CS174 Lecture Note 4

Based on notes by Alistair Sinclair, September 1998; based on earlier notes by Manuel Blum/Douglas Young.

More on random permutations

We might ask more detailed questions, such as:
Q3: What is the probability that π contains at least one 1-cycle (cycle of length 1)?
Q4: What is the distribution of the number of 1-cycles?
Before we can answer these questions, we need to recall the inclusion exclusion principle. The version we use is adapted to probabilities. Suppose we start with n properties (events) E_{1}, \ldots, E_{n}. First define $p_{i}=\operatorname{Pr}\left[E_{i}\right]$ and $p_{i j}=\operatorname{Pr}\left[E_{i} \wedge E_{j}\right]$ and $p_{i j k}=\operatorname{Pr}\left[E_{i} \wedge E_{j} \wedge E_{k}\right]$ and so on. (The indices i, j, k here are assumed to be distinct.) Now we define sums S_{i} as

$$
S_{1}=\sum_{i=1}^{n} p_{i} \quad S_{2}=\sum_{1 \leq i<j \leq n} p_{i j} \quad S_{3}=\sum_{1 \leq i<j<k \leq n} p_{i j k} \cdots
$$

The following theorem, known as the Principle of Inclusion/Exclusion, expresses $\operatorname{Pr}\left[E_{1} \vee \ldots \vee E_{n}\right]$ in terms of the easier-to-compute S_{k}.

Theorem 1: $\operatorname{Pr}\left[E_{1} \vee E_{2} \vee \ldots \vee E_{n}\right]=S_{1}-S_{2}+S_{3}-S_{4}+\cdots \pm S_{n}$.
Proof: Let s be any sample point in $E_{1} \vee \ldots \vee E_{n}$. How often is it counted on the right-hand-side? Suppose s occurs in exactly r of the E_{i}. Then it appears r times in $S_{1},\binom{r}{2}$ times in $S_{2},\binom{r}{3}$ times in S_{3}, and so on. (Why?) So the contribution of $\operatorname{Pr}[s]$ to the r.h.s. is

$$
\begin{equation*}
\operatorname{Pr}[s]\left\{\binom{r}{1}-\binom{r}{2}+\binom{r}{3}-\cdots \pm\binom{ r}{r}\right\} . \tag{**}
\end{equation*}
$$

But now if we look at the binomial expansion of $(1-x)^{r}$ we see

$$
0=(1-1)^{r}=1-\binom{r}{1}+\binom{r}{2}-\binom{r}{3}+\cdots \pm\binom{ r}{r},
$$

so the term in braces in $(* *)$ is exactly 1 . Thus s contributes exactly $\operatorname{Pr}[s]$ to the r.h.s., which proves the theorem.

Now we return to Q3. Let E_{i} be the event that π maps i to itself. Q3 asks for $\operatorname{Pr}\left[E_{1} \vee E_{2} \vee \ldots \vee E_{n}\right]$. This seems hard to compute ...
What probabilities can we compute easily? We have

$$
p_{i}=\frac{(n-1)!}{n!}=\frac{1}{n} ; \quad p_{i j}=\frac{(n-2)!}{n!}=\frac{1}{n(n-1)} ; \quad p_{i j k}=\frac{(n-3)!}{n!} ;
$$

and so on. (Check this!) So we get $S_{1}=n \cdot \frac{1}{n}=1 ; S_{2}=\binom{n}{2} \cdot \frac{1}{n(n-1)}=\frac{1}{2}$; and generally

$$
\begin{equation*}
S_{k}=\binom{n}{k} \cdot \frac{(n-k)!}{n!}=\frac{n!}{k!(n-k)!} \cdot \frac{(n-k)!}{n!}=\frac{1}{k!} . \tag{*}
\end{equation*}
$$

We can now answer our Q3 about random permutations. From Theorem 1, and using the values $S_{k}=\frac{1}{k!}$ from (*), we get:

$$
\operatorname{Pr}[\pi \text { contains at least one } 1-\text { cycle }]=1-\frac{1}{2!}+\frac{1}{3!}-\frac{1}{4!}+\cdots \pm \frac{1}{n!} \sim 1-\mathrm{e}^{-1}=0.632 \ldots
$$

Ex: How good is this last approximation for $n=6$?
Now let's think about Q4. For a family of events $\left\{E_{i}\right\}$, define

$$
q_{k}=\operatorname{Pr}\left[\text { exactly } k \text { of the } E_{i} \text { occur }\right] .
$$

To compute this, we first need a generalization of Theorem 1:
Theorem 1': Pr [at least k of the E_{i} occur] $=S_{k}-\binom{k}{k-1} S_{k+1}+\binom{k+1}{k-1} S_{k+2}-\binom{k+2}{k-1} S_{k+3}+\cdots \pm$ $\binom{n-1}{k-1} S_{n}$.
Ex: verify that Theorem 1 is a special case of Theorem 1', and (harder!) prove Theorem 1'.
From Theorem 1', we can easily deduce:
Theorem 2: $q_{k}=S_{k}-\binom{k+1}{k} S_{k+1}+\binom{k+2}{k} S_{k+2}-\binom{k+3}{k} S_{k+3}+\cdots \pm\binom{ n}{k} S_{n}$.
Proof: From the definition of q_{k}, we have

$$
q_{k}=\operatorname{Pr}\left[\text { at least } k \text { of the } E_{i} \text { occur }\right]-\operatorname{Pr}\left[\text { at least } k+1 \text { of the } E_{i} \text { occur }\right] .
$$

From Theorem 1', the coefficient of S_{k+i} in the difference of these two series (neglecting the sign) is

$$
\binom{k+i-1}{k-1}+\binom{k+i-1}{k}=\frac{(k+i-1)!}{(k-1)!!!}+\frac{(k+i-1)!}{k!(i-1)!}=\frac{(k+i-1)!(k+i)}{k!!!}=\binom{k+i}{k} .
$$

Since the signs alternate, this gives us exactly the series claimed.
Going back to the special case of random permutations, recall from $(*)$ that $S_{k}=\frac{1}{k!}$, so Theorem 2 gives us:

$$
\begin{aligned}
q_{0} & =1-1+\frac{1}{2!}-\frac{1}{3!}+\cdots \pm \frac{1}{n!} \\
q_{1} & =1-1+\frac{1}{2!}-\frac{1}{3!}+\cdots \mp \frac{1}{(n-1)!} \\
q_{2} & =\frac{1}{2!}\left\{1-1+\frac{1}{2!}-\frac{1}{3!}+\cdots \pm \frac{1}{(n-2)!}\right\} \\
q_{3} & =\frac{1}{3!}\left\{1-1+\frac{1}{2!}-\frac{1}{3!}+\cdots \mp \frac{1}{(n-3)!}\right\} \\
& \vdots \\
q_{n-2} & =\frac{1}{(n-2)!}\left\{1-1+\frac{1}{2!}\right\} \\
q_{n-1} & =\frac{1}{(n-1)!}\{1-1\}=0 \\
q_{n} & =\frac{1}{n!} .
\end{aligned}
$$

Ex: Give simple arguments to explain why $q_{n-1}=0$ and $q_{n}=\frac{1}{n!}$.
Thus we see that, for every fixed $k, q_{k} \sim \frac{1}{k!} \mathrm{e}^{-1}$.

The probabilities $\left\{\frac{1}{k!} \mathrm{e}^{-1}\right\}$ play a special role: they define the Poisson distribution (with parameter 1).
Definition: A r.v. X has the Poisson distribution with parameter λ if

$$
\operatorname{Pr}[X=k]=\mathrm{e}^{-\lambda \frac{\lambda^{k}}{k!}} \quad \text { for all integers } k \geq 0
$$

(and $\operatorname{Pr}[X=x]=0$ for all other values of x).
Ex: Check that this is always a probability distribution, i.e., that $\sum_{k=0}^{\infty} \mathrm{e}^{-\lambda} \frac{\lambda^{k}}{k!}=1$.
So we see that, as $n \rightarrow \infty$, the distribution of the number of 1-cycles in a random permutation on n elements behaves like the Poisson distribution with $\lambda=1$.
Ex: For $n=10$, compute the q_{k} exactly and compare them with the approximate values $\frac{1}{k!} \mathrm{e}^{-1}$. How good is the approximation?
Mean and Variance for a Poisson R.V. For a Poisson R.V. X, the expected value is

$$
\mathrm{E}(X)=\sum_{k=0}^{\infty} k \frac{e^{-\lambda} \lambda^{k}}{k!}=\lambda \sum_{k=1}^{\infty} \frac{e^{-\lambda} \lambda^{k-1}}{(k-1)!}
$$

and substituting $l=k-1$ gives

$$
\mathrm{E}(X)=\lambda \sum_{l=0}^{\infty} \frac{e^{-\lambda} \lambda^{l}}{l!}=\lambda e^{-\lambda} e^{\lambda}=\lambda
$$

So a random Poisson variable X always has $\mathrm{E}(X)=\lambda$. The variance of a random variable is defined as

$$
\operatorname{Var}(X)=\mathrm{E}\left((X-\mathrm{E}(X))^{2}\right)
$$

and its not hard to show that this simplifies to $\operatorname{Var}(X)=\mathrm{E}\left(X^{2}\right)-\mathrm{E}(X)^{2}$. We know that $\mathrm{E}(X)=$ λ, so lets compute $\mathrm{E}\left(X^{2}\right)$:

$$
\mathrm{E}\left(X^{2}\right)=\sum_{k=0}^{\infty} k^{2} \frac{e^{-\lambda} \lambda^{k}}{k!}=\sum_{k=1}^{\infty} k \frac{e^{-\lambda} \lambda^{k}}{(k-1)!}=\sum_{k=1}^{\infty}(k-1) \frac{e^{-\lambda} \lambda^{k}}{(k-1)!}+\sum_{k=1}^{\infty} \frac{e^{-\lambda} \lambda^{k}}{(k-1)!}
$$

After cancelling and substituting $i=k-2, j=k-1$, the last two sums become

$$
\mathrm{E}\left(X^{2}\right)=\lambda^{2} \sum_{i=0}^{\infty} \frac{e^{-\lambda} \lambda^{i}}{i!}+\lambda \sum_{j=0}^{\infty} \frac{e^{-\lambda} \lambda^{j}}{j!}=\lambda^{2}+\lambda
$$

and finally

$$
\operatorname{Var}(X)=\mathrm{E}\left(X^{2}\right)-\mathrm{E}(X)^{2}=\left(\lambda+\lambda^{2}\right)-(\lambda)^{2}=\lambda
$$

so we have the surprising result that the mean and variance for a Poisson distribution is λ :

$$
\mathrm{E}(X)=\operatorname{Var}(X)=\lambda
$$

The Poisson distribution shows up naturally in many contexts. Here is another example, which also introduces another important distribution, the binomial distribution.

Bernoulli trials

A coin comes up heads with probability p, tails with probability $1-p$.

- Suppose it is tossed n times. What is $\operatorname{Pr}[$ exactly k heads]?

This question arises very frequently in applications in Computer Science. In place of coin flips, we can think of a sequence of n identical independent trials, each of which succeeds (heads) with probability p. It is also a special case of Theorem 2 above, where E_{i} is the event "the i th toss is heads": the difference here is that the events E_{i} are now independent, so things are now much simpler.
Define the r.v. $X=\#$ heads in above experiment.
Ex: By writing $X=\sum_{i} X_{i}$ for suitable indicator r.v.'s X_{i}, show that $\mathrm{E}(X)=n p$ and $\operatorname{Var}(X)=$ $n p(1-p)$.
What does the distribution of X look like? Well, consider any outcome of the experiment in which $X=k$, i.e., in which there are exactly k heads. We can view this as a string $s \in\{\mathrm{H}, \mathrm{T}\}^{n}$ containing k H's and $n-k$ T's. Now since all coin tosses are independent, we must have $\operatorname{Pr}[s]=p^{k}(1-p)^{n-k}$. The number of such strings s is $\binom{n}{k}$. Summing over sample points in the event " $X=k$ " gives

$$
\operatorname{Pr}[X=k]=\binom{n}{k} p^{k}(1-p)^{n-k} .
$$

Definition: The above distribution is known as the binomial distribution with parameters n and p.

Examples

1. The probability of exactly k heads in n tosses of a fair coin is $\binom{n}{k} 2^{-n}$.
2. When we toss m balls into n bins, the probability that any given bin (say, bin i) contains exactly k balls is $\binom{m}{k}\left(\frac{1}{n}\right)^{k}\left(1-\frac{1}{n}\right)^{m-k}$.
We'll have a lot more to say about the binomial distribution later. Here, we just consider a special case in which $p=\lambda / n$ for some constant λ. Note that this means that $\mathrm{E}(X)=n p=\lambda$ remains constant as $n \rightarrow \infty$.
Writing $q_{k}=\operatorname{Pr}[X=k]$, we have

$$
q_{0}=(1-p)^{n}=\left(1-\frac{\lambda}{n}\right)^{n} \sim \mathrm{e}^{-\lambda} \quad \text { as } n \rightarrow \infty .
$$

Also,

$$
\frac{q_{k}}{q_{k-1}}=\frac{\binom{n}{k} p^{k}(1-p)^{n-k}}{\binom{n}{k-1} p^{k-1}(1-p)^{n-k+1}}=\frac{n-k+1}{k} \cdot \frac{p}{1-p}=\frac{n-k+1}{k} \cdot \frac{\lambda}{n-\lambda} .
$$

For any fixed k, we therefore have $\frac{q_{k}}{q_{k-1}} \sim \frac{\lambda}{k}$ as $n \rightarrow \infty$. So we get

$$
\begin{aligned}
& q_{1} \sim \lambda q_{0} \sim \lambda \mathrm{e}^{-\lambda} \\
& q_{2} \sim \frac{\lambda}{2} q_{1} \sim \frac{\lambda^{2}}{2!} \mathrm{e}^{-\lambda} \\
& \quad \quad \vdots \\
& q_{k} \sim \frac{\lambda}{k} q_{k-1} \sim \frac{\lambda^{k}}{k!} \mathrm{e}^{-\lambda} .
\end{aligned}
$$

Once again, we get the Poisson distribution, this time with parameter $\lambda=n p$.
Example: Suppose we toss $m=c n$ balls into n bins, where c is a constant. Then for any fixed k,

$$
\operatorname{Pr}[\text { bin } i \text { contains exactly } k \text { balls }] \sim \frac{c^{k}}{k!} \mathrm{e}^{-c} .
$$

