
CS174 Lecture 21 John Canny

Cryptography

The idea of cryptography is to protect data by transforming into a representation from which the
original is hard to recover. These days many networking technologies (internet, wireless) allow
many agents to see a piece of data as it moves from its source to its destination. Those agents can
capture the data in the representation sent across the network, and use it for their own purposes.
Increasingly, people send data of great value (e.g. credit card numbers, secrets) through networks,
so there is plenty of need for crytpography. In the future, most monetary transactions will probably
go across the standard internet, and cryptography is an essential part of doing those transactions
safely. There are two common types of cryptography:

Public-Key systems In a public-key system, the message M is encrypted using a keye which is
public. That is, to encrypt the message computeX = E(M, e) whereE is the encryption
function. To decrypt the encrypted messageX, you computeM = D(X, d), whered is
the decryption key corresponding toe. The point of public-key systems is that knowing the
encryption keye doesnt help a spy to discover the decryption keyd.

Private-Key systems In a private-key system, the message M is encrypted using a keye which is
known only to the sender and receiver. Once again, to encrypt the message computeX =
E(M, e) whereE is the encryption function. To decryptX, you computeM = D(X, d),
whered is the decryption key corresponding toe. In a private-key system, there is usually a
simple relationship between the encryption and decryption keys, so knowinge would make it
easy for a spy to intercept and decrypt a message. Probably the most widely used secret-key
system is DES (the Data Encryption Standard).

RSA: A public-key crypto-system

The most famous public-key system is called RSA after its inventors Ron Rivest, Adi Shamir, and
Len Adleman. Its very easy to describe RSA given what we know about additive and multiplicative
groups ofZn. First of all, we assume the message is broken into chunks of the right size, say 1024
bits. In what follows, assumeM is at most 1024 bits.

1. Generate a numbern of at least 1024 bits which is a product of two large primesp andq. i.e.
generate two primes of at least 512 bits and multiply them together.

2. Givenp andq, recall thatφ(n) = (p− 1)(q − 1) so it is easy to computeφ(n).

3. For the encryption keye, choose a value s.t.gcd(e, φ(n)) = 1.

4. Using the extended Euclid algorithm, find the multiplicative inverse ofe(mod φ(n)), that
is, findx such thatex + φ(n)y = 1. This inverse is the decryption keyd.

1



5. The public (encryption) key is the pair(e, n), while the decription key, which only the re-
ceiver knows is(d, n).

To send a message using RSA, the sender computes

X = M e(mod n)

And then to decrypt the message, the receiver computes:

M0 = Xd(mod n) = M ed(mod n)

Now sinceMφ(n)(mod n) = 1 anded is 1 + some multiple ofφ(n),

M ed(mod n) = M1(mod n) = M

So the recovered messageM0 is indeed equal to the original messageM . Notice that the
encryption and decryption functions are identical, that is:

E(X, (k, n)) = D(X, (k, n)) = Xk(mod n)

Complexity of RSA

We should check that we can do all the steps in RSA efficiently. Let’s defer choosing the primes
p andq for a moment. All the powering and gcd calculations are clearly in polynomial time in the
number of bits ofn. The other task is to find a numbere such thatgcd(e, φ(n)) = 1. From last
time we know that the fraction of elements which are relatively prime toN is Ω(1/ log N). So
settingN = φ(n), afterO(log N) random trials fore, we should be able to get ane which is prime
to φ(n). This is still all polynomial in the number of bits ofn.

For generating primes, we can generate random numbers in the appropriate range and test them
for primality. The prime number theorem asserts that about1/ ln n of the numbers less thann are
prime. So about one inln n of the integers nearn is a prime. Thus if we makeO(log n) random
choices, we will have high probability that one of our choices is a prime. So it is enough to show
that there is an efficient test for primality. There are quite a few of these, but we will present one
which is self-contained given what we know so far:

Algorithm Primality

Input: Odd number n and t

Output: PRIME or COMPOSITE

1. If n is a perfect power, then return COMPOSITE

2. Chooseb1, b2, . . . , bt independently and uniformly at random fromZn − {0}

3. If for anybi, gcd(bi, n) 6= 1 then return COMPOSITE

4. Computeri = b
(n−1)/2
i (mod n) for i = 1, . . . , t

2



5. If for any i, ri 6= ±1(mod n), then return COMPOSITE

6. If for all i, ri = 1(mod n), then return COMPOSITE
else return PRIME

Theorem
The probability that algorithmPrimality makes an error isO(1/2t).

Proof
Clearly all the steps from 1 to 5 are correct. So we are left with checking step 6 in the two cases
when n is prime or composite.

Supposen is prime. We can output COMPOSITE if all of theri’s evaluate to 1. But we know
that for randomly chosenbi’s only half of them (those which are even powers of a generator) would
give +1 when raised to the(n− 1)/2. The probability that all thebi’s we chose happen to be even
powers of a generator would be1/2t. Thus we output the wrong answer with probability1/2t.

If n is composite, the proof is more difficult and we wont give it here. But it can be shown that
in that case, the probability of a wrong answer is1/2t−1. QED

Finally, we should say something about checking ifn is a perfect power. We want to check if
n = lk for some integerl andk. We can do that by trying eachk = 1, 2, . . . , log(n). For eachk,
we compute thekth root ofn by Newton’s method or bisection, which are both polynomial time in
the number of bits ofn. Overal this takes time polynomial inlog n.

Security of RSA

We would like to be convinced that RSA is a secure cryptographic scheme. For it to be so, we need
a hypothesis:

Factoring is Hard It is believed to be very difficult to factor an integern in the worst case. The
worst case is wheren comprises a small number of large factors. This has not been shown to
be NP-complete, but the problem has resisted years of effort at finding efficient algorithms.

To see how factoring would help break RSA, notice that knowledge of the factorsp andq of n
is all that was needed in the key generation procedure described above. That is, givenp andq, you
can computeφ(n), and givenφ(n) you can compute the decryption key from the encryption key
using the extended Euclid algorithm.

So if factoring is easy, RSA is easy to break. But its possible that RSA is easy even if factoring
is hard, because its not known how to go in the other direction - how to reduce factoring to breaking
RSA.

3


