CS174 Lecture 20 John Canny

Number Theory

Divisibility : We use the notation
alb

to mean & dividesb” exactly. So3|6, 15|45 etc. while the symbol/ means “does not divide
evenly”, so5 /8, and12 /[16 etc. Note that|0 holds for alla, i.e. zero is divisible by everything.

Greatest Common DivisorThe greatest common divisor (GCD) @andb is defined as:
gcd(a,b) = max{g : gla andg|b}
So for example, gcd(20,65) = 5, gcd(19,38) = 19, gcd(5,12) = 1 etc.

Lowest Common Multiple The lowest common multiple (LCM) af andb is defined as:
lem(a,b) = min{l : a|l andb|l}
So for example, lcm(20,30) = 60, Icm(19,38) = 38, gcd(5,12) = 60 etc.

Lemma The GCDg(a, b) and LCMI(a, b) satisfy:

lem(a,b) = gcd“(’;7b)

Factorization
A primep > 1is a number with no divisors except fprand 1.

Other numbers are callesbmposite Composite numbers have unique factorizations as powers of
primes. That is, every number (primes teoan be uniquely expressed as a product:

n=pi

For examples4 = 22 x 3 x 7.

Division Theorem

Given a dividend: and a divisom, there are unique integegsaandr € [0, ..., b — 1] such that:
a = qb+r

and we writeg = «a div b for the quotient ana = a mod b for the remainder.

Note thath|a is equivalent taz mod b =0



Euclid’s Algorithm
Euclid’s algorithm is a method for efficiently computing GCDs. Its based on the observation that
if
g = ged(a,b)
then
r =amod b = a—qb

is also divisible byy because both andb are. By repeatedly taking remainders, we can reduce the
size of the numbers whose gcd we are computing, until eventually we get the gcd itself.

rn = a

ro = b

rg = riymod 7y

ry = 7romod 713

Tk — Tkg—2 mod Tk—1
0 = 74_1mod ry

Notice first that since a remaindet,) is always smaller than a divisor,(_;), this sequence is
decreasing, except perhaps for the first two elements. It is easy to show that the common divisors
of any pair of consecutive;’s are the same. That is, the numlges a common divisor of; and

r;—1 ifand only if it is a common divisor of; andr;,;. So the gcd; is a divisor of all the elements

in the sequence. Since the sequence is strictly decreasing, we get smaller and smaller multiples of
g, and must eventually get zero. The element before is a multipje arid it must exactly divide

the element before it. Since those two elements have gitek penultimate element must peSo

we return the last non-zero element r, from the remainder sequence as the gcd.

Euclid’s algorithm is fast. The remainder sequence is bounded by a decreasing geometric series,
and we have that:

Lemma Euclid’s algorithm take$)(log a) steps to computged(a, b).

Extended Euclid
We can get more information from Euclid’s algorithm by doing some book-keeping. In particular,
if g = ged(a,b), the extended Euclid algorithm computes, such that
g = ar+by
This follows easily by induction. Suppose that we can express
ri = T;a + y;b
Clearly this is true foi = 1, 2 with the (x;, y;) pairs(1,0) and(0, 1) respectively. Suppose its true



for i andi + 1. We prove it holds foi + 2. Now

Tive = Ti—QiyaTiv1 = (@2+byi) +Giva(azivs +byir1) = a(Ti+qir2Tiv1) +0(Yi+qivayiv)
Which proves the identity we were looking for and establishes the inductive formulae:

Tiva = (T + Qr2Tiv1)
Yiro = (Vi + Gip2litr)

And if r is the last remainder in the sequence, we see that
g = gcd(a,b) = r, = xpa+ypb

To implement extended Euclid, simply initialize,, ;) and(x», y-) to (1,0) and(0, 1) respecively,
and use the above inductive formula as the remainders are computed.

The extended Euclid algorithm has a number of applications. One of the most important is for
computing inverseswod n. Suppose we apply extended Euclid to two elemerasdn whose
gcd is 1. Then extended Euclid will computeindy satisfying:

1l =ax+ny

If we reducemod n, we get thatl = az(mod n), or in other wordsg is the inverse ofi modn.
The Multiplicative Group Z}

Recall that a group is a set with a binary operator defined on it which satisfies closure under the op-
erator, associativity, identity and inverse. We can define a set which is closed under multiplication
mod n:

Z: = {a€Z,| ged(a,n) =1}

and thenZ?) will be a group under multiplicatiomod n. The identity is 1, and associativity
follows from associativity of multiplication. You can check yourself that it satisfies closure. Inverse
follows because we can use extended Euclid to compute inverses as above for any elements that
satisfyged(a,n) = 1.

Relative Primality We say % is relatively prime ton” wheneverged(a, n) = 1.

Note that ifn is prime, then all the elements i, are relatively prime to: except for 0. Thus
7 = Z, — {0} for primen.

Finite Fields

A field F' is a setD which has two operators, x defined on it. There are two groups, an additive
group(D, +) and a multiplicative groupD*, x), whereD* = D — {0}.

Example: The setZ, of integersmod p is a field wherp is a prime. Thet operator is addition
mod p and thex operator is multiplicatiomod p.

If n is not prime,Z, is not a field. The seZ, contains factors of., and they do not have
multiplicative inversesnod n. S0Z; is not a group under multiplicatiomod n.



Euler’s Totient Function

The Euler Totient functio(n) counts the number of elements in the multiplicative grar)p
¢(n) = |Z3)

We already know that for a prime ¢(p) = p — 1. For a generat, the totient function depends
on the prime facorization of. Suppose

k k
no=p'p

then the value of the totient function is

t t

¢(n) = prﬁl(pz' -1) = ”H(l —1/pi)

i=1 i=1

We wont give a proof here, but it is not hard to derive it using the inclusion/exclusion principle. An
intuitive proof is that totient function counts numbers that are not divisible by any of;HheThe
probability that a number isot divisible by p; is 1 — 1/p;, and we claim that those probabilities
are independent. So the number of elements that are not divisible by anyp6tise

t

”H(l —1/pi)

=1
Next we state two theorems which are very important in number theory and cryptography:
Euler's Theorem For any element € Z,
a®™ = 1(mod n)

For a primep, recall thaty(p) = p — 1. Making that substitution gives us Fermat's theorem (not
the famous one):
Fermat's Theorem For a primep and any element € Z,

a?=l) = 1(mod p)

You should recall a fast powering algorithm from CS170. It allows you to compute
a®Y(mod p)

in time which is polynomial idog p.

Generators

A generator of a groug: is an element whose powers comprise the entire g@upf a group
has a generator, then it is said to beyalic group. One easy observation we can make is that if

4



the order ofGG is a primep > 1, thenG is a cyclic group. Why? In fact every element except the
identity is a generator in that case.

In particular, for every prime, the additive grougZ,, +) is cyclic. Its order igp, and every
element except 0 generates the whole group.

For multiplicative groups, we dont get very far with the above observation. For prirtie
order of(Z;, x) isp — 1. If pis prime and greater than 2, it must be odd, and1 must be even.
That is, the order ofZy, x) for p > 2 is divisible by 2. So we can't apply the above theorem. But
that doesnt mean théZ;, x ) is not cyclic. In fact it always is:

Theorem The multiplicative grougZ;, x) is cyclic if and only ifn is either:
1, 2, 4, p*, or2p"
wherep is an odd prime, andl is a positive integer.

This theorem is quite complicated to prove, and we wont do that here. It is anyway not all that
interesting to know that a group is cyclic (has a generator). What is interesting is if thdotsare
of generators. In fact, that is the case for cyclic groups. Once you have a generator, many powers
of that generator will also be generators.

Lemma If g is a generator ofZ;, x ), then so igj* so long agcd(k, #(n)) = 1.

This lemma shows that there are at least as many generators for a cycli{group as there
are integers: which are less than and relatively primed:). Thosek values are precisely the
elements ofZ} ,,, and there are(¢(n)) of them.

To recap, if the multiplicative grouf¥Z;, x) is cyclic, then at least(4(n)) of its elements are
generators. The multiplicative group itself ha®:) elements, so the fraction of elements which
are generators i8(¢(n))/¢(n). This is a clumsy expression. If we definé= ¢(n) as the order
of the group, then the fraction of generators{svV)/N. The following lemma shows that this ratio

isnt too small:

Lemma ForanyN > 1,

@ =9 (bglN)

The reason that is so interesting is that for a cyclic group (Kg x), at leastl/logp of
the elements will be generators (actually at ldadbg N which is at least / log p becauseV =
¢(p) < p). So if we pick elements at random, we only need to make abglitg p) guesses
before we have a good chance of getting a generator. We can do quite a few interesting things with
generators. For example, we can prove ghatprime even if we didnt know in advance that it is,
by showing that the generator has orger 1. The above results show that we can do this, and
hence discover large primes, in time polynomialdg p.



