
CS174 Lecture 24 John Canny

Zero-Knowledge Proofs for discrete logs

Suppose you want to prove your identity to someone, in order to cash a check or pick up a package.
Most forms of ID can be copied or forged, but there is a zero-knowledge method that cannot. At
least it cant assuming discrete logs are hard to compute. Letp be a large prime, and suppose you
choose anx at random which will be your secret ID number. Now choose a generatorA and
computeB = Ax(mod p). You can safely publishA, B, andp because an eavesdropper cannot
computex from that data if discrete log is hard. Your entry might be in a phone book as

“Will smith, Discrete-log key: (A, B, p)”

Now if you show up at the post office to collect a package, you could producex and anyone
could verify thatB = Ax(mod p). But then any eavesdropper could catchx and impersonate
you later. Its better to keepx secret and only answer certain questions about it. Specifically:

1. Prover (you) chooses a random number0 ≤ r < p−1 and sends the verifierh = Ar(mod p).

2. Verifier sends back a random bitb.

3. Prover sendss = (r + bx)(mod (p− 1)) to verifier.

4. Verifier computesAs(mod p) which should equalhBb(mod p).

The basic idea here is that ifb = 1, the prover gives a number to the verifier (V) that looks
random (s = r + x(mod (p − 1))). But V already knowsh = Ar andB = Ax and can multiply
these and compare them toAs.

We should be careful what is proved by that. What V actually sees areh ands, and so what V
knows is thats = dlog(h) + x(mod (p− 1)), wheredlog(h) is the discrete log ofh relative toA.
The verifier knowss and so do you, the prover. Now if you also know dlog(h), then its clear that
you knowx. So it remains for you to convince the verifier that you know dlog(h).

That’s where the random bit comes in. Ifb = 0, you the prover just sends = r back to V. V
then checks thath = Ar(mod p), i.e. thatr is the discrete log ofh. So depending on the random
bit, V gets eithers or r but never both (because their difference isx). Thus V gets no information
aboutx.

You, the prover can try to cheat in one of two ways. If you dont knowx, you can still pick a
randomr and sendh = Ar(mod p) to V at the first step. If V picksb = 0, you are OK, because
you can just sends = r at step 3, and V will be able to check thatAs = h(mod p). But if V picks
b = 1 you are stuck because you dont knowx, and you cant easily compute ans that will satisfy
As = hB(mod p) because that would be equivalent to finding the discrete log ofhB.

1



On the other hand, you the prover might cheat by sending V ah whose discrete log dont know
at step 1. A good candidate ish = AsB−1 for some randoms. If the verifier picksb = 1, you send
this s and it will satisfyAs = hBb(mod p). But if the verifier picksb = 0, you are stuck because
you dont know anr such thatAr = h(mod p).

In either case, the verifier will discover that you cheated with 50% probability. So afterk trials,
the expected number of bits that were 0 isk/2 and if the verifier found thath = Ar on all of these,
verifier would know that the probability of you cheating on a given round is less than2−k/2.

The probability of you cheating on the rounds whereb = 1 is the same as the rounds where
b = 0, because you have no control over the random bit. On the first round whereb = 1, the
verifier confirms thats = dlog(h) + x. Since the verifier almost certainly knows dlog(h), he
almost certainly knowsx. We can make that probability arbitrarily high by increasingk.

Discrete-log Signature System

As we noted before, RSA cryptography fails if efficient methods are found for either factoring or
the discrete log problem. Signatures created using RSA have the same weakness. The discrete log
zero-knowledge proof just described can be adapted to produce signatures, and assume only the
hardness of the discrete log problem. The trick is to remove the interactivity from the proof. We
do that by replacing the verifier’s random choices with bits that are computed with a hash function.

In the discrete-log protocol above, the prover first picks a randomr and then the verifier picks
a randomb. Its important that the prover pick first and bit-commit his choice by sendingh to the
verifier. Otherwise if he saw V’s choice ofb he could cheat in one of the two ways given earlier.
To make this non-interactive, we have the signer simulate both prover and verifier, and publish
the transcript of their whole dialogue. The signer first does a random choice ofr for the prover
as before, but the verifier’s random choice is simulated by hashing the input dataand a value
computed from the prover’s choice ofr. By making the verifier’s choice depend on the prover’s
choice, we make it hard for the signer to fake the outcome. The prover must chooser first, then
computeh, before he finds out what the verifier’s choice forb will be.

The discrete-log ZKP given earlier isnt quite strong enough to be used this way. Ifb is a single
bit, the signer could just enumerate a fewr’s until he finds one that producesb = 0. Then the signer
can simulate the proof without knowing whatx is. So we modify the protocol so that instead of
a single bit, the verifier now choose a large integerc. That prevents the signer from cheating by
enumerating outcomes. Here is the protocol. We assume that the full text of the messageM has
already been shortened to an MD5 hash valuem.

1. Let x be a secret key known only to you, the signer. Letp be a large prime, andA be a
generator ofZ∗

p. You can publish(A, p, Ax(mod p)) as your public key to identify who you
are to the world.

2. In order to signm, (prover) choose a randomr and computec (simulating verifier’s choice)

2



as the hash of
c = h(mx(mod p), mr(mod p), Ar(mod p))

3. Lets = cx + r, you publish the digital signature which ism together with
(s, mx(mod p), mr(mod p), Ar(mod p))

4. To check the signature, a verifier first computesc as the hash of the values

mx(mod p), mr(mod p), Ar(mod p)

which were published with the signature. Then the verifier checks that

As(mod p) = (Ax)c × (Ar)(mod p) and
mr(mod p) = (mx)c × (mr)(mod p)

Your goal is to convince the verifier that you know whatx is. You cant disclosex, so instead
you give aways which depends onx but which doesnt help the verifier learnx because you
have multiplied by a randomc, added a random valuer to it, which will make its distribution be
completely random.

You can safely tell the verifierAx(mod p) andAr(mod p) because discrete log is hard, and so
those values dont help the verifier discoverx or r. The valuec is really a “challenge” to you, the
prover, to prove that you knowx. It is computed from a “random” hash function and is out of your
control. If you didnt knowx then when you were challenged with ac, the value(Ax)c×Ar(mod p)
could be any element ofZ∗

p. So trying to finds satisfying

As(mod p) = (Ax)c × Ar(mod p)

is a general instance of the discrete log problem which is very hard. The signer cannot cheat
by enumerating randomr values, because there are too many possiblec’s, and the odds of ac
satisfying the identities by chance is astronomically small (unlike for a one-bitb where it was
fifty-fifty).

The tests onA establish that you, the signer, knowx and that you are who you claim to be. By
similar reasoning, only the person who knowsx could construct the powers ofm that are published
as the signature. Thus those tests establish that you deliberately signed that document.

3


