
CS174 Lecture 20 John Canny

Number Theory

Divisibility : We use the notation

a|b

to mean “a divides b” exactly. So3|6, 15|45 etc. while the symbol6 | means “does not divide
evenly”, so5 6 |8, and12 6 |16 etc. Note thata|0 holds for alla, i.e. zero is divisible by everything.

Greatest Common DivisorThe greatest common divisor (GCD) ofa andb is defined as:

gcd(a, b) = max{g : g|a andg|b}

So for example, gcd(20,65) = 5, gcd(19,38) = 19, gcd(5,12) = 1 etc.

Lowest Common Multiple The lowest common multiple (LCM) ofa andb is defined as:

lcm(a, b) = min{l : a|l andb|l}

So for example, lcm(20,30) = 60, lcm(19,38) = 38, gcd(5,12) = 60 etc.

Lemma The GCDg(a, b) and LCMl(a, b) satisfy:

lcm(a, b) = ab
gcd(a,b)

Factorization

A primep > 1 is a number with no divisors except forp and 1.

Other numbers are calledcomposite. Composite numbers have unique factorizations as powers of
primes. That is, every number (primes too)n can be uniquely expressed as a product:

n = pe1
1 · · · pek

k

For example84 = 22 × 3 × 7.

Division Theorem

Given a dividenda and a divisorb, there are unique integersq andr ∈ [0, ..., b − 1] such that:

a = qb + r

and we writeq = a div b for the quotient andr = a mod b for the remainder.

Note thatb|a is equivalent toa mod b = 0
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Euclid’s Algorithm

Euclid’s algorithm is a method for efficiently computing GCDs. Its based on the observation that
if

g = gcd(a, b)

then

r = a mod b = a − qb

is also divisible byg because botha andb are. By repeatedly taking remainders, we can reduce the
size of the numbers whose gcd we are computing, until eventually we get the gcd itself.

r1 = a
r2 = b
r3 = r1 mod r2

r4 = r2 mod r3
...

...
...

rk = rk−2 mod rk−1

0 = rk−1 mod rk

Notice first that since a remainder (rk) is always smaller than a divisor (rk−1), this sequence is
decreasing, except perhaps for the first two elements. It is easy to show that the common divisors
of any pair of consecutiveri’s are the same. That is, the numberg is a common divisor ofrj and
rj−1 if and only if it is a common divisor ofrj andrj+1. So the gcdg is a divisor of all the elements
in the sequence. Since the sequence is strictly decreasing, we get smaller and smaller multiples of
g, and must eventually get zero. The element before is a multiple ofg, and it must exactly divide
the element before it. Since those two elements have gcdg, the penultimate element must beg. So
we return the last non-zero elementg = rk from the remainder sequence as the gcd.

Euclid’s algorithm is fast. The remainder sequence is bounded by a decreasing geometric series,
and we have that:

Lemma Euclid’s algorithm takesO(log a) steps to computegcd(a, b).

Extended Euclid

We can get more information from Euclid’s algorithm by doing some book-keeping. In particular,
if g = gcd(a, b), the extended Euclid algorithm computesx, y such that

g = ax + by

This follows easily by induction. Suppose that we can express

ri = xia + yib

Clearly this is true fori = 1, 2 with the(xi, yi) pairs(1, 0) and(0, 1) respectively. Suppose its true
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for i andi + 1. We prove it holds fori + 2. Now

ri+2 = ri−qi+2ri+1 = (axi+byi)+qi+2(axi+1+byi+1) = a(xi+qi+2xi+1)+b(yi+qi+2yi+1)

Which proves the identity we were looking for and establishes the inductive formulae:

xi+2 = (xi + qi+2xi+1)
yi+2 = (yi + qi+2yi+1)

And if rk is the last remainder in the sequence, we see that

g = gcd(a, b) = rk = xka + ykb

To implement extended Euclid, simply initialize(x1, y1) and(x2, y2) to (1, 0) and(0, 1) respecively,
and use the above inductive formula as the remainders are computed.

The extended Euclid algorithm has a number of applications. One of the most important is for
computing inversesmod n. Suppose we apply extended Euclid to two elementsa andn whose
gcd is 1. Then extended Euclid will computex andy satisfying:

1 = ax + ny

If we reducemod n, we get that1 = ax(mod n), or in other words,x is the inverse ofa modn.

The Multiplicative Group Z∗
n

Recall that a group is a set with a binary operator defined on it which satisfies closure under the op-
erator, associativity, identity and inverse. We can define a set which is closed under multiplication
mod n:

Z∗
n = {a ∈ Zn | gcd(a, n) = 1}

and thenZ∗
n) will be a group under multiplicationmod n. The identity is 1, and associativity

follows from associativity of multiplication. You can check yourself that it satisfies closure. Inverse
follows because we can use extended Euclid to compute inverses as above for any elements that
satisfygcd(a, n) = 1.

Relative Primality We say “a is relatively prime ton” whenevergcd(a, n) = 1.

Note that ifn is prime, then all the elements inZn are relatively prime ton except for 0. Thus
Z∗

n = Zn − {0} for primen.

Finite Fields

A fieldF is a setD which has two operators+, ∗ defined on it. There are two groups, an additive
group(D, +) and a multiplicative group(D∗, ∗), whereD∗ = D − {0}.

Example: The setZp of integersmod p is a field whenp is a prime. The+ operator is addition
mod p and the∗ operator is multiplicationmod p.

If n is not prime,Zn is not a field. The setZn contains factors ofn, and they do not have
multiplicative inversesmod n. SoZ∗

n is not a group under multiplicationmod n.
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Euler’s Totient Function

The Euler Totient functionφ(n) counts the number of elements in the multiplicative groupZ∗
n,

φ(n) = |Z∗
n|

We already know that for a primep, φ(p) = p − 1. For a generaln, the totient function depends
on the prime facorization ofn. Suppose

n = pk1
1 · · · pkt

t

then the value of the totient function is

φ(n) =
t∏

i=1

pki−1
i (pi − 1) = n

t∏
i=1

(1 − 1/pi)

We wont give a proof here, but it is not hard to derive it using the inclusion/exclusion principle. An
intuitive proof is that totient function counts numbers that are not divisible by any of thepi’s. The
probability that a number isnot divisible bypi is 1 − 1/pi, and we claim that those probabilities
are independent. So the number of elements that are not divisible by any of thepi’s is

n
t∏

i=1

(1 − 1/pi)

Next we state two theorems which are very important in number theory and cryptography:

Euler’s Theorem For any elementa ∈ Z∗
n,

aφ(n) = 1(mod n)

For a primep, recall thatφ(p) = p − 1. Making that substitution gives us Fermat’s theorem (not
the famous one):

Fermat’s Theorem For a primep and any elementa ∈ Z∗
p,

a(p−1) = 1(mod p)

You should recall a fast powering algorithm from CS170. It allows you to compute

a(p−1)(mod p)

in time which is polynomial inlog p.

Generators

A generator of a groupG is an element whose powers comprise the entire groupG. If a group
has a generator, then it is said to be acyclic group. One easy observation we can make is that if
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the order ofG is a primep > 1, thenG is a cyclic group. Why? In fact every element except the
identity is a generator in that case.

In particular, for every primep, the additive group(Zp, +) is cyclic. Its order isp, and every
element except 0 generates the whole group.

For multiplicative groups, we dont get very far with the above observation. For primep, the
order of(Z∗

p,×) is p − 1. If p is prime and greater than 2, it must be odd, andp − 1 must be even.
That is, the order of(Z∗

p,×) for p > 2 is divisible by 2. So we can’t apply the above theorem. But
that doesnt mean that(Z∗

p,×) is not cyclic. In fact it always is:

Theorem The multiplicative group(Z∗
n,×) is cyclic if and only ifn is either:

1, 2, 4, pk, or 2pk

wherep is an odd prime, andk is a positive integer.

This theorem is quite complicated to prove, and we wont do that here. It is anyway not all that
interesting to know that a group is cyclic (has a generator). What is interesting is if there arelots
of generators. In fact, that is the case for cyclic groups. Once you have a generator, many powers
of that generator will also be generators.

Lemma If g is a generator of(Z∗
n,×), then so isgk so long asgcd(k, φ(n)) = 1.

This lemma shows that there are at least as many generators for a cyclic group(Z∗
n,×) as there

are integersk which are less than and relatively prime toφ(n). Thosek values are precisely the
elements ofZ∗

φ(n), and there areφ(φ(n)) of them.

To recap, if the multiplicative group(Z∗
n,×) is cyclic, then at leastφ(φ(n)) of its elements are

generators. The multiplicative group itself hasφ(n) elements, so the fraction of elements which
are generators isφ(φ(n))/φ(n). This is a clumsy expression. If we defineN = φ(n) as the order
of the group, then the fraction of generators isφ(N)/N . The following lemma shows that this ratio
isnt too small:

Lemma For anyN > 1,

φ(N)

N
= Ω

(
1

log N

)
The reason that is so interesting is that for a cyclic group like(Zp,×), at least1/ log p of

the elements will be generators (actually at least1/ log N which is at least1/ log p becauseN =
φ(p) < p). So if we pick elements at random, we only need to make aboutO(log p) guesses
before we have a good chance of getting a generator. We can do quite a few interesting things with
generators. For example, we can prove thatp is prime even if we didnt know in advance that it is,
by showing that the generator has orderp − 1. The above results show that we can do this, and
hence discover large primes, in time polynomial inlog p.
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