
CS174 Lecture 22 John Canny

Secure Hash Algorithms

Another basic tool for cryptography is a secure hash algorithm. Unlike encryption, given a variable-
length messagex, a secure hash algorithm computes a functionh(x) which has a fixed and often
smaller number of bits. So it is usually not possible to recoverx from its hash value. The hash
function is secure if it is hard to get information about thex’s that hash to a particular value. The
properties we would like from a secure hash function are:

1. A hash functionh(x) is said to beone-wayif giveny it is hard to find anx such thath(x) = y.

2. A hash functionh(x) is said to beweakly collision-freeif given a messagex1 it is hard to
find another messagex2 such thath(x1) = h(x2).

3. A hash functionh(x) is said to bestrongly collision-freeif it is hard to find any pair of
messagesx1, x2 such thath(x1) = h(x2).

and as the terminology suggests, a function which is strongly collision-free is also weakly collision-
free.

One of the most popular secure hash algorithms is called MD5. It was invented by Ron Rivest,
the R in RSA. The details of MD5 aren’t very enlightening, and we wont go over it here. It is
completely described in the Wayner book. At high level, it processes 512-bit blocks of data and
produces 128-bit hash values. Thus it reduces the length of a large message by a factor of 4. To
arrive at a hash value of fixed size, you iterate the process until the output is a single 128-bit value.
As far as is known, MD5 is one-way and strongly collision-free.

Hash functions are very much like the fingerprint functions we used earlier. But one difference
is that the simple modular functions we used for string matching are very easy to fool - given a
string and its fingerprint, it is easy to generate other strings with the same fingerprint. That must
not be the case for a secure hash function.

An important property of secure hash functions, like any hash function, is that they should
uniformly cover their range. That is, if you place a uniform distribution on the inputs, the output
probabilities from the hash function should be uniform. But we typically hope for much more.
Namely that for any “reasonable” probability distribution on the inputs, the output probabilities
should still be uniform. e.g. if the inputs consists of ASCII representation of normal english text
(which is very non-uniform compared to random binary strings) the output distribution from the
hash function should still be uniform. We will henceforth assume that is true.

1



Digital Signatures

The purpose of a digital signature is similar to a physical signature. That is, you endorse some
document in a way that: (i) others can verify that you signed that particular document (ii) it is
difficult for someone else to forge your signature. The simplest signature schemes allow anyone to
verify both the document you signed, and who you are.

Here is a simple signature scheme. It assumes that you, the signer, have a published RSA key
e, and a corresponding private keyd. Given a documentx, first compute a hash of it using MD5,
y = h(x). Your signature will be the RSA encryption ofy by yoursecret key, which we write as
R(y, d) (we wont distinguish between encryption and decryption functions for RSA since they are
the same, i.e. exponentiation by the key mod n). That is, your signature is

s = R(h(x), d)

Now anyone else that has access to the documentx and your signatures can verify that you have
signed it by computingR(s, e) using your public keye. Sincee andd are inverses,

R(R(h(x), d), e) = h(x)

Now the verifier (the person checking your signature) compares this value with the hash value that
they compute directly from the document using MD5, which will also beh(x).

Because MD5 is a secure hash function, it is impractical to construct another document with
the same hash value. So the verifier knows that only this document could have been signed. Fur-
thermore, because it is difficult for anyone else to discover your private key, the fact that you were
able to computeR(h(x), d) convinces the verifier that you know whatd is. That is, you are the
person you claim to be, and that you intended to sign this document.

Limitations of RSA

The basic RSA scheme has some limitations. The most obvious is vulnerability of small messages.
Suppose a user sends a small (k-bit) message M using a public keye. A cracker may see the
encrypted message. Although they cant invert it directly, they could instead enumerate allk-bit
messages and encrypt them until they find one matching the intercepted message.

There are ways of dealing with this problems, but they are addressed “naturally” in a differ-
ent crypto-system called Diffie-Hellman/El-Gamal (El-Gamal evolved from Diffie-Hellman which
was originally a key exchange protocol).

Diffie-Hellman/El-Gamal encryption

The El-Gamal crypto-system relies on the difficulty of the discrete logarithm problem. Ifp is
prime, thenZ∗

p is cyclic. Letg be a generator ofZ∗
p. The discrete logarithm of an integerm is

2



the minimum exponente such thatm = ge(mod p). Computing discrete logs is believed to be
intractable, although just like factoring this has never been proved. The El-Gamal scheme has the
following components:

Key Generation
Alice picks a strong primep, and knows the factorization ofp− 1. She also chooses a generatorg
of Z∗

p (she can test if random elements are generators using the factorization ofp− 1). She choose
a secret keys and computesh = gs. She publishes(p, g, h) as her public key.

Encryption
Bob wants to send a messageM to Alice. He chooses a random “one-time” keyr, and sends
(A, B) = (gr, Mhr) to Alice.

Decryption
Alice receives Bob’s message(A, B). She computesBA−s which isMhr(gr)−s = Mhr(g−s)r =
Mhrh−r = M .

Clearly, El-Gamal can’t work unless discrete log is hard. The public key contains bothg and
h = gs, and if an observer could compute the discrete log ofh wrt g, they would get the secret key
immediately. The difficulty of El-Gamal is as problematic as RSA. It is not provably equivalent
to the discrete log problem (which is not provably hard anyway). But all of these problems have
closely related complexity. Improvements in factoring have generally led to improvements in
discrete log and vice-versa. The acceptable key sizes for RSA and El-Gamal have tracked closely
over the years. The current acceptable key size is 1024 bits, although 2048-bit keys are being
considered and may become standard in a few years.

One advantage of El-Gamal over basic RSA is that it includes a “security parameter” which
protects small messages. An encrypted message is defined by both the input messageM and the
sender’s one-time keyr. Seeing different encryptions of the same message doesnt help an observer
figure out what the message is.

Key exchange

One interesting property of this scheme is that two agents that know each other’s public keys
automatically know a shared secret. Suppose Alice has private keyx and publishes(p, g, gx) as
her public key. Bob has a private keyy and publishes(p, g, gy) as his public key. Bob can look up
Alice’s public key and computeS = (gx)y from it using his private key. Similarly, Alice can look
up Bob’s public key and computeS = (gy)x from it using her private key. Then Alice and Bob
both knowS, but no-one else does. They could useS (for instance) to send private-key encrypted
messages which are much faster than public key encryption.

This scheme was originally proposed for key-exchange by Diffie and Hellman. In this setting,
the private keysx andy are short-term “session keys” for communication between Alice and Bob.

3



Such communication is susceptible to a “man in the middle” (MIM) attack by a third party who
intercepts and changes the communications between Alice and Bob. If there is instead a trusted
authority who stores public keys for Alice and Bob, they can use this information to generate the
shared key without ever communicating with each other. They will be protected from MIM attacks,
so long as they know in advance how to recognize the authority.

4


