
CS174 Lecture Note 4

Based on notes by Alistair Sinclair, September 1998; based on earlier notes by Manuel Blum/Douglas
Young.

More on random permutations
We might ask more detailed questions, such as:

Q3: What is the probability thatπ contains at least one 1-cycle (cycle of length 1)?

Q4: What is the distribution of the number of 1-cycles?

Before we can answer these questions, we need to recall the inclusion exclusion principle. The
version we use is adapted to probabilities. Suppose we start withn properties (events)E1, . . . , En.
First definepi = Pr[Ei] andpij = Pr[Ei∧Ej] andpijk = Pr[Ei∧Ej∧Ek] and so on. (The indices
i, j, k here are assumed to be distinct.) Now we define sumsSi as

S1 =
n∑

i=1

pi S2 =
∑

1≤i<j≤n

pij S3 =
∑

1≤i<j<k≤n

pijk · · ·

The following theorem, known as the Principle of Inclusion/Exclusion, expressesPr[E1∨ . . .∨En]
in terms of the easier-to-computeSk.

Theorem 1: Pr[E1 ∨ E2 ∨ . . . ∨ En] = S1 − S2 + S3 − S4 + · · · ± Sn.

Proof: Let s be any sample point inE1∨ . . .∨En. How often is it counted on the right-hand-side?
Supposes occurs in exactlyr of theEi. Then it appearsr times inS1,

(
r
2

)
times inS2,

(
r
3

)
times

in S3, and so on. (Why?) So the contribution ofPr[s] to the r.h.s. is

Pr[s]
{(

r
1

)
−

(
r
2

)
+

(
r
3

)
− · · · ±

(
r
r

)}
. (∗∗)

But now if we look at the binomial expansion of(1− x)r we see

0 = (1− 1)r = 1−
(

r
1

)
+

(
r
2

)
−

(
r
3

)
+ · · · ±

(
r
r

)
,

so the term in braces in(∗∗) is exactly 1. Thuss contributes exactlyPr[s] to the r.h.s., which
proves the theorem.

Now we return to Q3. LetEi be the event thatπ mapsi to itself. Q3 asks forPr[E1∨E2∨. . .∨En].
This seems hard to compute. . .

What probabilitiescanwe compute easily? We have

pi = (n−1)!
n!

= 1
n
; pij = (n−2)!

n!
= 1

n(n−1)
; pijk = (n−3)!

n!
;

and so on. (Check this!) So we getS1 = n · 1
n

= 1; S2 =
(

n
2

)
· 1

n(n−1)
= 1

2
; and generally

Sk =
(

n
k

)
· (n−k)!

n!
= n!

k!(n−k)!
· (n−k)!

n!
= 1

k!
. (∗)
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We can now answer our Q3 about random permutations. From Theorem 1, and using the values
Sk = 1

k!
from (∗), we get:

Pr[π contains at least one 1-cycle] = 1− 1
2!

+ 1
3!
− 1

4!
+ · · · ± 1

n!
∼ 1− e−1 = 0.632 . . .

Ex: How good is this last approximation forn = 6?

Now let’s think about Q4. For a family of events{Ei}, define

qk = Pr[exactlyk of theEi occur].

To compute this, we first need a generalization of Theorem 1:

Theorem 1’: Pr[at leastk of theEi occur] = Sk −
(

k
k−1

)
Sk+1 +

(
k+1
k−1

)
Sk+2 −

(
k+2
k−1

)
Sk+3 + · · · ±(

n−1
k−1

)
Sn.

Ex: verify that Theorem 1 is a special case of Theorem 1’, and (harder!) prove Theorem 1’.

From Theorem 1’, we can easily deduce:

Theorem 2: qk = Sk −
(

k+1
k

)
Sk+1 +

(
k+2

k

)
Sk+2 −

(
k+3

k

)
Sk+3 + · · · ±

(
n
k

)
Sn.

Proof: From the definition ofqk, we have

qk = Pr[at leastk of theEi occur]− Pr[at leastk + 1 of theEi occur].

From Theorem 1’, the coefficient ofSk+i in the difference of these two series (neglecting the sign)
is (

k+i−1
k−1

)
+

(
k+i−1

k

)
= (k+i−1)!

(k−1)!i!
+ (k+i−1)!

k!(i−1)!
= (k+i−1)!(k+i)

k!i!
=

(
k+i
k

)
.

Since the signs alternate, this gives us exactly the series claimed.

Going back to the special case of random permutations, recall from(∗) thatSk = 1
k!

, so Theorem 2
gives us:

q0 = 1− 1 + 1
2!
− 1

3!
+ · · · ± 1

n!

q1 = 1− 1 + 1
2!
− 1

3!
+ · · · ∓ 1

(n−1)!

q2 = 1
2!

{
1− 1 + 1

2!
− 1

3!
+ · · · ± 1

(n−2)!

}
q3 = 1

3!

{
1− 1 + 1

2!
− 1

3!
+ · · · ∓ 1

(n−3)!

}
...

qn−2 = 1
(n−2)!

{
1− 1 + 1

2!

}
qn−1 = 1

(n−1)!
{1− 1} = 0

qn = 1
n!

.

Ex: Give simple arguments to explain whyqn−1 = 0 andqn = 1
n!

.

Thus we see that, for every fixedk, qk ∼ 1
k!

e−1.
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The probabilities{ 1
k!

e−1} play a special role: they define thePoisson distribution(with parame-
ter 1).

Definition: A r.v. X has the Poisson distribution with parameterλ if

Pr[X = k] = e−λ λk

k!
for all integersk ≥ 0

(andPr[X = x] = 0 for all other values ofx).

Ex: Check that thisis always a probability distribution, i.e., that
∞∑

k=0
e−λ λk

k!
= 1.

So we see that, asn →∞, the distribution of the number of 1-cycles in a random permutation on
n elements behaves like the Poisson distribution withλ = 1.

Ex: For n = 10, compute theqk exactly and compare them with the approximate values1
k!

e−1.
How good is the approximation?

Mean and Variance for a Poisson R.V.For a Poisson R.V.X, the expected value is

E(X) =
∞∑

k=0

k
e−λλk

k!
= λ

∞∑
k=1

e−λλk−1

(k − 1)!

and substitutingl = k − 1 gives

E(X) = λ
∞∑
l=0

e−λλl

l!
= λe−λeλ = λ

So a random Poisson variableX always has E(X) = λ. The variance of a random variable is
defined as

Var(X) = E
(
(X − E(X))2

)
and its not hard to show that this simplifies to Var(X) = E(X2)−E(X)2. We know that E(X) =
λ, so lets compute E(X2):

E
(
X2

)
=

∞∑
k=0

k2 e−λλk

k!
=

∞∑
k=1

k
e−λλk

(k − 1)!
=

∞∑
k=1

(k − 1)
e−λλk

(k − 1)!
+

∞∑
k=1

e−λλk

(k − 1)!

After cancelling and substitutingi = k − 2, j = k − 1, the last two sums become

E
(
X2

)
= λ2

∞∑
i=0

e−λλi

i!
+ λ

∞∑
j=0

e−λλj

j!
= λ2 + λ

and finally
Var(X) = E

(
X2

)
− E(X)2 = (λ + λ2)− (λ)2 = λ

so we have the surprising result that the meanandvariance for a Poisson distribution isλ:

E(X) = Var(X) = λ

The Poisson distribution shows up naturally in many contexts. Here is another example, which
also introduces another important distribution, thebinomial distribution.

Bernoulli trials
A coin comes up heads with probabilityp, tails with probability1− p.
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• Suppose it is tossedn times. What isPr[exactlyk heads]?

This question arises very frequently in applications in Computer Science. In place of coin flips,
we can think of a sequence ofn identical independent trials, each of which succeeds (heads) with
probability p. It is also a special case of Theorem 2 above, whereEi is the event “theith toss
is heads”: the difference here is thatthe eventsEi are now independent, so things are now much
simpler.

Define the r.v.X = # heads in above experiment.

Ex: By writing X =
∑

i Xi for suitable indicator r.v.’sXi, show that E(X) = np and Var(X) =
np(1− p).

What does the distribution ofX look like? Well, consider any outcome of the experiment in which
X = k, i.e., in which there are exactlyk heads. We can view this as a strings ∈ {H, T}n containing
k H’s andn−k T’s. Now since all coin tosses are independent, we must havePr[s] = pk(1−p)n−k.
The number of such stringss is

(
n
k

)
. Summing over sample points in the event “X = k” gives

Pr[X = k] =
(

n
k

)
pk(1− p)n−k.

Definition: The above distribution is known as the binomial distribution with parametersn andp.

Examples

1. The probability of exactlyk heads inn tosses of a fair coin is
(

n
k

)
2−n.

2. When we tossm balls inton bins, the probability that any given bin (say, bini) contains
exactlyk balls is

(
m
k

)
( 1

n
)k(1− 1

n
)m−k.

We’ll have a lot more to say about the binomial distribution later. Here, we just consider a special
case in whichp = λ/n for some constantλ. Note that this means that E(X) = np = λ remains
constant asn →∞.

Writing qk = Pr[X = k], we have

q0 = (1− p)n = (1− λ
n
)n ∼ e−λ asn →∞.

Also,
qk

qk−1
=

(n
k)pk(1−p)n−k

( n
k−1)pk−1(1−p)n−k+1

= n−k+1
k

· p
1−p

= n−k+1
k

· λ
n−λ

.

For any fixedk, we therefore haveqk

qk−1
∼ λ

k
asn →∞. So we get

q1 ∼ λq0 ∼ λe−λ

q2 ∼ λ
2
q1 ∼ λ2

2!
e−λ

...

qk ∼ λ
k
qk−1 ∼ λk

k!
e−λ.

Once again, we get the Poisson distribution, this time with parameterλ = np.

Example: Suppose we tossm = cn balls inton bins, wherec is a constant. Then for any fixedk,

Pr[bin i contains exactlyk balls] ∼ ck

k!
e−c.
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