1/n, which is the probability of
ball j going into bini. SinceXi is a sum of Bernoulli trials, it has the binomial distribution.
Specifically, it has a distribution of the form:

Pr[Xi = k] =

(
m

k

)
pk(1− p)m−k =

(
m

k

)(
1

n

)k (
1− 1

n

)m−k

(1)

Approximation for large m, n

If m andn are both large compared tok, the distribution of balls in bins is well-approximated by
the Poisson distribution. To see this, start with the binomial distribution form:

Pr[Xi = k] =

(
m

k

)
pk(1− p)m−k =

(
m

k

)(
1

n

)k (
1− 1

n

)m−k

We can approximate the final expression above assumingm,n >> k as:

Pr[Xi = k] ≈ mk

k!

(
1

n

)k ((
1− 1

n

)n)m/n

≈ 1

k!

(m

n

)k

e−m/n

Which we recognize as the Poisson distributionλke−λ/k! with λ = m/n.
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In the next lecture and later in the course, we will want to know probabilities over a range of
values, e.g. the probability that a running time or subarray size or other random object exceeds a
certain value. Many distributions are too complicated to compute such probabilities directly, so we
will use a variety of approximation techniques. Lets start this by analyzing the probability that the
number of balls in theith bin exceeds a certain value. Before we proceed, it will help to introduce
a very useful approximation for factorials:

Stirling’s Formula

The following formula gives a very good approximation for factorials. Notice that it is expressed
as an equality with a big-O bound embedded in it. You should treat theO(1/k2) term as a proxy
for a functionf(k) which is bounded by a constant times1/k2 for almost allk, which is the usual
definition of a big-O bound.

k! =
√

2πk

(
k

e

)k (
1 +

1

12k
+ O

(
1

k2

))
Stirling’s approximation implies a simpler inequality onk! which is:

k! ≥
(

k

e

)k

and we can substitute this into the formula for
(

m
k

)
to give:(

m

k

)
≤ mk

k!
≤
(me

k

)k

We can now simplify the binomial probability formula (1) to get a bound onPr[Xi = k]:

Pr[Xi = k] ≤
(me

k

)k
(

1

n

)k (
1− 1

n

)m−k

≤
(me

kn

)k

This gives an upper bound on the probability that bini contains exactlyk balls, and it is simple
enough that we can use it in a sum for a range ofk values. So we sum overk:

Pr[Xi ≥ k] ≤
m∑

j=k

(
me

jn

)j

≤
∞∑

j=k

(me

kn

)j

which is an infinite geometric series. Substituting for the sum of that series gives:

Pr[Xi ≥ k] ≤
(me

kn

)k
(

1

1−me/kn

)
=

(
λe

k

)k (
1

1− λe/k

)
(2)

Warning The substitution we just made is only valid if the geometric series converges, and that
assumes thatkn > me, In fact it isnt very accurate until the ratio is somewhat larger than one.
If this isnt the case, thenk must be “small”. For small values ofk, we can computePr[Xi ≥ k]
exactly as1− Pr[Xi < k], sincePr[Xi < k] would be a sum of a small number of terms.
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Number of empty bins

Next define

Zi =

{
1 if bin i containszeroballs
0 otherwise

Now as we just saw (Poisson approximation),

Pr[Zi = 1] = Pr[Xi = 0] =

(
1− 1

n

)m

≈ e−m/n = e−λ

with λ = m/n and becauseZi is an indicator r.v., we have that

E[Zi] = Pr[Zi = 1] ≈ e−λ

so we can appeal to linearity of expected value to argue thatZ =
∑

Zi, the total number of empty
bins, satisfies:

E[Z] =
n∑

i=1

E[Zi] ≈
n∑

i=1

e−λ = ne−λ

So for instance, ifm = n, we haveλ = 1 and about1/e or 37% of the bins are empty on average.
With twice as many balls as binsm = 2n, the fraction of empty bins ise−2 or about 13.5%. While
the number of empty bins decreases exponentially withλ, quite a few empty bins remain unless
m is significantly larger thann. This is the “coupon collectors problem” that we will study next
week.

The Birthday Paradox

The birthday paradox comes from the observation that birthday collisions are likely to happen with
relatively few people.

The birthday paradox can be viewed as an occupancy problem. Each of them people is a ball,
assigned independently at random to one ofn = 365 bins, which are the days of the year. We want
to determine the probability of some bin containing two or more balls, and find the range ofm for
which this probability is high.

Its easier to compute the probability thatno bin contains two or more balls. We assume that
balls are placed one at a time into bins. LetEi be the event that ball numberi goes into an empty
bin. Then the probability that no bin contains two balls is equal to the probability that every ball
goes into an empty bin, or

Pr[E1 ∧ · · · ∧ Em]

We have to proceed carefully because theEi are not independent. Furthermore, its difficult to
computePr[Ei] directly without knowing how many empty bins remain when we place balli. But
what we can compute easily isPr[Ek|E1 ∧ E2 ∧ · · ·Ek−1], the probability that ballk goes into an
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empty bingiventhat the earlier balls went into empty bins. And the probability we are looking for
has a simple expression in terms of those conditional probabilities:

Pr[E1 ∧ · · · ∧ Em] = Pr[E1] Pr[E2|E1] Pr[E3|E1 ∧ E2] · · ·Pr[Em|E1 ∧ · · · ∧ Em−1]

You can check this yourself using Bayes rulePr[A|B] = Pr[A ∧ B]/Pr[B]. The product “tele-
scopes” with all but the last numerator cancelling.

Now when thekth ball is placed, if we assume earlier balls went into empty bins there are
exactlyn− k + 1 empty bins left. So the probability that this last ball goes into an empty bin is

Pr[Ek|E1 ∧ E2 ∧ · · ·Ek−1] = (n− k + 1)/n = 1− (k − 1)/n

So the probability of allm balls going into empty bins is

Pr[E1 ∧ · · · ∧ Em] = 1 ·
(

1− 1

n

)(
1− 2

n

)
· · ·
(

1− m− 1

n

)
=

m−1∏
i=1

(
1− i

n

)
This is a tricky product to compute. One way to deal with a difficult product is to turn it into a
sum. We can do that by introducing the exponential function. In this case, we use the inequality
1− x ≤ e−x (check it yourself using calculus). Then

Pr[E1 ∧ · · · ∧ Em] ≤
m−1∏
i=1

exp

(
− i

n

)
= exp

(
− 1

n

m−1∑
i=1

i

)
= exp(−m(m− 1)/2n)

Now if this probability is small (<< 1), then we have a high probability that some bin contains
two or more balls. So we wantm(m− 1)/2n > 1 or in other words

m ≥
√

2n

So as long as the number of people is greater than the square root of twice the number of days,
there is a good chance of a birthday collision. e.g. if the number of people is 40, the probability of
a collision is at least1− exp(−2.13) > 0.88, nearly 90 percent.
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