
CS174 Lecture 29 John Canny

Traceable Anonymous Cash

Traceable anonymous cash sounds like an oxymoron. But the secret of good cryptography is to
reveal only the information necessary, and only when appropriate. In this case, the cash is anony-
mous and untraceableunlesssomeone cheats. If they do, the identity of the cheater is revealed
(with high probability).

We use secret sharing to do this, but in a new way. We only need the trivial version of secret-
sharing in this case (not Shamir’s method). Each secret is split into two pieces such that both are
needed to reconstruct the secret. For example ifM < n is a secret, pick a randomr ∈ Zn and
setM1 = r, M2 = M − r(mod n) as the two shares. Then both shares are random numbers but
M1 + M2 = M(mod n).

Here is the procedure for the spender (the Owner last time) to create a traceable anonymous
identity:

1. The spender makesm copies of his/her identity and splits each one in two secret-shared
pieces. That is, the copies are{Id1, . . . , Idm} and{Id′1, . . . , Id′m}. The spender’s identity
will be computable from any pairId = Idi + Id′i(mod n) but from no other combination.

2. The spender chooses2m private (e.g. DES) keys,K1, . . . , Km, K ′
1, . . . , K

′
m at random. Key

Ki is used to encrypt identityIdi, and keyK ′
i is used to encrypt identityId′i. Let f()

be a suitable encryption function like DES. Each result would look likef(IdiG, Ki) or
f(Id′iG, K ′

i), wheref is an encryption function, andG is a “recognizable” string like the
name of the bank. It is needed becauseIdi is itself just a random string, and decrypting it
with a false key would be hard to detect. The keysKi andK ′

i are bit-committed (e.g. by
hashing) but kept secret. That is, the public part of the identity info consists of

(f(Id1G, K1), . . . , f(IdmG, Km), f(Id′1G, K ′
1), . . . , f(Id′mG, K ′

m)

H(K1), . . . , H(Km), H(K ′
1), . . . , H(K ′

m))

while the spender keeps hold of the secret keys:

K1, . . . , Km, K ′
1, . . . , K

′
m

The process above generates one copy of the spender’s identity. For the cash protocol below,
we will needn copies of the identity info, so we repeat the above processn times. All the random
keysKi are different for each instance of the identity info. Now to create a spendable note, the
spender does the following:

1



1. A spender requesting a unit of cash createsn samples containing:

Mi(Bank′sName, Amount, SerialNumberi, IdentityInfoi)

where the serial number is unique to each bill, and the identity info is computed separately
for each note using the protocol above. The spender picksn blinding factorsb1, . . . , bn at
random and uses these to blind the notes, and presents them to the bank. That is, we send to
the bankbe

iH(Mi) for i = 1, . . . , n (and bit commitmentsH(Mi, bi) for the notes and factors
so the spender can’t cheat)

2. The bank selects one unit (say thejth) at random and sets it aside. Then it asks the spender
to unblind the othern−1. The spender provides the blinding factorsandall the keysKi and
K ′

i for those notes. The bank checks the Bank name, amount, and serial number as before.

A new step is to check the identity info for each note. The bank checks that all the keysKi

andK ′
i match their bit commitments in the Idinfo for that note. Then it uses them to look

inside the Idinfo. For each note, the bank decrypts all the identity halvesIdi andId′i, and
checks thatId = Idi + Id′i(mod n) for i = 1, . . . ,m.

3. The bank signs the unitbe
jH(Mj) by computingbjH

d(Mj) and returns this to the spender.

4. The spender unblinds this unit by multiplying byb−1
j and now has(Mj, H

d(M)) which is
the public part of the note. Spender also has the secret keysK1, . . . , Km, K ′

1, . . . , K
′
m for

the noteMj. The bank has never seen these keys, nor the noteMj itself.

Spending

Now when the spender takes this note to a merchant, an interactive transaction takes place. In order
for the merchant to accept the note, the merchant probes the IdentityInfo in the note. If the spender
is honest, this probing is a benign (zero-knowledge) process. The spender will expose only one
half of each IdInfo, which reveals nothing about the spender. Here is the protocol:

1. Customer (spender) arrives at the store with the bill. Merchant tosses a coinm times and
tells the customer the outcomes.

2. for theith coin toss, the customer revealsIdi if the toss was heads, orId′i if it was tails by
revealing the encryption keyKi or K ′

i. The merchant checks the hash of that key, and then
uses it to get one half of each identity. But that reveals nothing about the customer’s identity.

3. The merchant checks the banks signature and forwards the bill along with the coin flips and
the keysKi or K ′

i that were revealed, to the bank.

The customer can’t avoid revealing half of each identity for each coin toss. First of all, the
identity pieces are almost certainly real. The bank checked the othern − 1 notes before it signed

2



this one, including checking that the identity halves matched. It is very unlikely the customer could
have cheated when they created the note and got away with it.

The customer can’t cheat at step 2 by using a falseKi or K ′
i because the keys were bit com-

mitted when the note was created (and before the bank signed it). The stringG confirms that the
decryption worked.

Suppose the customer tries to spend the same note again. Another merchant will toss a coinm
times. The customer must revealm identity halves, and the merchant will forward these (actually
their keys) to the same bank. Unless the customer is extremely lucky, the sequence of coin tosses by
the second merchant will be different from the first merchant. Suppose tossi is different between
merchant 1 and merchant 2. That means the customer revealed bothIdi andId′i. When the bank
receives those pieces, it will be able to recover the customer’s identity. It will also know that the
customer deliberately tried to spend twice.

What if the merchant tried to cheat? If they just copy the information that they got from the
customer and go to the bank with it, the bank will suspect the merchant. It is very unlikely that
a real transaction would happen where the merchant came up with exactly the same sequence of
coin tosses. Can the bank forge some identity keys? There is really no way to do this. The keysKi

are all bit committed using a hash function, and the result is signed by the bank. So the merchant
can’t fake other keys with the same hash value.

The risk to the customer is that the keysKi must be stored in some kind of computer. If that
is stolen, a criminal could try to spend the money twice and only the identity of the original owner
would be revealed. In this respect, it is like real money.

The other risk is that you could lose the data and then the money is gone!. In this case, unlike
real money, you can keep multiple copies of each note in different digital “wallets” for safety. So
long as you manage to track serial numbers and delete notes that have been spent, you will be OK.

3


