
CS174 Lecture 3 John Canny

Randomized Quicksort and BSTs

A couple more needed results about permutations:

Q1: What’s the probability that 4 comes before 5 in a random permutation? Tempting to say1/2,
but why?

For every permutation where 4 is before 5, there is a matching permutation where 5 is before 4,
obtained by swapping 4 and 5. That’s a 1-1 correspondence between the two sets of permutations,
so they must have the same size, and partition the set of all permutations into two halves. Since
all permutations are equally likely, the total probability for the event (4 is before 5) equals the
probability of the event (5 is before 4).

Q2: What’s the probability that an elementu comes beforei valuesu1, . . . , ui ?

By similar argument, we partition the set of all permutations into subsetsSj according to the
ordering ofu, u1, . . . , ui. Each subset in this partition has the same size (which isn!/(i + 1)!,
the number of permutations of the other elements times the number of choices for the positions of
theu’s in the whole permutation). Therefore we concentrate on the question of what fraction of
subsetsSj haveu before the other elements. Ifu comes first in a permutation ofu, u1, . . . , ui, then
there arei! ways to order theui’s, while there are(i + 1)! permutations total. So the probability
thatu is first is

i!/(i + 1)! = 1/(i + 1)

And this is also the probability thatu comes beforeu1, . . . , ui in the whole permutation.

Randomized Quicksort

Quicksort sorts an arrayA by partitioning it into subarrays using a pivot element, and recursively
sorting the subarrays. In the randomized (Las Vegas) version, the pivot is chosen at random from
the subarray. In the pseudo-code below, assumeA initially containsn unsorted elements, and that
left=1 andright=n.

Algorithm Quicksort(A, left, right)
Choose a random element p from [left,..,right]
Compare elements with A[p] and

partition into subarrays < A[p] and > A[p]
Recursively sort the subarrays < A[p] and > A[p]

1

After partitioning, the array looks like this:

elements < A[p] elements > A[p]A[p]

Since the partition element is chosen randomly, the two subarrays are not equally sized. In fact the
size of a subarray is a random variable with the uniform distribution from1, . . . , n−1. Nevertheless
as we shall see, recursive random partitioning is still efficient, and leads to a logarithmic expected
recursion depth.

Analysis of Randomized Quicksort

You may have seen analysis of randomized Quicksort before. If so, it is probably different from the
method we use here, which is based on indicator random variables. Unlike “top-down” analyses
that use the recursive structure of Quicksort, we will do a “bottom-up” analysis by counting the
number of comparisons between array elements that it makes. It should be clear that the running
time of both Quicksort and Partition are dominated by the number of comparisons.

Let A(i) denote theith smallest element in the array. SoA(i) is different fromA[i] when the
algorithm begins, butA(i) = A[i] after the elements have been sorted. Define an indicator random
variableXij as follows:

Xij =

{
1 if A(i) andA(j) are compared during a run of Quicksort
0 otherwise

Let’s pause here to think about the probabilistic setup. The sample space now is executions
of the Quicksort algorithm for a particular input. Each sample point is characterized by the set of
random numbers from the random number generator during the entire execution of the algorithm.
The variableXij has its domain on that sample space.

Now notice that as we have described Quicksort, no two elements will be compared twice.
That’s because one of the two elements being compared is always the current pivot. The first time
two elements are compared, whichever one is the pivot is “used up” and doesnt appear in either of
the subarrays. Thus it has no more comparisons with the elements in those subarrays.

Let the total number of comparisons in a run of Quicksort be the random variableX, defined
as:

X =
n∑

i=1

n∑
j=i+1

Xij

and we can once again invoke the linearity of expected value to derive the expected number of
comparisons for randomized Quicksort:

E[X] =
n∑

i=1

n∑
j=i+1

E[Xij]

2

Let pij be the probability thatA(i) andA(j) are compared in an execution of Quicksort. Since
Xij is 0-1 valued, we have

E[Xij] = 0 × (1 − pij) + 1 × pij = pij

So we can complete our analysis by computingpij, the probability thatA(i) andA(j) are compared
in a execution of Quicksort. The derivation is not obvious, and it will help to draw a connection
between randomized Quicksort and randomized Binary Search Trees (BSTs).

Randomized Binary Search Trees

Suppose we take then elements in the arrayA and build a binary search tree from them by inserting
one element at a time. Assume there is no re-balancing of the tree. We can perform an inorder
traversal of the resulting tree, and the elements will occur in ascending order of key value. Call
this procedure “TreeSort”.

The root of the BST will be the first element we add. Its left child will be the first element we
add which is less than the root etc. The vertical order in the tree encodes thetime of insertion. The
left-to-right order encodes ascending key size. Every node was inserted later than all its ancestors,
and earlier than all its descendents. The tree itself doesnt specify the insertion order completely,
because it doesnt give the order between siblings. But any complete vertical ordering that keeps
every node below its parents is a valid possible order for the sequence of insertions. See the figure
below:

12

 8

30

21

 9

 2

17

Insertion time
increasing

Key value increasing

The insertions in this tree happened in this order: 12, 8, 30, 21, 9, 2, 17. Vertical position encodes
time of insertion. Left-right position is determined by the key value.

3

The BST will be a randomized BST if we insert the elements in random order. Or equivalently,
we could apply the random permutation algorithm from last time to “unsort” the elements, and then
insert them one at a time. Every permutation of the elements specifies a unique vertical order. That
vertical order, together with the relative size of the elements determines what the binary tree is.
Suppose we want to analyze the running time to insert all the elements. LetX be the running time
of randomized TreeSort. The running time is dominated by the number of comparisons between
elements. LetA(i) denote theith smallest element in the set. Then define

Xij =

{
1 if A(i) andA(j) are compared during a run of TreeSort
0 otherwise

And once againE[Xij] = pij wherepij is the probability thatA(i) andA(j) are compared during
an execution of TreeSort. Determiningpij requires a powerful and non-obvious idea. This idea is
useful in analysis of several other algorithms. It involves looking at both time ordering and key
ordering of a set of elements. And it will bring us back to random permutations:

Notice thatA(i) andA(j) are compared if and only if one element is an ancestor of the other in
the BST. The converse is that they share a lowest common ancestorA(k) distinct fromA(i) or A(j).
Both elements will be compared with this ancestor, but not with each other.

Now our sample space is the set of initial random orderings of the elements. Each order is
specified by a permutationπ of {1, . . . , n}. Assumeπ(i) is the position of elementA(i) in the
sequence of insertions. IfA(i) andA(j) have a distinct lowest common ancestorA(k), then they
must lie in distinct subtrees withA(k) as their root. That means thatA(k)’s key value must lie
between the keys ofA(i) andA(j). Since our subscripts refer to the elements in sorted order, that
means thati < k < j. Such anA(k) will be an ancestor ofA(i) andA(j) in the tree if and only if it
was inserted before them. That is, if and only ifπ(k) < π(i) andπ(k) < π(j).

So we have reduced the determination ofpij to a straightforward question about random per-
mutations: Giveni < j, what is the probability that there is nok such thati < k < j and
π(k) < min(π(i), π(j))? If there is no suchk, then eitherπ(i) or π(j) is first (smallest) among
(π(i), . . . , π(j)). That is precisely the question we opened the lecture with. The probability that
π(i) is first among(π(i), . . . , π(j)) is 1/(j − i + 1). Only one ofπ(i) or π(j) can be first so the
total probability that one of them is first is

2/(j − i + 1) = pij

We can now complete the analysis of randomized TreeSort. Its expected running time is:

E[X] =
n∑

i=1

n∑
j=i+1

pij =
n∑

i=1

n∑
j=i+1

2/(j − i + 1)

making the change of variablesl = j − i + 1, we obtain:

E[X] =
n∑

i=1

n−i+1∑
l=2

2/l

4

to simplify the second sum, we simply extend it:

E[X] ≤
n∑

i=1

n∑
l=2

2/l = 2
n∑

i=1

Hn = 2nHn

whereHn is thenth harmonic number as before. SinceHn is well-approximated byln n, our
running time bound is close to2n ln n. So we have:

Theorem
The expected number of comparisons for randomized TreeSort ofn elements is bounded by

2nHn ≈ 2n ln n

and its expected running time isO(n log n).

Corollary
The expected number of comparisons to insert one element during randomized TreeSort is at most
2Hn ≈ 2 ln n, and the expected time isO(log n).

If we maintained a perfectly balanced binary tree, the number of comparisons would be close
to log2 n. Using the formula for change of base of logs (loga(n) = logb(n) loga(b)) we find that

2 ln n = (2 ln 2) log2 n ≈ 1.386 log2 n

So a random BST has an expected number of comparisons for insertion (which is also the average
depth of the tree) which is only 40% greater than a perfectly-balanced tree. Given the overhead for
rebalancing trees which is often larger than 40%, randomized BSTs are quite attractive.

Back to Quicksort

You have probably been wondering about the connection between the BST and Quicksort. It is
quite direct. As Quicksort runs, it defines a BST consisting of pivots. The first pivot chosen is the
root. The pivot of the left subarray is its left child, and the pivot of the right subarray is the right
child, and so on recursively. Convince yourself that this tree is a BST, that is, inorder traversal of it
reads the elements in ascending order. This should help clarify why the analyses were so similar.
With the pivot as the root of a subtree of the BST, its easy to see why elements in randomized
Quicksort are only compared with their ancestors and descendents.

What’s not so easy to see is that the random choices in Quicksort give the same outcomes as
the random permutation of the elements in TreeSort. In fact, the random choices in Quicksort
do not specify a unique time ordering of insertions. That’s because we never specify in which
order we choose the pivots in the two subtrees during Quicksort. But we can reconcile this lack
of information by going the other way, showing that Quicksort’s choicescould have been derived
from a permutation, but by throwing some information away.

5

So its enough to show that Quicksort’s pivot choice would be the same if it had been based
on a complete permutationπ(i) of all the elements. Letπ be such a permutation, and construct
a BST fromπ by inserting elements in the order specified byπ. Pick any nodeA(u). Then the
elementsA(v) to the left ofA(u) satisfyv < u. In the BST, the root of the left subtree will be the
next element in the permutation from among elements in the left subtree. That is, theA(w) such
thatw < u andπ(w) is minimized. In other words, the distribution of this node is the distribution
of the first element in a restricted subset of elements in a random permutation. This is just the
uniform distribution on the set of all candidate elements. That is precisely how Quicksort chose its
pivot.

Thus the analyses for the running time for randomized Quicksort and Treesort are identical,
and we have:

Theorem
The expected number of comparisons for randomized Quicksort ofn elements is bounded by

2nHn ≈ 2n ln n

and its expected running time isO(n log n).

6

